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ABSTRACT
Applying reinforcement learning (RL) methods for real world ap-
plications poses multiple challenges - the foremost being safety
of the physical system controlled by the learning agent and the
learning efficiency. A RL agent learns to control a system by ex-
ploring available actions. In some operating states, when the RL
agent exercises an exploratory action, the system may enter unsafe
operation, which can lead to safety hazards both for the system
as well as for humans supervising the system. RL algorithms thus
need to respect these safety constraints and must do so with limited
available information. In our work, we formulate this problem in
the constrained off-policy setting that facilitates safe exploration
by the RL agent. Further, we develop a sample efficient algorithm
by adapting the cross-entropy method. The proposed algorithm’s
safety performance is evaluated numerically on benchmark RL
problems.
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1 INTRODUCTION
Resurgence of artificial intelligence and advancements in it has led
to automation of many cyber-physical systems [11, 21, 29]. Such
systems have multiple operating states and they evolve based on
what the underlying intelligent agent or the controller decides to do.
The prime factor for efficient system operation lies in the control
decisions of the agent.

Cyber-physical systems having multiple operating states that
can be controlled by an intelligent agent are often modeled using
the framework of Markov decision processes [5, 22]. Informally, a
Markov decision process (MDP) is characterized by states, actions
and their evolution. The states correspond to the operating states
of the physical system. The agent chooses actions to control the
system by exploring various actions in an iterative manner. The
iterative learning of the agent is facilitated by a feedback from the
system where the agent receives reward or cost for the choice of
actions. This feedback indicates the agent which indicates whether
it is learning in the desired manner or not. This approach of learning
to choose the optimal (or right) actions based on indirect feedback
is known as reinforcement learning (RL) [24].

The success of the RL approach has been demonstrated on a
broad range of applications [14, 17, 19]. Further, recent advances
in deep learning have also improved the scalability of RL algo-
rithms [16]. However, a grave concern arises when we speak of
these potential applications of RL, which is that of safety [13]. In
this paper, we focus on issues which arise in safety-critical sys-
tems [4], controlled by RL autonomous learning algorithms. This
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problem is of profound importance in systems like self-driving cars,
where during learning, any decision/action applied to the car has to
guarantee safe driving or at least minimize the frequency of unsafe
behaviour. RL algorithms [6] learn by exploring actions, which
leads to the evolution of the system to different states. The states of
the system reached by taking random actions may not be safe, or
even the entire trajectory may be unsafe. How do we build new RL
algorithms which minimize risky/unsafe operation during learning
and learn a safe policy?

We bring in the aspect of safety into RL algorithms using two
important ideas. The first idea is to utilize the constrained RL frame-
work [3]. Using this, the RL agent explores decisions whose average
cost violations are well within a specified budget. The second idea
is that of off-policy learning [24]. Using off-policy learning, the
learning agent learns to take optimal decisions in the operating
states based on decisions that have earlier been taken. This is of-
ten referred to as the behaviour policy (the decision function or
rule from states to actions, see Section II). This policy is typically
specified by an expert or known to be a safe policy.

In our work, we formulate the problem of choosing safe deci-
sions as a constrained MDP problem. Further, while solving this
constrained MDP, we impose an additional requirement of learning
only from existing or historical data (off-policy learning). To achieve
this goal, we develop an RL algorithm that utilizes the cross-entropy
method (CEM). The CEM can handle constraints effectively and
at the same time is amenable to off-policy learning. Further, our
RL algorithm can utilize the non-linear function approximations
provided by neural networks for large scale problems. We now
summarize our contributions:

• We propose a sample-efficient RL algorithm for safe explo-
ration based on the cross entropy method.

• Given safety threshold, i.e., a quantity which indicates the
level of safety violations that can be tolerated by the system,
our algorithm utilizes the available data to find a policy that
is feasible. Also the safety constraints are kept under check
during the learning process as well.

• The algorithm utilizes limited data samples for policy im-
provement during learning.

2 RELATEDWORK
Prior works on safe RL (see [9]) are mostly based on constrained pol-
icy optimization approaches [1, 30]. We too follow this formulation
in ourwork (see Section 3. A trust-region [1] basedmethod proposes
surrogate objective and constraint functions to suit model-free op-
timization. This method is suited for the case when the objective
and constraint functions are hard to estimate. However, the method
is data intensive and during learning, the algorithm needs to ex-
plore all actions, making it ineffective for avoiding unsafe actions.
[30] proposes a constrained RL optimization algorithm adapted
from cross-entropy method [15]. Using trajectory data samples, the
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objective function as well as the safety constraints are computed.
Based on the computed values, the policy parameters are updated.
As with [1], this method also requires exploration of all actions
(including unsafe) for evaluating a policy.

Recent approaches [26–28]model reward and safety functions us-
ing Gaussian process (GP) [23]. In these approaches, the exploration
is guided by a constraint on the acceptable safety values. Every state
is characterized by this safety value. The safety function is apriori
unknown and the idea is to find a set of “safe” states [26], i.e those
states whose safety level is above a certain pre-fixed threshold. The
initial set of safe states is expanded by exploration. Though [26]
does not consider reward optimization, its extensions [27, 28] do
consider reward optimization which also is modeled as a GP. In
addition, [27] experiments with a stopping rule for safe states ex-
ploration. GPs require lot of data for learning and hence the above
methods are data inefficient. In our work, we ensure data efficiency.

3 PROPOSED APPROACH
3.1 Problem Formulation
A safety-constrained problem is modeled as a constrained MDP
(CMDP) 𝑀 = ⟨𝑆,𝐴, 𝑃, 𝑅, 𝑐1, . . . , 𝑐𝐾 ⟩. Here, 𝑆 is the set of states of
the system, 𝐴 is the set of actions (or decisions) that can be taken
in these states (assume |𝐴| < ∞ and all actions are feasible in every
state), 𝑃 : 𝑆 ×𝐴 × 𝑆 → [0, 1] is the transition probability function
that governs the dynamics of the system based on the choice of
actions in states, 𝑅 : 𝑆 ×𝐴 → R is a real-valued reward feedback
for choosing actions in states and 0 ≤ 𝛾 < 1 denotes the discount
factor.

Additionally, in the above notation, there are 𝐾 safety con-
straint functions 𝑐𝑖 : 𝑆 × 𝐴 → R, 1 ≤ 𝑖 ≤ 𝐾 . For 𝑛 ≥ 0, let
𝑟 (𝑛), 𝑐1 (𝑛), 𝑐2 (𝑛), . . . , 𝑐𝐾 (𝑛) denote the single-stage reward and
constraint values at instant 𝑛. We assume that reward and con-
straints are (uniformly) bounded and independent random vari-
ables. The state evolution of the Markov process under any policy
𝜋 is denoted {𝑋𝑛} and the corresponding action sequence is {𝑍𝑛}.
Thus, at instant 𝑛, when state 𝑋𝑛 is observed and action 𝑍𝑛 is
taken, a reward 𝑟 (𝑛) and constraint costs 𝑐1 (𝑛), . . . , 𝑐𝐾 (𝑛) are ob-
tained. The process also moves to the next state 𝑋𝑛+1. Let 𝑅(𝑠, 𝑎) =
E[𝑟 (𝑛) |𝑋𝑛 = 𝑠, 𝑍𝑛 = 𝑎] and 𝑐𝑖 (𝑠, 𝑎) = E[𝑐𝑖 (𝑛) |𝑋𝑛 = 𝑠, 𝑍𝑛 = 𝑎], 𝑖 ≤
𝑖 ≤ 𝐾 .

In our problem formulation, the set of policies we consider is
specified by a state-dependent, randomized decision rule 𝑢 : 𝑆 →
P(𝐴). The map 𝑢 outputs a probability distribution over the action
space 𝐴 for every state in 𝑆 . A randomized policy 𝜋 = (𝑢,𝑢, . . .)
belongs to a large class of policies, which is known [3] to contain
feasible policies for the problem we consider (see (1)). Using a ran-

domized policy 𝜋 , we define 𝑈 𝜋 (𝑠) = E

[ ∞∑
𝑚=0

𝛾𝑚𝑟 (𝑚) |𝑋0 = 𝑠, 𝜋
]

and𝑊 𝜋
𝑖
(𝑠) = E

[ ∞∑
𝑚=0

𝛾𝑚𝑐𝑖 (𝑚) |𝑋0 = 𝑠, 𝜋
]
. Let 𝛽 be the initial dis-

tribution over states. Given this specification, our mathematical
problem formulation is the following:

max
𝜋 ∈Π

𝑉 𝛽 (𝜋)

s.t 𝐺
𝛽

𝑖
(𝜋) ≤ 𝛼𝑖 ,

(1)

where 𝑉 𝛽 (𝜋) =
∑
𝑠∈𝑆

𝛽 (𝑠)𝑈 𝜋 (𝑠), 𝐺𝛽
𝑖
(𝜋) =

∑
𝑠∈𝑆

𝛽 (𝑠)𝑊 𝜋
𝑖
(𝑠) for 1 ≤

𝑖 ≤ 𝐾 .𝐺𝛽
𝑖
is the long-term measure w.r.t the 𝑖th constraint function

and the initial state distribution 𝛽 .
If 𝜋 = (𝑢,𝑢, , . . .) is a randomized policy, and 𝑢 (𝑠) is the proba-

bility distribution over actions in state 𝑠 , the probability of picking
action 𝑎 in state 𝑠 is denoted as 𝜋 (𝑎 |𝑠). Additionally, when two
policies are involved (say 𝜇 and 𝜋 ), we differentiate between them
using this notation as 𝜇 (𝑎 |𝑠) and 𝜋 (𝑎 |𝑠), which give the respective
probabilities of taking action 𝑎 under both policies in state 𝑠 .

The key problem in (1) is that the RL agent needs to find a
randomized policy 𝜋∗ which not only maximizes𝑉 𝛽 but also results
in each of the safety functions𝐺𝑖 to be lower than a threshold value
𝛼𝑖 . A policywhich respects the threshold on the constraint functions
is said to be feasible. Thus, 𝜋∗ needs to be a feasible policy which
also maximizes 𝑉 𝛽 . We restrict our attention to the randomized
policy space which is parameterized by 𝜃 ∈ R𝜔 , where 𝜔 > 1. This
space is denoted as ΠΘ = {𝜋𝜃 (𝑎 |𝑠) : 𝑠 ∈ 𝑆, 𝑎 ∈ 𝐴, 𝜃 ∈ C ⊂ R𝜔 }.

Even though the constrained formulation incorporates safety
in the policy learnt by RL algorithm, it does not restrict the kind
of actions the RL agent can explore during learning. This can po-
tentially jeopardize the system. Therefore, to impose restriction
on the exploration of actions, we consider off-policy learning as
opposed to on-policy learning. In off-policy learning, the agent is
provided with an existing (historic) dataset or a behaviour policy
from which the agent is allowed to choose actions. The goal of the
agent is to learn an optimal policy meeting the safety constraints
based on experience samples from the behaviour policy. This is a
hard learning problem when compared to the on policy learning.
This is because the agent gets only indirect feedback when using
the behaviour policy, as opposed to executing and evaluating the
current policy in the on policy setting.

The RL agent has the following input dataset to compute a good
feasible policy: a sample trajectory D, which is a collection of
experience tuples, i.e., 𝑒𝑛 = (𝑠 (𝑛), 𝑎(𝑛), 𝑟 (𝑛), 𝑐1 (𝑛), . . . , 𝑐𝐾 (𝑛)). So,
D = {𝑒0, 𝑒1, . . .} is generated from a behaviour policy 𝜇 (a random-
ized policy). Further, the RL agent also has access to the threshold
values 𝛼𝑖 , 1 ≤ 𝑖 ≤ 𝐾 . The agent has no model information concern-
ing 𝑃 , 𝑅 and 𝑐𝑖 .

3.2 Constrained RL Optimization: Lagrangian
and Cross Entropy Methods

The classical theory underlying a constrained optimization problem
is that of Lagrange multipliers [18]. Prior algorithms in RL also uti-
lize the Lagrangian theory to derive actor critic type algorithms [7].
More recent algorithms in the same line of work are [1, 8] that
utilise neural network architectures for function approximation of
large complexity problems. However, it is observed that [1] does
not satisfy feasibility of constraints during learning. Additionally,
these are on-policy methods, and demand a large dataset in terms
of the number of experience samples for training.

To find a good policy, [7, 8] first relax the problem into finding
optimal policy of a relaxed unconstrained MDP for a given vec-
tor of Lagrange multipliers. The objective of this unconstrained
MDP is obtained through the standard procedure of relaxation [18].
In the next stage, with perturbed policy parameters, two parallel



simulations of the CMDP are obtained. The objective functions
corresponding to the two different policies are estimated using
TD errors. The Lagrange parameters are also updated using these
parallel simulations. [7] shows that this algorithm converges to a
good feasible policy. While [7] uses linear function approximation
for objective and constraint function value estimation, [8] utilizes
neural networks for the same and is a multi-agent formulation. The
neural network function approximators in [8] are tuned using loss
functions based on TD errors and are adpated from [7] for multiple
agent setting.

The main problem that we see in the above works is that in many
real-world applications, the RL agent can obtain samples for only
one policy. So the idea of using a generative model for obtaining
two parallel simulations is not practically feasible. Additionally,
in many cases, only limited experience data samples (from some
unknown policy) of the physical system may be available. Hence,
when there is a limitation on obtaining experience data samples,
using an algorithm based on a generative model is not a reasonable
choice. Another issue is that the algorithm proposed in [7] requires
the tuning of multiple weight parameters. These problems motivate
us to adapt other optimization solution techniques for the problem
posed in (1) and we consider cross-entropy method for the same.

Cross-entropy method [15] (CEM) is a zero-order optimization
method and does not use gradient or other higher-order derivatives
of the objective function. Hence, it can be used in scenarios where
the objective function does not possess smoothness properties and
computation of higher order derivatives is intensive. The basic idea
of CEM is simple: in each iteration, samples of objective function
are generated. A set of elite samples is chosen. These elite samples
correspond to inputs where the objective function value is high
among the samples obtained. Then, based on these samples, the
distribution from which the inputs are sampled is updated.

CEM has been used in RL previously [12, 15, 30] as a policy itera-
tion algorithm. In this setting, each sample of the objective function
𝑉 corresponds to a particular policy, sampled from a distribution.
Based on the elite samples of 𝑉 , the distribution from which the
policies are obtained are updated. [15] is an initial attempt at im-
proving policy over multiple iterations for a finite-horizon, finite
MDP setting. The policy updation is based on finding frequency
of occurrences of actions and states in the elite samples. This sort
of updation does not allow for approximations in policy space and
hence is not scalable to complex MDPs like continuous space MDPs.

In contrast, [12, 30] use approximations for the policy space with
CEM. [12] proposes a stochastic approximation variant of CEM
with policy and value function approximation for a simple MDP
setting, whereas, [30] proposes CEM for a constrained setting. The
constrained setting in [30] is for episodic RL problems, while [12]
deals with discounted unconstrained RL problems. Another feature
in [30] is that unlike (1), the value function as well as constraint cost
functions are not defined for every decision of the RL agent. Instead
objective and cost functions are defined for the complete trajectory.
This simple setting enables comparison of objective and constraint
function values, but is highly sample inefficient when objective and
constraint function estimation for every policy sample is involved.

The stochastic approximation variant of CEM proposed in [12]
is defined for the maximization of the objective function. This algo-
rithm iteratively predicts the objective function of a policy sample.

The elite samples are monitored using the concept of quantiles. The
(1−𝜌) quantile of a function 𝑓 (·) under the probability distribution
𝑃 is a number 𝑞 = sup{𝑙 : 𝑃 ({𝑓 (𝑥) ≥ 𝑙}) ≥ 𝜌}. For the RL setting,
𝑓 is the objective function and in CEM, one would like to estimate
the (1 − 𝜌) quantile of this function from the obtained samples.
For a pre-fixed value of 𝜌 , the stochastic approximation variant of
CEM proposed in [12] iteratively improves the policy distribution
by tuning this quantile. It is easy to observe that for constraint
funtions the same logic can be used (with minimization instead of
maximization) and we can optimize the constraint function based
on the policy distribution.

However, there is a problem with this approach. The problem is
that this method involves uni-objective optimization, i.e., we can
either maximize the value function of a policy or minimize the
constraint cost functions, but not both. This method cannot find
policy distribution which achieves a sort of trade-off between the
objective and constraint cost functions. The attainment of such
a policy is the crux of the problem specified in (1), wherein the
threshold values specify the trade-off that we care about. For e.g.,
if we consider a MDP which has say 10 policies 𝜋1, . . . , 𝜋10. The
objective functions of each of these policies take values from 1
to 10, i.e., 𝑉 𝛽 (𝜋 𝑗 ) = 𝑗 , 1 ≤ 𝑗 ≤ 10 and constraint cost 𝐺𝛽1 takes
values such that𝐺𝛽1 (𝜋 𝑗 ) = ( 𝑗 − 10). Here 𝛽 is an arbitrarily chosen
initial-state distribution. With a 𝜌 = 0.2 value, the CEM variant
proposed in [12] will iteratively improve policy to pick distributions
which favour 𝜋1, 𝜋2 when constraint cost function needs to be
minimized. However, it will concentrate the policy distribution
to favour policies 𝜋9, 𝜋10 when objective function 𝑉 needs to be
maximized with the same value of 𝜌 . Clearly, this method cannot
achieve a trade-off between𝑉 and𝐺1 as seen in this simple example.

3.3 Our Approach
The method we propose (shown in Algorithm 1) is also based on
CEM, but alleviates the problems described above. The procedure
is shown for one safety constraint, i.e., 𝐾 = 1 in Algorithm 1, but
the same holds for any 𝐾 > 1 also. The algorithm takes as input
the state and action space dimension, the number of constraint
functions 𝐾 , the quantile sequence 𝜌 𝑗 , 1 ≤ 𝑗 ≤ 𝑀 and a sample
trajectory generated using a policy 𝜇 with initial state distribution
𝛽 ∈ P(𝑆). Here 𝑀 is the total number of updates of the policy
parameters (Line 1 in Algorithm 1).

3.3.1 Approximation in Policy Space, Value and Constraint Estima-
tion. The algorithm utilizes a dataset D consisting of experience
tuples generated by following a behaviour policy 𝜇, where 𝜇 is also
a SRP. The RL agent has no access to any other dataset, forcing it
to learn good feasible policies using samples from D. This scenario
is very common in robotic applications where certain trajectory
samples are collected using expert supervision and the RL agent
needs to learn optimal behaviour strategy from the available sam-
ples only, since collecting robot samples for each policy may be
extremely cumbersome.

The policy search space is defined by the parameter 𝜃 ∈ C. This
set C is defined as the support of a distribution from the natural
eponential family (NEF) class [15]. This class consists of Gaussian,
Poisson, Exponential and Binomial distributions. In Algorithm 1, we



consider Gaussian distributed policy parameters with covariance
being the identity matrix. This class is denoted as FV = {𝑓𝑣 : 𝑓𝑣 =
N(𝑣,I)}. We sample 𝜃 from a distribution 𝑓𝑣 ∈ FV . For a given
parameter vector 𝜃 , the policy analytical form 𝜋𝜃 is defined (usually
this form is either the softmax function or the Gaussian distribution)
and a policy is obtained. For this policy, using the samples from
D, the RL agent computes the expected objective and constraint
function values. In keeping with the terminology used in policy
evaluation works [10], we call 𝜋𝜃 as the target policy, since the
objective and constraint functions corresponding to 𝜋𝜃 are to be
estimated. It is easy to observe that behaviour and target policies
are not same and so, the RL agent needs off-policy value estimation
as denoted by the PREDICT subroutine in Algorithm 1 (see Line 6).

The objective and constraint function values are approximated
using linear function approximation. For a state 𝑠 ∈ 𝑆 , the features
are represented as 𝜙 (𝑠) ∈ R𝑚 and the state-action features denoted
as𝜓 (𝑠, 𝑎) ∈ R𝑙 .

3.3.2 Objective and safety constraint evaluation. The PREDICT
subroutine tunes the weights 𝑥,𝑦 ∈ R𝑚 , such that 𝜙𝑥 ≈ 𝑉 𝛽 (𝜋𝜃 )
and 𝜙𝑦 ≈ 𝐺𝛽 (𝜋𝜃 ). In the experiments with discrete action space,
𝜋𝜃 (𝑎 |𝑠) = exp(𝜃⊤𝜓 (𝑠,𝑎))∑

𝑏∈𝐴 exp(𝜃⊤𝜓 (𝑠,𝑏)) . In the experiments, we mostly adapt
Emphatic TD [25] (ETD) off-policy policy evaluation algorithm for
the PREDICT subroutine (Line 6). The ETD update rule is described
in [25]. We follow this work for off-policy evaluation algorithm.

3.3.3 Updation of Policy Parameter Distribution. The policy pa-
rameter distribution is updated using the output of the PREDICT
subroutine. A number of policy parameter samples are utilized
and their values estimated (Lines 4-7). These samples are collected
and the POLICY_UPDATE subroutine updates this distribution in a
manner that the trade-off between value and constraint functions
is maintained (Line 8). This takes place over a number of itera-
tions (Lines 3-10). The number of 𝜃 samples for policy iteration 𝑗
is denoted as 𝑛 𝑗 . For each such sample, the approximate values of
𝑉 𝛽 (𝜋𝜃 ) and𝐺𝛽

𝑖
(𝜋𝜃 ) are computed usingD. Further, the computed

pairs are sorted and the number of samples satisfying the constraint
threshold 𝛼1 are observed. Let this number be denoted as 𝑚 𝑗 . If
𝑚 𝑗 < ⌊𝜌𝑛 𝑗 ⌋, then this implies we have deficient samples. So, 𝜃 from
the remaining (𝑛 𝑗 −𝑚 𝑗 ) samples whose𝑉 𝛽

𝑖
(𝜋𝜃 ) values are high are

used for updating the policy parameter distribution. If otherwise
𝑚 𝑗 > ⌊𝜌𝑛 𝑗 ⌋, then from the𝑚 𝑗 samples of 𝜃 , the ones having high-
est values of𝑉 𝛽 (𝜋𝜃 ) are selected for updating the policy parameter
distribution. This forms the POLICY_UPDATE subroutine (Lines
1-12 in Algorithm 2).

3.3.4 Behaviour Policy and Features. Clearly, by re-using the lim-
ited dataset D, the requirement of a large number of on-policy
experience tuples is eliminated. However, for reducing the error
in off-policy prediction, RL agent needs samples from a policy
which covers all regions of the state-space. Thus, the choice of the
behaviour policy 𝜇 is very important. As can be observed in the
experiments (Section 4), the behaviour policy is selected in a prob-
lem dependent manner in addition to facilitating exploration of all
actions. Algorithm 1 gives the pseudocode of the proposed method.
It does not require parallel simulations of the system, neither a
large number of on-policy experience samples. In the next section,

we show numerical results for Algorithm 1 on benchmark problems
where constraints and safety specifications arise.

Algorithm 1 Off-Policy based Constrained Safe RL (OffPol_CCE)

1: Input:𝑀 , {𝜌 𝑗 , 1 ≤ 𝑗 ≤ 𝑀}, 𝛽 ∈ P(𝑆),𝐾 = 1,Φ = {𝜙 (𝑠) |𝑠 ∈ 𝑆}
and Ψ = {𝜓 (𝑠, 𝑎) |𝑠 ∈ 𝑆, 𝑎 ∈ 𝐴}, 𝛼1 and D = {𝑒0, 𝑒1, . . . , 𝑒𝑇 },
where 𝑇 is fixed apriori. Also given is the class parameterized
policies ΠΘ and a NEF family 𝐹V of distributions.

2: Initialize: 𝑗 = 1, 𝑣1 ∈ V , 𝑠𝑝 ∈ (0, 1), {𝑛𝑙 : 1 ≤ 𝑙 ≤ 𝑀,𝑛𝑙 > 10}

3: for 𝑗 = 1 to𝑀 do
4: Sample 𝜃1, . . . , 𝜃𝑛 𝑗

∼ 𝑓𝑣𝑗 ∈ 𝐹V i.i.d
5: for 𝑖 = 1 to 𝑛 𝑗 do
6: 𝑉 𝛽 (𝜋𝜃𝑖 ), 𝐺𝛽1 (𝜋

𝜃𝑖 ) = PREDICT(D, 𝜃𝑖 , ΠΘ, Φ, Ψ)
7: end for
8: 𝐻 𝑗 = POLICY_UPDATE({(𝑉 𝛽 (𝜋𝜃𝑖 ),𝐺𝛽1 (𝜋

𝜃𝑖 )) : 1 ≤ 𝑖 ≤ 𝑛 𝑗 },
𝜌 𝑗 , 𝛼1)

9: 𝑣 𝑗+1 = 𝑠𝑝
∑

𝑘∈𝐻 𝑗

𝑉 𝛽 (𝜋𝜃𝑘 )𝜃𝑘∑
𝑘∈𝐻𝑗

𝑉 𝛽 (𝜋𝜃𝑘 ) + (1 − 𝑠𝑝 )𝑣 𝑗

10: end for

Algorithm 2 POLICY_UPDATE({(𝑉 𝛽 (𝜋𝜃𝑖 ),𝐺𝛽 (𝜋𝜃𝑖 )) : 1 ≤ 𝑖 ≤
𝑛 𝑗 }, 𝜌 𝑗 , 𝛼1)

1: Sort {(𝑉 𝛽 (𝜋𝜃𝑖 ),𝐺𝛽 (𝜋𝜃𝑖 ))} in ascending order of𝐺𝛽 . Let sorted
order be denoted Υ.

2: Let𝑚 𝑗 be the number of (𝑉 𝛽 ,𝐺𝛽 ) tuples such that 𝐺𝛽 < 𝛼1.
Denote Λ = {𝜃𝑖 : 𝐺𝛽 (𝜋𝜃𝑖 ) < 𝛼1}.

3: 𝐵 = Null Set
4: if 𝑚 𝑗 < ⌊𝜌 𝑗𝑛 𝑗 ⌋ then
5: Sort {𝜃𝑖 : 𝐺𝛽 (𝜋𝜃𝑖 ) ≥ 𝛼1} ⊂ Υ in descending order of 𝑉 𝛽 .

Denote this ordered set as Ξ.
6: Pick the first (⌊𝜌 𝑗𝑛 𝑗 ⌋ −𝑚 𝑗 ) samples from Ξ.
7: 𝐵 = Λ ∪ Ξ
8: else
9: Sort Λ in descending order of 𝑉 𝛽 . Pick the first (⌊𝜌 𝑗𝑛 𝑗 ⌋)

elements of Λ and Ξ be the set of 𝜃 corresponding to this
selection.

10: 𝐵 = Ξ
11: end if
12: return 𝐵

4 EXPERIMENTAL RESULTS
The performance of our algorithm is evaluated numerically on
different benchmark problems as listed below. We also compare
the results of our algorithm with the constrained actor critic algo-
rithm [7] described in Section 3.

4.1 Benchmarks
The following benchmark applications are carefully designed to
highlight the crucial safety aspect in autonomous systems1. All
of these are inspired from current complex systems like for e.g.,
1Paper code is available at https://bit.ly/3ipj4Yi

https://bit.ly/3ipj4Yi
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Figure 1: Chain walk MDP: Shows only the transition proba-
bilities for each state and for both actions {𝐿, 𝑅}.

mobile robots, self-driving cars and exploration robots, although
simplified for ease of exposition.

4.1.1 Random MDP. This basic benchmark is designed to inves-
tigate the learning behaviour of our proposed algorithm and to
assess whether it is capable of learning safe optimal policies. The
system model (𝑃 , 𝑅 and the safety constraint 𝑐1) is generated using
Python MDPtoolbox. We consider a single safety constraint, which
simplifies our analysis of Algorithm 1. The number of states (i.e.,
|𝑆 |) is fixed at 200, while the number of actions for each state is 5.
The goal of the agent is to compute a policy 𝜋 that maximizes 𝑉 𝜋 ,
but also satisfies 𝐺𝛽1 (𝜋) < 𝛼1.

4.1.2 Chain Walk. The chain walk MDP has 450 states, i.e. |𝑆 | =
450, and each state has two actions. The action indicates the move-
ment direction, i.e., the agent can either move left or move right at
every state. Thus, |𝐴| = 2 and𝐴 = {𝐿, 𝑅}. The transition probability
information is as shown in Table 1, where 𝑠 is the current state and
𝑎 denotes the action taken at state 𝑠 . The transitions are grouped
based on the probability of moving to the next state, these being
either 0.1 or 0.9. The next state varies based on the current state 𝑠
and the action taken. For e.g., when in state 𝑠 = 1 if left (𝐿) action is
taken, the MDP evolves to state 2 with probability 0.1 and remains
in the same state with probability 0.9. Other rows in Table 1 are
to be interpreted in a similar manner. See Fig. 1 for a graphical
illustration.

State and Action Probability = 0.1 Probability = 0.9
1 < 𝑠 < |𝑆 |, 𝑎 = 𝐿 𝑠 + 1 𝑠 − 1
1 < 𝑠 < |𝑆 |, 𝑎 = 𝑅 𝑠 − 1 𝑠 + 1
𝑠 = 1, 𝑎 = 𝐿 2 1
𝑠 = 1, 𝑎 = 𝑅 1 2
𝑠 = |𝑆 |, 𝑎 = 𝐿 |𝑆 | |𝑆 | − 1
𝑠 = |𝑆 |, 𝑎 = 𝑅 |𝑆 | − 1 |𝑆 |

Table 1: Transition probability information for Chain Walk
MDP.

The reward function is as follows: 𝑅(·, ·, 150) = −10, 𝑅(·, ·, 300) =
100 and −1 for all other transitions. Hence, only transitions to
state 300 will yield a positive payoff, while every other transition
yields a negative reward. The single safety constraint values are
randomly assigned to the states. The agent gets the constraint
value on each step and the task is to find a policy such that 𝐺𝛽1 (𝜋)
as defined in Section 3 is maintained below a threshold value 𝛼1.

y = 0

Figure 2: Straight Path Navigation: Illustrates a vehicle with
four wheels with a direction vector (in blue) and example of
a path traced (in green) till the current position.

This benchmark is a simplified version of the problem faced by a
mobile robot which needs to clean a hallway. The safety constraint
represents the physical damage to the robot due to collision with
obstacles in the hallway. The hallway area cleaned by the robot is
indicated by the reward per step. A good feasible policy helps the
robot clean maximum portion of the hallway by avoiding obstacles.
In this benchmark we have avoided incorporating the mechanical
dynamics of the robot since this allows us to focus on the learning
algorithm.

4.1.3 Threshold TypeMDP. The threshold typeMDP has 400 states,
i.e., |𝑆 | = 400 and each state has 4 actions (|𝐴| = 4). The transi-
tion probability structure is as given in Table 2. The reward and
constraint functions follow a threshold structure as also indicated
in the same table. The threshold structure allows for clear policy
behaviour as these policies allow the agent to operate in a subset
of the states depending on what is being optimized.

State and Action Next State Reward Constraint
0 ≤ 𝑠 < 100, 𝑎 ∈ 𝐴 100𝑎 + 𝑠 10 5
100 ≤ 𝑠 < 200, 𝑎 ∈ 𝐴 100𝑎 + (𝑠 − 100) 3 −1
200 ≤ 𝑠 < 300, 𝑎 ∈ 𝐴 100𝑎 + (𝑠 − 200) 0 −4
300 ≤ 𝑠 < 400, 𝑎 ∈ 𝐴 100𝑎 + (𝑠 − 300) −3 −8

Table 2: Transition probability, reward and constraint value
information for Threshold Type MDP. Here 𝐴 = {0, 1, 2, 3}.

This benchmark is a simplified scenario where exploration robots
move in a small geographical area. To limit the movement of these
robots, safety constraints are added so that they explore in a safe
area.

4.1.4 Straight Path Navigation. This benchmark is a close approxi-
mation to real-world vehicle maneouvre problems, often encoun-
tered in autonomous driving car systems. A race car needs to be
controlled by the agent in a manner that it moves on a straight
path with minimum deviations on a slippery road. The road con-
ditions bring in an added aspect of environment response to the
agent’s actions. Slippery road conditions cause varying levels of
tyre friction forces and the agent needs to adjust the velocity and
steering direction accordingly. Further, safety restrictions arising
out of road slippery conditions require the car to be navigating
close to the 𝑦 = 0 line.

The state 𝑠 consists of the position coordinates of the vehicle,
denoted as (𝑥,𝑦), inertial heading (yaw) of the centre of mass
𝜓 and the corresponding velocities of these components. Hence,
𝑠 = (𝑥,𝑦,𝜓, ¤𝑥, ¤𝑦, ¤𝜓 ). The control inputs available to the agent are
velocity 𝑣 and steering angle 𝛿 . Thus, 𝑎 = (𝑣, 𝛿). The dynamics of



the vehicle and the tyre models are adapted from [2]. The high level
path planner requires the car to move on the line 𝑦 = 0 and any
other line can be suitably adjusted with translation. In the experi-
ments we require the vehicle to follow this straight line at a target
velocity 𝑣 𝑓 . Based on this requirement, the reward function is as fol-
lows:𝑅(𝑠, 𝑎) = −|𝑦 |−𝜆1 (𝑣−𝑣 𝑓 )2. The first term is a distance penalty,
and the second term is a velocity penalty. The constraint is to not
drift too far from the actual pre-planned straight path. This drifting
behaviour is gauged from the 𝑦 coordinate as well as the heading
angle𝜓 of the vehicle. We have 𝐻 (𝑠, 𝑎) = 𝛿 (sgn(𝑦) + sgn(𝜓 )) and
𝑐1 (𝑠, 𝑎) = 𝐻 (𝑠, 𝑎) if 𝐻 (𝑠, 𝑎) > 0 and is 0 otherwise. Hence, a posi-
tive value of 𝐻 (𝑠, 𝑎) indicates that the vehicle is drifting away from
𝑦 = 0 and this behaviour is captured in 𝑐1.

4.2 Experimental Setup
In vehicle navigation benchmark, we discretize the action space
with a resolution of 𝑣 = 1 and 𝛿 = 𝜋

6 . The maximum velocity is 10
and the steering angle is varied from −5𝜋

6 to 𝜋 . This results in the
vehicle moving in both positive and negative 𝑋 directions. With
this discretization, the action space is large. For all benchmarks
the randomized policy space ΠΘ consists of softmax policies with
a temperature parameter. In the vehicle navigation case, a deep
neural network (DNN) architecture represents the policy network.
With the other benchmark problems, Chebyshev polynomials are
used for state-action features, as described in [20]. For value and
constraint prediction, the features range from simple radial basis
features to polynomial basis functions.

4.3 Analysis of Results
Off-policy constrained cross entropy method is tested on the Chain
Walk MDP and the value function learnt by our method is as shown
in Fig. 3. This plot shows the normalized value function when safety
constraints also need to be satisfied. The normalizing constant is
the number of states. The threshold was pre-fixed at 8 for constraint
value function. It can be seen in Fig. 3 that even though initial policy
is not safe, the agent quickly learns and moves towards safe policies.
During later updates of cross entropy, the agent finds safe policies
with higher objective value function.

The objective and constraint functions for the Threshold Type
MDP is shown in Fig. 4. The threshold value for the constraint
function was fixed at 0 and the off-policy algorithm to evaluate the
policies in every update of cross entropy algorithm is Emphatic
TD [25] (labelled as ETD-OffPol-CCE). This figure plots the norm of
the objective and constraint values as the agent training proceeds.
The variance of the norm of these vectors is also observed which
depends on the policy samples at every update. It can be observed
that the initial policy is safe with low value of the constraint, but
its value gradually improves which is required for improving the
objective value. The policy learnt after 50 CE updates is safe and
also yields a high objective value.

Fig. 5 plots the proportion of visits to all states by the policies
learnt by our off-policy constrained cross entropy method in com-
parison to Q-learning (QL) [24]. The number of learning iterations
of QLmatched with the total number of samples used in the training
of off-policy CCE method. QL learns a policy that maximizes the
discounted return ignoring the constraint values. Thus, based on
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Figure 3: Chain Walk: Objective (labelled 𝑉𝐶𝐶𝐸 ) and Con-
straint value function (labelled 𝐺𝐶𝐶𝐸 ) during training of
agent using off-policy constrained cross entropy method.

Figure 4: The objective function and the safety constraint of
the policy learnt by the off-policy constrained cross entropy
method for the Threshold Type MDP.

the problem structure of Threshold Type MDP, it is easy to observe
that the QL policy must facilitate the agent to operate in the states
0-99 for the maximum time, since these states yield high rewards.
However, with off-policy constrained cross entropy method, it is
observed that the agent learns to operate in states 100-199 for the
maximum time, as, in these states the constraint values are low and
rewards are also better when compared to states 200-400. Both the
policies made the agent to operate in only 4 states - 0, 99, 199 and
299 and hence we plot the proportion of visits to these states only.
The proportion of visits to all other states was close to zero under
both policies.
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As described in Section 3, the other major line of works in safety-
constrained RL build on Lagrangian formulation. Actor-critic type
of algorithms [7, 8] have been proposed previously for constrained
optimization in RL. We compare our algorithmwith the constrained
actor-critic algorithm proposed in [7].We understand that themulti-
agent constrained optimization algorithm in [8] is an extension of
[7] and hence we compare our algorithm performance with the
base work, i.e., [7]. Fig. 6 presents comparison of policies learned
by constrained actor critic (abbv. CAC) and our safe RL algorithm.
(abbv. Off-Pol-CCE) on RandomMDP benchmark. These plots show
the performance after the policy is learnt, in contrast to the plots
shown earlier which are performance during learning. CAC does
not allow for learning evaluation as the policy weights and predic-
tion weights change every decision step, while in our algorithm,
these weights remain the same for 𝑇 number of steps, which is
the length of the dataset D. Moreover, none of the weights being
tuned in CAC correspond to the actual CMDP - they are weights of
a “relaxed” MDP. Thus, CAC does not track safety during learning.

The Random MDP has a cost objective instead of a reward objec-
tive. Thus, the objective function needs to be minimized, as opposed
to maximization method described in Section 3. However, the same
sorting logic in Algorithm 2 holds good in this case. Fig. 6(a) shows
the cost-to-go (i.e.𝑉 𝛽 ) of policies learned by CAC, Off-Pol-CCE and
value iteration (labelled MDPT). Value iteration has access to all
model information unlike CAC and Off-Pol-CCE. The cost-to-go is
averaged over 50 sample paths for 100 decision steps with the initial
state distribution 𝛽 . As we can observe, the policies learnt by CAC
and Off-Pol-CCE are comparable in performance - even though
Off-Pol-CCE utilizes much less information compared to CAC. The
value iteration learns a policy which finds the optimal cost-to-go
for given transition probability and cost functions. Fig. 6(b) shows
the constrainted return of policies learnt by CAC, Off-Pol-CCE
and value iteration. The threshold is fixed at 100, i.e., 𝛼1 = 100
and the initial state distribution is concentrated on state 0. In this
plot, we show two policies learnt in the full information case -
one that minimizes the constrainted return (i.e., 𝐺𝛽 ) and the other
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Figure 6: Comparison of performance of Constrained Actor
Critic (CAC) and Algorithm 1 on Random MDP benchmark.

which maximizes𝐺𝛽 . These are labelled as MDPT_MinConstr and
MDPT_MaxConstr respectively in Fig. 6(b). We can see that these
two policies are at the opposite ends of the spectrum and hence
shows us the spread of the various𝐺𝛽 values that can be attained
by policies for the CMDP model concerned. Here too we observe
that the performance of CAC and Off-Pol-CCE are comparable and
the 𝐺𝛽 value of this policy is midway between the performance of
the policies learnt in the full information case.

For the straight-line following vehicle navigation benchmark,
we compare Constrained Actor Critic (CAC) and Algorithm 1. Fig.
7 plots 𝑉 𝛽 and 𝐺𝛽 with 𝛽 concentrated on one initial state of the
vehicle. The vehicle specifications that we model are those of ‘RC
Car’, as described in [2]. The policies learnt by both algorithms are
evaluated for 400 steps, however only the plot for the first 100 steps
is shown in Fig. 7. The threshold 𝛼1 is fixed at 1 during learning.
The results are averaged for 10 Monte Carlo runs. The number of
learning iterations for both algorithms is 1 × 106 and the discount
factor used is 0.9. The structure of 𝑅 for this benchmark is such that
it penalizes the drift from 𝑦 = 0 line, while 𝑔1 penalizes whenever
the steering angle and y-coordinate distance from 𝑦 = 0 are not
favourable. It is observed that for the same number of learning
iterations, Algorithm 1 learn better safe policies when compared
to CAC. Such policies attain high 𝑉 𝛽 and low 𝐺𝛽 . The above ex-
periments suugest that our proposed method Off-Policy based Safe
RL, adapted from cross-entropy algorithm is well suited for safety-
constrained systems. Also by using neural network architectures
as described here, the algorithm can be scaled to large and complex
autonomous systems.
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ing benchmark.

5 CONCLUSIONS AND FUTUREWORK
In this work we proposed a safe RL algorithm utilizing cross en-
tropy method. Our algorithm handles constraints effectively and
also enables off policy learning. Unlike the previous safe RL al-
gorithms, our method is sample efficient owing to the off-policy
value prediction. Further, the experimental results demonstrate the
practical applicability of the proposed algorithm.
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