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ABSTRACT
In this paper, we contribute a multi-faceted study into Pavlovian
signalling—a process by which learned, temporally extended predic-
tions made by one agent inform decision-making by another agent.
In service of generating and receiving signals, humans and other an-
imals are known to represent time, determine time since past events,
predict the time until a future stimulus, and both recognize and gen-
erate patterns that unfold in time. We investigate how different tem-
poral processes impact coordination and signalling between learn-
ing agents by introducing a partially observable decision-making
domain we call the Frost Hollow. In this domain, a prediction learn-
ing agent and a reinforcement learning agent are coupled into a
two-part decision-making system that works to acquire sparse re-
ward while avoiding time-conditional hazards. We evaluate two
domain variations: machine agents interacting in a seven-state
linear walk, and human-machine interaction in a virtual-reality
environment. As a main contribution, we establish Pavlovian sig-
nalling as a natural bridge between fixed signalling paradigms and
fully adaptive communication learning between two agents. Our
results showcase the speed of learning for Pavlovian signalling, the
impact that different temporal representations do (and do not) have
on agent-agent coordination, and how temporal aliasing impacts
agent-agent and human-agent interactions differently. We further
show how to computationally build this adaptive signalling process
out of a fixed signalling process, characterized by fast continual
prediction learning and minimal constraints on the nature of the
agent receiving signals. Our results therefore suggest an action-
able, constructivist path towards communication learning between
reinforcement learning agents.
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1 INTRODUCTION: SIGNALS AND REFLEXES
Communication learning by machines promises substantial benefits
when compared to hand-engineered communication systems for
machine-machine or human-machine interaction [5, 16]. Despite
the promise of increased flexibility, decreased human design effort,
and the potential for ongoing adaptation, emergent communication
learning by machines remains challenging [16]. In this work, we
explore a stepping stone between hand-engineered communication
and fully learned communication. Our approach captures some of
the flexibility and adaptability of machine-learned communication
while also providing rapid learning and minimal assumptions about
the interacting agents. Early work by Pavlov showed how signals,
and signals of signals, elicit reflexive action in animals [22, 29, 38].
We propose that these reflexes also can play the role of useful signals
(feature outputs) intended to inform decision-making by another
agent or a component of a single agent.

In the simplest form, we can think of signals as a means of
transmitting information, however the informational content and
quantity of information in a signal has made signalling an area of
study for philosophers, information theorists, linguists, cognitive
scientists and computer scientists [7, 29, 30]. Signalling systems
are not limited to humans, but are used by all levels of biological
organization. For instance, monkeys [4], birds [3], bees [28, 31] and
even bacteria [34] have signaling systems.

An important aspect of the informational content of a signal
is the symbol grounding problem—the association between sym-
bols and their meanings [37]. Specifically in the case of classical
Pavlovian conditioning, signals become associated with and play
an important role in forecasting a significant event [22]: a stimulus
elicits a prediction that itself takes on the role of a grounded cue to help
inform behaviour. This relationship between learned predictions
and control has been extensively studied. Unlike the instrumental
learning experiments of Skinner [27] which required the animal to
make a decision that was associated with differences in later reward,
the learning in classical conditioning involves neither rewards nor

https://orcid.org/0000-0002-6359-0832


decisions. In the absence of an explicit reward maximizing mecha-
nism for behavior change, it is natural to inquire how learning a
prediction by classical conditioning can change behavior.

One answer is to connect the learned prediction of a stimulus to
an unconditioned, fixed response. This approach, termed Pavlovian
control, has a simple computational realization [6, 17]. Namely, a
fixed policy emits the action 𝑎1 when a stimulus 𝑠1 is predicted
above some threshold 𝜏 , and the action 𝑎2 otherwise. The ideal
setting of 𝜏 depends on the timescale of the prediction, the lead
time needed for the response action to be effective, and the accuracy
of the prediction. Thus, Pavlovian control emits a fixed reflex-like
response to the prediction of an event. This simple form of coupling
the prediction to behaviour is only one of many possibilities. In the
present work we study the way that predictions can be coupled to
the generation of grounded signals used by other agents or com-
ponents of the same agent, which we term Pavlovian signalling;
primarily, we contribute evidence as to the degree to which this sig-
nalling approach can be rapidly learned and be useful during online
learning, across domain variants and representations.

2 PAVLOVIAN SIGNALLING
Pavlovian signalling for agent-agent interaction is a process where
learned, temporally extended predictions are mapped in a fixed
way to signals intended for receipt by a decision-making agent, and
where these signals are grounded for the sender in the definition of
the predictive question. In the context of this study, a signal conveys
information about the occurrence of the next event. Following the
Gricean maxims of communication [12, 13], we focus here on a
single binary token (i.e., a two-state symbol) to represent and convey
a piece of information about future events.

We consider an amplitude and threshold based signaling system
to assign meaning to the signal (i.e., ground the signal). In an an-
ticipatory prediction (Fig. 1a), if the value of a prediction is larger
than a threshold, an event is predicted to occur in the near future.
In a time-to-event style of question prediction (Fig. 1b), if the value
of prediction is smaller than a threshold, an event is predicted to
occur in the near future. As can be seen in Fig. 1, the grounding
rule used to ground the tokens are different, however in both cases
token value of 1 means the next event will occur "soon", and a token
value of 0 means the next event is not predicted to be "soon".

What we call Pavlovian signalling has been deployed in the
literature for agent-agent interaction, but to our knowledge not
clearly defined or explored in depth. Examples from the literature
mapped learned predictions to scalar vibratory tokens for a human
receiver [8], mapped learned predictions about viable foraging lo-
cations to audio feedback [23], and mapped learned predictions of
robot sensor activation to signalling tokens via a fixed threshold
that was grounded in the values of real-world motor sensors [20].
In these examples, a hard-coded mapping was created from learned
predictions to emitted tokens, where tokens were defined using
parameters of the predictive questions being learned by the ma-
chine and the sensory threshold values used to define the mapping
process. This paper provides a foundation for understanding the
impact of such prediction and mapping choices on the efficacy of
resulting agent-agent interactions.

(a)

(b)

Figure 1: Pavlovian signalling in schematic form. Shown
here are two different idealized predictions that either (a)
rise in advance of an impending stimulus or (b) decrease to
forecast the time until a future stimulus.

3 METHODS: PREDICTIONS,
REPRESENTATIONS, AND TOKENS

We now turn to the specific computational framing we use for
predictions and signals in this work. We herein model an agent’s
predictions about the world using General Value Functions (GVFs)
which are value functions applied to non-reward based targets
[33]. A GVF formally specifies a predictive question, which can be
understood informally as:what will be the total accumulation of some
signal of interest, if I follow some policy until termination? A GVF is
a value function where the target is the discounted sum of some
cumulant 𝐶𝑡+1 ∈ R, that would be observed if the agent followed
policy 𝜋 (𝐴𝑡 |𝑆𝑡 ) � 𝑃𝑟 (𝐴𝑡 = 𝑎 |𝑆𝑡 = 𝑠)—a what would happen if
form of question. The elements of the sum are weighted by earlier
discounts 𝛾𝑡 ∈ R. The discount becomes zero if a termination event
occurs, and is typically less than one otherwise corresponding to the
horizon of the predictive question. Taken together, we can specify a
predictive question by defined𝐶,𝛾 , and 𝜋 . We first define the future
return,

𝐺𝑡 ≡
∞∑
𝑘=0

(
𝑘∏
𝑗=1

𝛾𝑡+𝑗

)
𝐶𝑡+𝑘+1, (1)

where the question is then defined as

𝑣 (𝑠) ≡ E𝜋 {𝐺𝑡 |𝑆𝑡 = 𝑠}. (2)

The agent must learn answers to the GVF question to obtain
knowledge of the world; that is, approximate 𝑣 from data. Given a
batch of data, we could compute the right-hand side of Equation
1 directly. In practice, the agent will observe a stream of states,
actions, cumulants, and terminations as it interacts with the world.
In this online setting, we can approximate 𝑣 in each state with
a parametric function updated via temporal difference learning.
Let 𝑥 ∈ R𝑑 be features summarizing the current state 𝑥𝑡 ≡ 𝑥 (𝑆𝑡 ),
perhaps a state aggregation or a collection of radial basis function
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outputs. We define the prediction to be 𝑉𝑡 ≡ 𝑤⊺𝑡 𝑥𝑡 , where𝑤𝑡 ∈ R𝑑
and 𝑉𝑡 ≈ 𝑣 (𝑆𝑡 ). Although more complex methods are possible, we
follow prior work [18, 33] and use the TD(𝜆) algorithm to update
𝑤𝑡 on each timestep:

𝑒𝑡 ← 𝑒𝑡−1 + 𝑥𝑡
𝛿𝑡 ← 𝐶𝑡+1 + 𝛾 (𝑥𝑡+1)𝑤⊺𝑡 𝑥𝑡+1 −𝑤

⊺
𝑡 𝑥𝑡

𝑤𝑡+1 ← 𝑤𝑡 + 𝛼𝛿𝑡𝑒𝑡
𝑒𝑡 ← 𝛾 (𝑥𝑡+1)𝜆𝑒𝑡 ,

where 𝛼 is a scalar learning rate parameter and 𝑒 ∈ R𝑑 is expo-
nentially decaying memory of previous feature activations. This
approach has been shown to learn accurate approximations of GVF
questions in a variety of settings and is computationally frugal—
requiring computation andmemory linear in the number of features
𝑑—and is thus ideal for our problem setting of interest.

For this work we consider the two specific types of predictive
GVF questions shown in Fig. 1: predictions about the onset of
an impending signal or stimulus in terms of the expected future
accumulation of that signal (a rising prediction about a future event),
and a prediction of the expected time remaining until a future signal
or stimulus pattern (a falling prediction or learned countdown timer
until an event will occur). Both of these predictive questions of
interest can then be specified in terms of the three GVF question
parameters—the signal of interest is specified as the cumulant𝐶 , the
timescale of interest as specified by 𝛾 , and the policy 𝜋 of interest.
With these questions, we can directly implement the process for
Pavlovian signalling depicted in Fig. 1.

First, for the case of a discounted accumulation of an observed
stimulus, we can identify GVF question parameters in what we
refer to informally as an accumulation question. The cumulant
takes the value of a specific stimulus, and the gamma-discounted
sum of the cumulants gives lower emphasis on stimuli farther in
the future: 𝐶𝑡 = 1.0 if stimulus is present else 0.0, 𝛾𝑡 = 0.9, and
𝜋 = on policy.

Second, we consider a learned prediction of the expected number
of steps until an observed stimulus, whichwewill refer to informally
as a countdown question. A constant cumulant of 1.0 is used on
every step, with question termination occurring at the onset of a
stimulus as follows:𝐶𝑡 = 1.0, 𝛾𝑡 = 0.0 if stimulus is present else 1.0,
and 𝜋 = on policy.

3.1 Temporal Representations
Multi-agent temporal decision-making tasks are the key focus of
the present work. Making predictions about events that unfold over
time requires a sufficiently informative representation, 𝑥𝑡 . We there-
fore implement a subset of biologically and computationally moti-
vated temporal representations as a basis for GVF learning (sampled
from present literature [2, 9, 10, 14, 15, 19, 21, 35]), such that we
can understand the sensitivity (or lack thereof) of prediction learn-
ing speed and agent performance to temporal representation. In
biological agents, distinctions have been made between population
clocks and ramping models [9, 21, 36] (c.f., pacemaker-accumulator
models [21], following on seminal work on scalar-expectancy the-
ory [11]). Population clocks are considered a chain or collection
of cells that sequentially fire, either in response to outside inputs

or in an oscillatory fashion [21]. In ramping models, time is repre-
sented in changes to the tonic firing rate of different cell populations
[21]. Trace-conditioning [22], akin to ramping model use, was also
investigated in a machine learning context by Rafiee et al. [26].

The temporal representations used in this study draw directly
on the mechanics of population clocks, ramping models, and trace
conditioning as surveyed above. Our representations all take as in-
put a bit indicating the presence of a specific stimulus of interest—a
presence representation (PR) [26]—and output a one-hot vector
of some length that indicates a position in time since the last stimu-
lus. The length of the vector and the rate of movement of the active
bit within it vary with each treatment. The stimulus presence bit
and the time representation vector are then concatenated and used
as the state representation for a GVF. The simplest temporal repre-
sentation included in the study, the bias unit representation, was
implemented as a vector with one constant feature, or equivalently,
a one-hot vector of length one. Following on the general form of
population clocks from the animal brain, our implementation of
the bit cascade (BC) representation extended this one-hot vector
to length 𝑛, where 𝑛 was longer than the maximum time antici-
pated between occurrences of the specific stimulus. The active bit
advanced by one position on each timestep where the stimulus
was absent, and was reset to the first position whenever the stim-
ulus was present. Finally, and most closely aligning to biological
ramping models, the tile-coded trace (TCT) representation was
an extension of the bit cascade with advancement rates of the expo-
nential form 𝑒−𝑎𝑡 , with 𝑎 < 1.0 representing the exponential decay
constant, and where 𝑡 is the number of timesteps since the last reset
of the active element to the beginning of the vector. As with the
bit cascade, the active bit was reset when the stimulus was present.
Thus, each position in the vector represented an increasingly long
span of time as the bit advanced. See the left column of Fig. 3 for
an example of these representations of time.

4 THE FROST HOLLOW ENVIRONMENT
Researchers in machine learning have used simulation problems
inspired by animal learning to better understand the capabilities
of artificial agents. Drawing on this rich history of animal and
machine learning experimentation, and in particular recent work
by Rafiee et al. [26] on trace conditioning and a suite of problems
inspired by experiments in animal learning, we now introduce a
domain for our study called the Frost Hollow.

The Frost Hollow environment is a partially observable domain
to evaluate our agents’ ability to predict and generate signals re-
lating to events that unfold over time—in this case, collecting heat
from sunlight and avoiding heat loss due to the hazardous winter
wind. Figure 2 presents this domain and defines key elements of
the environment, namely reward, heat region, heat points, heat
capacity, the wind hazard and the hazard region. From this starting
point, we created two environment variants, an abstract linear-walk
domain for agent-agent interaction and a virtual reality (VR) vari-
ant for human-agent interaction. In each episode of either variant,
the player’s goal is to collect a specific amount of heat to gain one
point of reward, and to do so repeatedly to maximize their total
episodic reward. Within each episode, a cold wind blows somewhat
regularly according to a set of parameters, and being exposed to the
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(a) (b)

Figure 2: Abstract (a) and virtual reality (b) variants of the Frost Hollow domain, and one example trajectory showing how an
agent might interact with the abstract version over time. The goal is to maximize the amount of reward a player earns.

wind causes the player to lose any accumulated heat. The player can
avoid the wind by moving to the edge of the map before it blows.
Thus, the core challenge of the environment is to predict hazard
events over time: using timing features about the past (e.g., how
long since the previous wind hazard) to make useful predictions
about the future (e.g., how long until the next hazard), and use
those predictions to guide behavior.

The Abstract environment is a chain of seven locations, as
shown on the y-axis in Fig. 2a. On each timestep the environment
provides an observation containing a one-hot vector indicating
agent location, a boolean indicating whether or not the hazard
is active, and the agent’s accumulated heat as a scalar in [0, heat
capacity]. The farthest locations at each end of the chain are not
affected by the hazard. The action space is an integer in [-1, 0, 1],
to move down, stand still, or move up through the map locations.
Heat is gained at a rate of 0.5 per timestep in the heat region,
automatically converted into 1 point of reward when the target
heat capacity of 6 is reached, and set to 0 if the agent is exposed to
the hazard.

The Virtual Reality environment is presented to a human
player using the Valve Index VR headset, which displays a 1440x1600
pixel display at 120 frames/second. The player walks through a 3
meter by 2 meter area, divided with concentric circles into a 0.165
meter radius heat region in the center, surrounded by a 1 meter
radius hazard region. The area outside of the hazard region, at the
edges of the map, are a safe region where they are protected from
the hazard. The player visually observes their position, the presence
of the hazard, and amount of heat. They also receive input via con-
troller vibration indicating the presence of the hazard. Pavlovian
signalling to the player was also effected by vibrating a second
controller. Their action space is to walk and move their headset
through space, which is mapped into the virtual environment. Heat
is gained at a rate of 0.1875 per second in the heat region, converted
into reward in the heat region when the player has accumulated 5
heat points by raising a controller over their head, and set to 0 if
they are exposed to the hazard.

The hazard experimental conditions are described by the
inter-stimulus interval (ISI) which is the time between hazards, and
the stimulus lengthwhich is the duration of the hazard (see Figure 3).
With this framework, we considered three types of hazard: fixed
ISI, random ISI where the inactive period of the ISI was varied
randomly between upper and lower bounds, and a drift ISI wherein

the hazard has a fixed stimulus length and ISI interval (e.g., 2 and
8 in the abstract environment, as in the fixed condition), but the
ISI varies permanently by ±𝑛, within a minimum and maximum
range, before each hazard (e.g., ±1 within the bounds [6, 11] in the
abstract environment).

5 CONTROL LEARNING IN FROST HOLLOW
WITH PAVLOVIAN SIGNALLING

As shown in Fig. 3, there were key differences in how temporal
representations were able to support the prediction learning with
respect to phenomena unfolding in time, and the way these predic-
tions might be turned into tokens that could be used by a second
agent or a discrete decision-making unit within a single agent. For
this section we therefore specifically consider the case where we
have two interacting learning machines that share one avatar in
the Frost Hollow domain and that must interact so as to collect
reward. While it is natural to think of these two learning machines
as two tightly coupled parts of a single larger learning machine,
here we depict them as concrete independent learning machines.
This lets us clearly describe the comparisons we make between
different conditions without creating assumptions about other parts
of a single-agent composite architecture, and also aligns with the
human-machine virtual reality experiments presented below.

We denote the two learning machines under consideration as
the agent and the co-agent. The agent is responsible for policy learn-
ing so as to solve the Frost Hollow control challenge, while the
co-agent is responsible for prediction learning so as to provide
accurate and relevant forecasts about the Frost Hollow hazard stim-
ulus. As shown in Fig. 4, the only state input to the co-agent in
our experiments is the presence representation, a single bit that
indicates the presence or absence of the hazard on a given timestep.
All other state information for the co-agent is derived from its in-
ternal temporal representations. The output of the co-agent is a
single bit: a token that takes either the value of 1 or 0, indicating its
prediction of an imminent hazard. In contrast, the agent is a control
learner that takes as input the reward from the environment and, as
a tabular representation, the token from the co-agent, the presence
representation for the hazard, and its location and heat (also shown
in Fig. 4).

In our experiments we use two types of co-agents paired with
a learning agent. The Pavlovian signalling co-agent uses one of
the three types of temporal representations described in Section 3.1
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REPRESENTATION PREDICTIONS

(a) Bit Cascade + PR

(b) TCT + PR (decay = 𝑒−0.3𝑡 )

(c) TCT + PR (decay = 𝑒−0.6𝑡 )

(d) Bias Unit + PR

Figure 3: Examples of GVF learning in the Frost Hollow do-
main for each of the fixed conditions. The left column shows
recorded bit progressions for each representation over spans
of single ISIs of equal length, including the presence rep-
resentation (black square in the top row of each plot) and
the temporal representation (black squares in rows 1+). The
right column shows an example of prediction learning for
both the accumulation (red trace) and countdown (blue
trace) GVF questions with four different representations
(hazards shown in yellow). The threshold levels for Pavlo-
vian signalling are shown as horizontal dashed lines. Note
that with a Bias Unit time representation, which cannot dis-
tinguish states temporally, the weight updates move such
that the predictions are backwards: a countdownGVF trends
up until a stimulus, and an accumulation trends down.

coupled with an accumulation, or a countdown GVF. The resulting
prediction is compared against a fixed threshold to produce the
signal sent to the agent. The oracle co-agent is used for compari-
son as an artificial upper bound on the quality of information we
could expect from a co-agent. It uses a fixed policy that observes

Figure 4: Pavlovian signalling co-agent that learns to predict
a hazard and passes tokens to a control learning agent.

hidden information from the environment about exactly when the
next hazard will arrive, and emits a token of 1 whenever it must
start moving to safety in time to avoid the hazard. The control
learning agent uses on-policy reinforcement learning with the
state representation described above, and learns through trial and
error how to gain reward.

One final consideration for Pavlovian signalling co-agents is
the value of the fixed threshold which is compared to predictions
to produce tokens. This threshold determines when a stimulus is
predicted to be sufficiently soon that the control learning agent
must be notified, and thus accounts for factors such as the lead
time needed for the control learning agent to react, inaccuracy
in the prediction, and stochasticity in the environment. In our
experiments we selected the threshold values based on the advance
notice needed for an agent in the abstract domain to avoid hazards
and thus accumulate heat for reward, as can be arrived at empirically
or from the idealized return of Eq. 1: 𝜏 = 2.05 for the accumulation
GVF and 𝜏 = 3.0 for the countdown GVF—e.g., for a countdown
GVF specified by𝐶 and 𝛾 , when the expected steps until the hazard
𝑉𝑡 = 3.0 an agent would have the needed 3 steps to move from the
heat region to safety.

The control learning agent follows the standard Expected Sarsa(𝜆)
learning algorithm [32], chosen to minimize complexity on the
agent side and focus on guiding our understanding of paired agent/co-
agent learning and the role of temporal abstractions in learning
dynamics. Expected Sarsa(𝜆) calculates its temporal-difference error
𝛿𝑡 via a summation over all actions weighted by their probability
under the current policy 𝜋 for the future state 𝑥 (𝑆𝑡+1, 𝐴𝑡+1), as
combined with the reward 𝑅𝑡+1 and the action values for the cur-
rent state 𝑥 (𝑆𝑡 , 𝐴𝑡 ), and uses this error and eligibility traces 𝑒𝑡 to
updates the weights𝑤𝑡 associated with its action values as follows:

𝑒𝑡 ← 𝑒𝑡−1 + 𝑥 (𝑆𝑡 , 𝐴𝑡 )

𝛿𝑡 ← 𝑅𝑡+1 + 𝛾
∑
𝑎

[𝜋 (𝑎 |𝑆𝑡+1)𝑤⊺𝑡 𝑥 (𝑆𝑡+1, 𝐴𝑡+1)]

𝑤𝑡+1 ← 𝑤𝑡 + 𝛼𝛿𝑡𝑒𝑡
𝑒𝑡 ← 𝛾𝜆𝑒𝑡

Here 𝛼 is the step size for learning weights, 𝜆 is the eligibil-
ity trace decay rate, and 𝛾 is the discounting rate applied to fu-
ture actions values; action values used in action selection for a
given state 𝑆𝑡 and action 𝐴𝑡 are approximated via the linear com-
bination 𝑄 (𝑆𝑡 , 𝐴𝑡 ) = 𝑤

⊺
𝑡 𝑥 (𝑆𝑡 , 𝐴𝑡 ), where action values were op-

timistically initialized and were selected on each step according
5



to 𝜖-greedy action selection. We examined the performance of
co-agents with countdown and fixed-gamma GVF questions with
bias, bit cascade, and tile-coded trace representations with GVF
learning rates 𝛼𝑔𝑣𝑓 ∈ {0.01, 0.1} to study fast and slow tracking of
non-stationarity in the environment. Control learning algorithm
parameters were determined via empirical sweeps, with results
below shown for the best-case values of 𝛼 = 0.01, with exploration
via an 𝜖-greedy exploration policy, 𝜖 ∈ {0.01, 0.1}, and optimistic
initialization with weights initialized to 1.0. Token generation with
respect to prediction magnitude can be seen in the relationship
between solid and dashed lines in Fig. 3.

6 ABSTRACT ENVIRONMENT RESULTS
Figure 3 shows that the choice of temporal representation affects
predictions made by the co-agent, including their timing and degree
of aliasing at different points in an ISI’s span with respect to token
generation thresholds. We here focus on performance differences
induced by these choices. We ran sweeps of 5000 learning episodes
each of 1000 steps in length, across agent-co-agent pairs, in the fixed
(ISI 8 with 2 hazard steps), random (ISI is in the range by 5 to 10 steps,
selected independently after each hazard), and drift conditions
(ISI changes by -1 to 1 steps after each hazard). Early learning
differences in agent performance for Pavlovian signalling co-agent /
control learning agent combinations (average accumulated episodic
reward) are shown in Fig. 5, while asymptotic learning performance
across representations and with the oracle co-agent is shown in Fig.
6. Of note, these results can be well considered with respect to the
different forms of aliasing in our representations for accumulation
and countdown predictions, as seen in Fig. 3.

In the Fixed condition, it is possible to obtain a maximum ac-
cumulated reward of 50 per episode by earning one point every
second hazard cycle. Unsurprisingly, agents without a co-agent
are unable to obtain reward (Fig. 6, leftmost column). The Oracle
co-agent directly observes the time to the upcoming hazard instead
of learning it, and learning agents connected to it are often the top
performers. The remaining columns in the figure present a learning
co-agent with a learning agent, and we find that, with the exception
of one Bias unit co-agent, all are able to consistently obtain reward
in all three environmental conditions. The Bias-0.1 co-agent is in-
teresting in that it is competitive with the other learning co-agents
in all environmental conditions. Although the Bias representation
is the same in all states, the GVF does contain a weight parameter
that is updated on each timestep, and with an appropriately tuned
learning rate it can oscillate across the fixed threshold to output
useful Pavlovian signals for the learning agent to act on (c.f., Fig.
3d). Paired with a countdown GVF question (𝛼𝑔𝑣𝑓 =0.01), the Bias
representation was ineffective for tracking of the stimulus, and
obtained a single reward in one of 30 drift trials. Paired with an
accumulating GVF, the agent obtained approximately 29.937 re-
ward per episode in the fixed condition, but only about 0.0019 and
0.0092 reward per episode in the random and drift conditions. Other
representations performed comparably, indicating that the repre-
sentation was less of a factor than learning rate and environmental
condition on overall agent performance. As shown in Figs. 5 and 6
(in terms of accumulated episodic reward for 1000 step episodes),
we found that early learning and asymptotic performance varied

Accumulation GVF Countdown GVF

(a) FIXED environmental condition

(b) RANDOM environmental condition

(c) DRIFT environmental condition

Figure 5: The effects of the of the co-agent temporal rep-
resentation on early task performance. We see significant
improvements from learning occur within the first 600
episodes. We compare learning co-agents coupled to an Ex-
pected Sarsa learning agent over the first 800 episodes (8000
steps) in the (a) fixed, (b) random, and (c) drift conditions.
Lines show the means over 30 independent runs; shaded re-
gions show the 95% confidence interval. Legend indicates
representations used, with TCT 𝑎 denoting decay 𝑒−𝑎𝑡 .

across GVF types and representations, and in best cases approached
or equalled the performance of agents partnered with an oracle co-
agent (Fig. 6). When partnered with a co-agent, we found evidence
of reward acquisition by the agent as early as 200–600 episodes, re-
quiring roughly 600 episodes to approach asymptotic performance;
early learning as shown in Fig. 5 was indicative of longer-term
performance; GVF learning was even faster—co-agent predictions
approximating the ideal return were easily learned in less than an
episode (<500 steps, or 50 ISI examples), and adapted to track the
ISI in the drift condition while maintaining expectations of the en-
velope of ISI lengths in the random condition. GVF-based features
were found to be stable and robust, which we suggest allowed con-
sumption by the control learning agent without problematic time
and data requirements requisite to fully learned communication
setting (c.f., [16]).

We also studied the effect of varying heat capacity and of dif-
ferent linear control learning algorithms; the choice of control
algorithm (e.g., changes to Q-learning or Sarsa) appeared to have
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(a) FIXED environmental condition

(b) RANDOM environmental condition

(c) DRIFT environmental condition

Figure 6: Plots of accumulated reward for the last 1000
episodes with a countdown GVF across environment con-
ditions (a–c) and temporal representations. Across all envi-
ronment conditions andmost temporal representations, the
co-agent performance approaches that of the oracle, and is
substantially better than having no co-agent. Plots show the
median (solid white line), mean (dotted white line), 1st and
3rd quartile (box sections), and outliers (dots beyond the
whiskers, which extend ±1.5× the interquartile range), over
30 independent trials. For learning co-agents, the name in-
dicates the time representation and its parameter (if any),
followed by the GVF learning rate.

only a small effect on performance across conditions compared to
differences induced by other parameter or representation choices.

7 VIRTUAL-REALITY RESULTS
As a further comparison, we studied the interactions between Pavlo-
vian signalling co-agents (BC and TCT0.3 representations) with a
more advanced control learning agent: a human participant. Im-
portantly, the two co-agents were adapted directly from the abstract
domain with only minimal changes to account for differences in ISI
span.We present a brief summary of our findings here.

The participant engaged with the VR Frost Hollow domain over
the course of ten sessions. Each session had nine randomly ordered

(a) A typical simple trial, fixed condition, TCT co-agent

(b) A typical challenging trial, random condition, BC co-agent

Figure 7: Co-agent rapidly learns and gains utility during hu-
man interaction.Wasted steps: any time the participant was
outside the heat region while the hazard pulse was inactive.
MinimumUseful Signal: the signal giving the participant ex-
actly 0.89s lead-time before the hazard begins, calculated ac-
cording to participant exit velocity.

5-minute trials, with the participant either working with a BC or
TCT accumulation GVF co-agent, or without a co-agent, in the
fixed, random and drift conditions (roughly 10 hours of participant
experimental time). The initial time between hazards (ISI) was set
to 20 seconds of real time (with 8 ms agent timesteps). To make
identification of individual trials in the fixed and drift conditions
more challenging and to better cover the space of ISI lengths, start-
ing ISI was set differently for each trial. For this case study we
worked with a single participant (male, age 40). Due to COVID-19
limitations in place for the duration of this work, we were unable to
recruit external participants for this study, as intended and as per
our approved human research ethics protocol for this work. Our
participant was thus a member of the study team; we mitigated the
disadvantages of this recruitment choice through trial order ran-
domization, hiding the design of the protocol from the participant,
and removing the participant from participation in the quantitative
and qualitative analysis of results.

To gain an intuitive sense of how the participant engaged with
the co-agent, Fig. 7 presents two specific trials in detail: a typical
“simple” trial (fixed ISI condition, pairedwith the TCT co-agent), and
a typical “challenging” trial (random ISI condition, BC co-agent).
Beginning with the simple trial, we saw the co-agent providing a
useful (though inconsistent) signal beginning on the second hazard
pulse, and reliably thereafter. The amount of wasted steps leading
up to the hazard pulse diminished to a narrow margin as the trial
progressed. In the challenging trial we saw the co-agent give its first
useful signal only by the time of the fourth pulse. Until this time,
the participant had been using their internal timing to determine
when to leave the heat region in advance of the signal. The co-
agent was then unable to give reliable signals for the next few
pulses (pulses 5, 6, and 8–10), and the participant was hit by the
hazard several times. By the 11th pulse, the participant resumed
reliance on their internal timing to leave the heat region in advance
of the co-agent signal, wasting many steps in order to avoid the
hazard. Overall, and conversely to the abstract domain, we found
the participant relied more on the TCT co-agent, with aliasing of
the temporal representation providing a degree of advance notice
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that was reported and measured to be useful in human decision
making (please see Brenneis et al. [1] for more detail).

8 DISCUSSION
At a high level, the results in this work support the use of Pavlo-
vian signalling as a lens to study certain agent-agent relationships.
As identified by Pilarski et al. [25], it is possible to frame dyadic
partnerships between agents in terms of the agency and capacity
of the parties engaged in the interaction; while capacity of a part-
nership might be limited by having reduced agency by one of the
parties (here the co-agent), the simplicity of that partner provides
the opportunity for fast learning of its behaviour by the other party
[24, 25]. This is the case with Pavlovian signalling: we see that as a
main benefit useful co-agent predictions could be learned rapidly from
a blank slate (less than 500 steps in the abstract domain, or less than
a minute in the VR domain) (Figs. 5 and 7), and could continually
adapt during deployment; when made into a low-bandwidth token,
predictions could be used for policy learning by a control learning
agent in both abstract and VR domains without substantive changes
to the co-agent, and approached oracle-level performance (Fig. 6).

In addition to rapid co-agent learning, and the learnability of
co-agent signals by the main agent, we see evidence that there are
further benefits to Pavlovian signalling in that it assumes nothing
about the internal structure or mutability of the control agent;
human and machine agents alike can approach co-agent signals
from an ungrounded perspective. Further, there is no reason to
limit the co-agent to only observations of the environment as we
have done in these studies; it is natural to think that information
pertaining to the agent and its adaptability can also be used as
inputs to the co-agent, further increasing its ability to make relevant
predictions and to begin to buildwhat has previously been termed as
communicative capital [25]. As such, Pavlovian signalling appears
to be a viable stepping stone between between fixed agent-agent
signalling and bidirectionally learned signalling relationships.

As described by Scott-Phillips [29, 30], there is a route to progress
from grounded signals to a type of communication used between
humans, which he calls ostensive-inferential communication. We
believe Pavlovian signalling can provide a functional bridge towards
this more natural, expressive form of communication. Studies by
others have provided one view into this pathway, through a bidi-
rectional learning relationship wherein the agent (a human) made
certain things visible for co-agent learning, and the co-agent sub-
sequently learned when and how to make its Pavlovian signalling
tokens visible to the agent [23]. We suggest that tokens created
in Pavlovian signalling with GVFs have the beneficial property
that they are constructivist in nature, and so might be created by
a co-agent autonomously as opposed to specified by an external
designer. Tokens are for the sender grounded in co-agent-centric
(subjectively specified) GVF question parameters cumulant𝐶𝑡 , time
scale 𝛾𝑡 , and policy 𝜋 and also in the mapping approach, in this
case is parameterized by the threshold value 𝜏 used in token gen-
eration. For our specific case, this 4-element tuple {𝐶𝑡 , 𝛾𝑡 , 𝜋, 𝜏} is
the grounding of the token, and it can be fully subjective to the
sending agent and not require connections to an objective frame of
reference.

Pavlovian signalling as formalized in this work is a
process wherein learned, temporally extended predictions
in the form of GVFs are mapped via a fixed threshold to
Boolean tokens intended for receipt by a decision-making
agent, where tokens are grounded for the sender in the
cumulant 𝐶𝑡 , time scale 𝛾𝑡 , policy 𝜋 and threshold 𝜏 of
their computational precursors.

9 CONCLUSIONS
In this work, we contributed a concrete definition and exploration
of Pavlovian signalling as implemented via processes of GVF learn-
ing. Our findings, while preliminary in that they are derived from
a single human-agent case series and related fundamental agent-
agent experiments, suggest that Pavlovian signalling by a co-agent
can be learned very rapidly in single-shot real time deployment, im-
proves temporal decision-making of receiving human and machine
control-learning agents, and opens a number of future avenues for
using GVF learning in this way to augment, adapt, and potentially
enhance human and machine perception, action, and cognition.
When presented with information from a machine co-agent, we ob-
served changes in both the timing of decisions of both human and
machine agents (behavioural change, differences in sensorimotor
trajectories, and reaction times) and also the quantitative outcomes
of the timing task (score, number of mistakes).

Future study is needed with larger environments or continual
learning settings with distractors, and in tasks that more fully blend
both time and space. In summary, we believe there is great oppor-
tunity for using Pavlovian signalling to understand agent-agent
signalling and communication in complex tasks that unfold in both
time and space, and as a way-point between hand-designed com-
munication interfaces and full machine communication learning.
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