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ABSTRACT
Artificial intelligence systems increasingly involve continual learn-
ing to enable flexibility in general situations that are not encoun-
tered during system training. Human interaction with autonomous
systems is broadly studied, but research has hitherto under-explored
interactions that occur while the system is actively learning, and
can noticeably change its behaviour in minutes. In this pilot study,
we investigate how the interaction between a human and a con-
tinually learning prediction agent develops as the agent develops
competency. Additionally, we compare two different agent archi-
tectures to assess how representational choices in agent design
affect the human-agent interaction. We develop a virtual reality
environment and a time-based prediction task wherein learned
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predictions from a reinforcement learning (RL) algorithm augment
human predictions. We assess how a participant’s performance
and behaviour in this task differs across agent types, using both
quantitative and qualitative analyses. Our findings suggest that
human trust of the system may be influenced by early interactions
with the agent, and that trust in turn affects strategic behaviour,
but limitations of the pilot study rule out any conclusive state-
ment. We identify trust as a key feature of interaction to focus on
when considering RL-based technologies, and make several rec-
ommendations for modification to this study in preparation for a
larger-scale investigation. A video summary of this paper can be
found at https://youtu.be/oVYJdnBqTwQ.
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1 INTRODUCTION
Technology increasingly relies on learning to improve performance.
Autonomous systems that continually support human users are ex-
pected to soon need to learn continually even during use in order to
perform well in their general and changing settings of interest (e.g.,
assistive technologies; [3, 4, 18, 24]). Humans that use these systems
will interact with technology that has a constantly changing level
of competency and reliability, but the ramifications of a system’s
continual learning on human behaviour and human-machine inter-
action are not well understood. Here, we begin to investigate this
interaction by considering a human involved in a timekeeping task,
partnered with a machine agent that learns from a blank slate to
help the human. In general terms, an intelligent machine of this
sort is able to make predictions about the dynamics of the world
that a human partner either cannot or does not want to compute on
their own (possibly due to the difficulty or time-consuming nature
of the computation, [20], or the human’s inability to sense relevant
information). In order to convey the benefit of these predictions, it
is natural that machine agents must be able to communicate infor-
mation to the human [2, 9]; learned communication is built upon
relationships, and relationships can be built up through interaction
[22, 23]. Take for example your interactions with a wristwatch:
if up to now it conveyed accurate time-information to you, you
would have every reason to continue trusting its information the
next time you consulted it. If its degree of competency degraded
for some reason, and the information communicated were incor-
rect, you would quickly lose trust in the device and look to other
sources for the information you need. Now suppose instead that
your wristwatch was not designed to convey regular time intervals,
but instead predict the onset of stochastically reoccurring events.
How would your interactions with your wristwatch be affected by
the fact that the device must continually learn, update, and change
its behaviour while you are using it?

In this paper we describe a pilot human-agent interaction study,
investigating how time-based prediction agents can augment hu-
man predictions, and how the relationship between the human
and agent develops as the agent develops competency. Specifically,
we describe and compare two simple agents that learn to predict
future stimuli using general value functions ([26]; from the field of
reinforcement learning), and communicate those predictions to a
human participant using Pavlovian control (which maps predictions
to a small set of actions, [12]). We introduce a virtual reality (VR)
task designed to assess human-agent interaction in a time-interval
prediction task. VR is a compelling tool for human-computer inter-
action (HCI) research because it is immersive, allows flexibility and
control for experiment parameters, and enables measurement of
human movements which provide a window into decision-making
[6]. VR also requires physical participation—due to COVID-19, we
were unable to recruit external participants. We took this as an
opportunity to engage in the present work: a thorough preliminary
investigation in search of interesting trends and themes that might

deserve careful investigation with respect to continual learning
during human-machine interaction.

2 BACKGROUND
2.1 Prior Work on Human Interaction with

Learning Systems
Human interaction research regarding autonomous systems spans
from early software interfaces for email and calendar applications
[11] to more complex and personal domains such as the control
of prosthetic limbs [18, 21], and has included a wide variety of
automation techniques. Automation has traditionally been hand
engineered to provide reliable performance, and therefore reliable
human interaction. More recent machine learning systems are typi-
cally pre-trained before deployment, after which their parameters
remain fixed. Research specifically involving interaction with con-
tinually learning algorithms has hitherto mainly focused on inves-
tigating agent learning dynamics using human interaction as part
of the learning signal [10]. Autonomous systems that learn from
human signals are important technologies, but system learning
dynamics are inherently intertwined with interaction dynamics.
Amershi et al. [1] convincingly argue the case for separating human
interaction from agent learning in order to study “how people ac-
tually interact—and want to interact—with learning systems”. They
describe case studies involving people interacting with machine
learning systems, and by specifically focusing on the human com-
ponent of the interaction, they are able to discover novel modes
of interaction, unforeseen obstacles, and unspoken assumptions
about machine learners. A meta-review of factors that affect trust in
human-robot interaction [7] suggests that system-specific factors
such as behaviour, predictability, and failure rates greatly affect
human trust in autonomous systems, justifying a system-specific
investigation of human interaction with RL-based systems as dis-
tinct from machine learning systems. The particular feature of the
RL algorithm that we study that distinguishes it from other au-
tonomous systems and warrants direct investigation is continual
learning during the course of a task, and the effect that will have
on human interaction.

2.2 General Value Functions
Reinforcement learning [25] is a class of machine learning methods
wherein an agent learns to predict future values through a process
of trial-and-error. The value of a state (a prediction of how much
reward can be expected in the future from that state) is learned
by incremental updates to a value function 𝑣𝛾 (𝑠) for state 𝑠 . The
discounting factor 𝛾 corresponds to the horizon of the prediction,
and is typically between 0 (for next-step predictions) and 1 (for an
infinite horizon). By substituting any signal of interest (called a
cumulant, 𝐶) in place of the reward, the value function becomes a
general value function (GVF) 𝑣𝛾,𝐶 (𝑠) which predicts the discounted
sum of the future cumulant [13, 26]. Informally, a GVF represents
a prediction question: what will be the total accumulated value of
some signal of interest over the next specified time window? Equation
1 gives the formal GVF definition, for a simple fixed-𝛾 on-policy



prediction formulation.

𝑣𝛾,𝐶 (𝑠) = E
{ ∞∑
𝑘=0

𝛾𝑘𝐶𝑡+𝑘+1

���� 𝑆𝑡 = 𝑠

}
(1)

In practice, an agent learns to approximate the above value by
interacting with a stream of states and corresponding cumulants.
Let 𝑥 (𝑠) ∈ R𝑑 be a feature vector summarizing the state 𝑠 . We
approximate the value by 𝑣𝛾,𝐶 (𝑠) ≈ 𝑤

⊺
𝑡 𝑥 (𝑠), where𝑤𝑡 ∈ R𝑑 is the

weight vector at time 𝑡 . We use the TD(_) algorithm to update𝑤𝑡

on each time step:

𝑒𝑡 = 𝑒𝑡−1 + 𝑥 (𝑆𝑡 )
𝛿𝑡 = 𝐶𝑡+1 + 𝛾𝑤⊺𝑡 𝑥 (𝑆𝑡+1) −𝑤

⊺
𝑡 𝑥 (𝑆𝑡 )

𝑤𝑡+1 = 𝑤𝑡 + 𝛼𝛿𝑡𝑒𝑡

𝑒𝑡 = 𝛾_𝑒𝑡 ,

where 𝛼 is a scalar learning rate and 𝑒 ∈ R𝑑 is an exponentially
decaying memory of previous feature activations.

2.3 Pavlovian Control
Inspired by prediction learning for reflexive control in animals
[8], the term Pavlovian control as used here refers to the use of a
GVF to predict an external stimulus, coupled with a fixed reflexive
control policy dependent on that prediction (c.f., [3, 12]). A simple
Pavlovian control policy emits a discrete action 𝑎1 when the GVF
prediction of the external stimulus is below a certain threshold 𝜏 ,
and emits a discrete action 𝑎2 otherwise (where, importantly, that
action may be a communication signal [14, 16]). The precise setting
of 𝜏 for a useful policy depends on the timescale and stochasticity
of the prediction, as well as the amount of advance notice needed
before the external stimulus in order to take action.

3 EXPERIMENTAL METHODS
Our experiment situates a human participant in a virtual reality
(VR) environment we call the Frost Hollow, wherein they must
keep track of an external event that occurs on a roughly periodic
schedule (c.f., [19]). They are paired with a machine agent that uses
a GVF to predict the onset of this event, and cues the human when
its prediction exceeds a threshold. We look at task performance,
behavioural differences, and qualitative notes to compare two agent
architectures against the control condition where the participant
completes the task with no agent assistance.

3.1 Virtual Reality Environment
The premise of the Frost Hollow task is that the participant stands
in a “warm” center region of the environment (radius 0.165 m,
participant position reported by the headset) to slowly gain heat,
and must periodically dodge out of a hazard region (radius 1 m)
when the wind blows to avoid losing heat. When standing in the
center region, a heat gauge visible to the participant fills from
0.0 to 5.0 at a rate of 0.1875 heat/second (26.67 seconds to fill the
gauge); when the gauge is full, the participant can raise one of
their VR controllers above their headset to cache the heat gained
as a point (one unit of game reward). When hit by the hazard, the
participant loses 25 heat/second, so any hit longer than 200 ms will
deplete the gauge. Cached points are not lost. Our VR environment

(a) Participant view

(b) Top-down view, annotated

Figure 1: Depiction of the virtual reality environment.

(depicted in Figure 1) was implemented in Unity 2019.2.17f1 (Unity
Technologies, USA) with Steam VR (Valve Corporation, USA) and
presented to the participant via a Valve Index headset and two
handheld controllers (Valve Corporation, USA; headset max render
rate of 144Hz) at a base Unity time step length of approximately 8ms
(VR protocol follows from prior work [17]). Detailed descriptions of
the audiovisual presentation of the environment are available from
Pilarski et al. [16]. We studied three inter-stimulus-interval (ISI)
conditions between the hazard pulses: fixed, drifting, and random.
The base ISI was set to 20s (as measured from the falling edge of the
pulse to the next pulse’s falling edge); the hazard pulse duration was
4s in all conditions. For the random condition, the inactive portion
of each ISI was varied uniformly by [-4s, 6s] between 12s and 22s in
length. For the drift condition, the inactive portion of each ISI was
shifted by a uniform random amount between [-2s, 2s] from the
previous duration, with all ISI durations outside [12s, 22s] cropped
to the extremes of the range. When the hazard pulse was active,
the participant’s left hand-held controller vibrated, and a visual
bloom stimulus was presented on hazard contact; communication
from the agent was presented as vibration in the right hand-held
controller (c.f., [5, 14]).

3.2 Agent Architectures
Two agent architectures are compared which differ only in the
way that they represent the passage of time between stimuli: a
bit cascade (BC) representation, and a tile-coded trace (TCT) rep-
resentation (depicted visually in Figure 2). The decision to vary
agent representations of time rather than other agent parameters is
motivated by a larger study of Pavlovian signalling [16] for which



this work plays a supporting role. These representations of time
were motivated by and modeled after biological models of time-
keeping in animal brains [15]. The BC representation is modelled
after population clocks (sequentially firing chains of cells), while
the TCT representation is informed by ramping models (changes
in the tonic firing rate of cells or cell populations). The bit cas-
cade representation involves a one-hot vector of 40 features which
activate sequentially, with each feature being active for 0.5s. The
tile-coded trace representation also involves a one-hot vector of
40 features which activate sequentially, but the activation timing
for each feature is prescribed by an exponential decay trace with a
per-step decay rate of 0.998. Both the BC and TCT representations
restart their sequence (i.e. the first feature is active) immediately
after the hazard pulse deactivates. The timing parameters for both
representations were set so that both used roughly the same num-
ber of feature bins when presented with an ISI of 20s. Learning
parameters were empirically determined for an acceptable learning
speed over a 5 minute trial time, resulting in 𝛼 = 0.1, _ = 0.99, and
𝛾 = 0.99. The Pavlovian control threshold 𝜏 was also empirically
determined to give adequate lead-time for a human participant in
advance of a pulse after learning had converged, resulting in 𝜏 = 10
for both agents. The fixed control policy was set such that the agent
vibrated the participant’s handheld controller when its prediction
rose above 𝜏 , and did not vibrate when below 𝜏 . Agent-learned
weights were discarded and re-initialized to zero between trials so
the agent learned from a blank slate for each trial.

3.3 Experiment and Analysis Protocol
We engaged a single participant (male, age 40, no history of senso-
rimotor impairments) who was also a member of the study team due

(a) Bit Cascade Representation

(b) Tile-Coded Trace Representation

Figure 2: Representations of time used in this experiment.
Time (state) is represented as a one-hot vector of features
which activate according to a trace function which resets at
the falling edge of each stimulus pulse.

to COVID-19 constraints (see Section 8), and followed our approved
human research ethics protocol. This participant had a deep under-
standing of the task and dynamics, but was not practiced with the
particular conditions. The study followed a within-participant 3
(ISI type) x 3 (agent type) design; experimentation took place over
the course of ten sessions, each consisting of nine trials that were
five minutes long (one for each pairwise combination of [fixed ISI,
drifting ISI, random ISI] and [no agent, TCT agent, BC agent]). Trial
order was randomized and blinded to the participant, and the initial
ISI duration for the fixed and drifting conditions was randomized
to further obfuscate the conditions. Each individual session was
conducted in roughly one hour, with small breaks between each
of the trials for the participant to remove the headset and drink
water or write qualitative notes. Sessions were spread over a one
month collection period, with one or two sessions per day on data
collection days. This protocol was found to be slightly physically
fatiguing and moderately cognitively fatiguing, depending on the
trial. To avoid injecting biases into the analysis, the team member
who acted as participant for the study did not re-engage with the
study until both qualitative and quantitative analyses were com-
pleted by other team members. Statistical analyses were conducted
to determine whether for this participant there were any differences
in performance across agent types. Data violated assumptions of
normality in nearly every comparison, so non-parametric methods
were used. Data were grouped pair-wise by session, so Friedman’s
tests were conducted followed by Wilcoxon Signed-Rank tests with
a Holm-Šidák correction for multiple comparisons. Significance is
reported in Figure 3, in all cases at the family-wise 𝛼 = 0.05 level.
Specific results of the statistical analyses are reported in Table 1.

4 QUANTITATIVE ANALYSIS
Looking first at overall task performance (Figure 3a), we see a small
(and not statistically significant) increase in performance in the
fixed ISI condition when the participant was paired with either
agent. For the more difficult conditions where the ISI changes over
the course of the trial, there is no clear difference in overall task
performance depending on agent pairing. In general, these results
suggest that overall task performance is not a clear indicator of any
differences between human-agent pairings in this setting. Figure
3b shows differences in the proportion of time-steps where the
participant was hit by the hazard. In the fixed ISI condition, the
participant spends less time being hit by the pulse when paired with
either agent as compared to none. In the random ISI condition, the
participant is hit by the pulse less when paired with the TCT agent
than when paired with the BC agent, or no agent. Figure 3c displays
the participant’s heat gain in each condition, which corresponds to
the proportion of time spent in the goal region. Differences here
appear in the more challenging conditions, where the participant
spends less time in the goal region when paired with the TCT agent
than when paired with the BC agent. Considering the charts of
Figure 3 together, it appears that the participant engages in more
cautious behaviour when paired with the TCT agent as compared
to the BC agent (they gain less heat, and are hit by the hazard less
often), while attaining comparable task performance. This result
suggests possible differences in participant behaviour across agent
pairings.



Table 1: Statistical analysis results. Comparisons are made across assistant pairings (N = no agent; BC = bit-cascade agent;
TCT = tile-coded trace agent) for each ISI condition. Significance (𝛼 = 0.05) is indicated in bold text. For Friedman’s tests,
𝜒2
𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙

(2) = 6.20.

Points Cached Steps Hit by Hazard Heat Gain

A Priori Tests (Friedman’s Chi-Square)
Fixed 𝜒2 (2) 5.2 14.0 1.4

𝑝 0.0755 0.0009 0.4966
Drifting 𝜒2 (2) 1.4 1.4 7.2

𝑝 0.4895 0.4966 0.0273
Random 𝜒2 (2) 0.7 11.4 13.4

𝑝 0.7165 0.0033 0.0012
Post Hoc Tests (p-values fromWilcoxon Signed-Rank)
Fixed N vs BC 0.1415 0.0432 0.9594

N vs TCT 0.1724 0.0151 0.5550
BC vs TCT 0.7344 0.1763 0.4930

Drifting N vs BC 0.6831 0.4257 0.3642
N vs TCT 0.6831 0.4881 0.3642

BC vs TCT 0.5507 0.6465 0.0206
Random N vs BC 0.7990 0.2026 0.0593

N vs TCT 0.7990 0.0278 0.0151
BC vs TCT 0.7990 0.0278 0.0329

We are able to examine agent learning directly because the
agent’s learning of the task does not depend on the participant’s
actions. Figure 4a shows the mean interval between the agent signal
and the onset of the hazard pulse, for each pulse over the length of
the trials. This interval can be interpreted as “how long before the
onset of the pulse did the agent’s prediction of the pulse rise above
the threshold for signalling?”. When the agent’s cue is less than
0.89s before the hazard (above the dashed line), the signal doesn’t
give the participant enough time to react given how long it takes to
leave the hazard region. In the simplest prediction task with fixed
ISI, the BC agent is unable to reliably give a useful signal (below the
dashed line) until after about the sixth or seventh pulse while the
TCT agent is able to give a reliably useful signal after only the sec-
ond pulse. More challenging conditions introduce more variance in
these intervals, but the trend remains that the TCT agent provides
useful signals earlier, and more reliably. This is because the BC
representation has finer feature bins in the region near the pulse
compared to the TCT representation, leading to more accurate but
slower learning.

The length of time between the agent’s signal and the partici-
pant’s exit from the goal region is plotted in Figure 4b. A negative
value on this chart indicates that the participant left the goal region
before being cued by the agent. Here, we see that the participant
exhibits clear behavioural differences when interacting with each
agent. When paired with an agent with a TCT representation, the
participant nearly always waits for the agent signal before leaving
the goal region (data above the dotted line). When paired with an
agent with a BC representation, the participant is much more likely
to exit the goal region before the agent gives a signal. In the fixed ISI
condition, when paired with the TCT agent, the participant seems
to move after the agent’s cue as early as the second or third pulse
of a trial. Under the same conditions, when paired with a BC agent,

the participant relies entirely on their own internal timing. For the
more difficult conditions, the participant eventually moves after
the cue of either agent, but aligns their movements with the TCT
agent’s cue more readily than with the BC agent’s cue. While it
is tempting to interpret this feature of the data as the participant
relying on the TCT agent’s cue more than the BC agent’s cue, there
is insufficient evidence from these charts alone to conclude how
the participant is using either signal, as we will see in Section 5.

5 QUALITATIVE ANALYSIS
Qualitative data was gathered by the participant after each session
in free-form text, prompted but not restricted by the following
questions. Experimenter-developed questions were posed by the
member of the study team conducting the qualitative analysis at
the outset of the trials. Participant-developed questions were gen-
erated independently by the member of the study team acting as
the participant, and evolved as the study progressed.
Experimenter-developed questions:

• Are you trying to figure out how the agent (and environment)
work?

• For the whole trial?
• If not, did you figure it out or just start to trust it?
• After time, or successes?
• How much do you notice or think about the other agent at
the beginning? The middle? The end?

Participant-developed questions:

• Changes in when and how I counted: did I count from the
start of the trial? Did I shift to just counting from the agent
cue and not counting from the beginning? When did I shift
between these and under what conditions or observations
on timing?



• What agent behaviours did I like and not like?
• Adaptation rates: what were my expectations on response
or learning times for agents?

• Thinking of agents as adaptive systems / predictors or not?
• What conditions did I lose confidence in the machine; when
did I gain confidence?

• When did trust in the agent occur quickly?
Discourse analysis seeking recurring sentiment and themes indi-
cated that trust was a major component of the participant’s in-
teraction with the system, which affected other factors including
cognitive load and use of the agent’s cue in unexpected ways. The

(a) Overall task performance

(b) Time-Steps hit by the hazard

(c) Total heat gain

Figure 3: Performancemetrics. Bars represent themean over
trials for eachmetric, normalized by themaximum possible
value of thatmetric. Error bars represent the 95% confidence
interval. N = no agent; BC = bit-cascade agent; TCT = tile-
coded trace agent.

participant noted that they trusted the agent more when it was
demonstrably correct earlier in the trial. Once trust was built, they
noticed a decrease in cognitive load: “With trust in my agent, I can
let [my] mind wander”. Notes such as “[The] agent helps me feel like
I have a lower bound of safety once it is trained, and then can choose
my risk based on its feedback” suggest that the participant engaged
with the task actively and strategically, and used the agent’s cues
as part of that strategy in more complex ways than rote cue-to-
movement. In fact, with sufficient experience with the agent, the
participant would sometimes engage in risky behaviour: “I was at
times racing the pulse; the agent would cue me but I would see the heat
bar almost full and then gamble that it would fill fast enough before
[the hazard] came, given what I knew about the relationship between
cue and future pulse.” Even in cases where the agent inadequately
predicted the hazard, the participant still used the agent signal as
information to inform their strategy, but relied on their mental
timekeeping to inform their movements. Regarding these situations
the participant notes: “it was not fast enough to be useful in advance
of [the hazard], so I mainly used it as a checksum”, indicating that
they verified their mental timekeeping by comparing it against
their acquired knowledge of how the agent keeps time. While this
particular behaviour is likely unique to participants familiar with
GVF agents of this nature, the anecdote provides a clear example of
how a user’s mental model of an agent will affect their interactions
with it. It also indicates that evaluating future participants’ under-
standing of how the agent learns will be key to understanding their
interactions.

6 COMPARING QUANTITATIVE AND
QUALITATIVE RESULTS

In both the quantitative and qualitative analyses we see human
trust of the agent emerging as an important theme. The partici-
pant’s notes suggest that using the sign of the signal-to-exit interval
(Figure 4b) as an indicator of human trust might miss parts of the
picture, since the participant makes use of the agent signal in other
ways than as simply a cue to move. Other quantitative measures
of trust should be sought, to corroborate this interpretation. One
particular notion of intense trust called out in the participant notes
(when the participant is “racing” the pulse, caching points after the
agent signal but before the hazard) is also visible in the quantitative
data. Of the 14 instances where a point caching event is recorded
after an agent signal and before a hazard, 13 of these instances
occurred when the participant was paired with the TCT agent. This
risky behaviour with the TCT agent contrasts with the indications
from Figure 3 that the participant behaved more cautiously with the
TCT agent. Pairing this contrast with the qualitative discussion, we
see that with high levels of trust in the agent, the participant is able
to more flexibly choose a strategy, behaving boldly or cautiously as
the situation warrants. It should however be noted that (as shown
in Figure 4a) the TCT agent reliably gives more lead-time than
necessary before the pulse, leaving time for pulse racing that the
BC agent does not, meaning that pulse racing may not be a fair
indicator of trust.



(a) Mean interval between signal from agent and hazard onset over trial length. Theminimumuseful lead time (dashed line) before the hazard
pulse (dotted line) is 0.89 seconds, and corresponds to the participant’s mean exit speed. It does not include reaction time.

(b) Time interval between signal from agent and goal region exit, shown as a trajectory over the length of trials. Negative data indicate the
participant leaving the goal region in advance of the agent’s signal.

Figure 4: Data are shown as the mean (solid line) and 95% confidence interval (shaded region) of the data for each pulse. Due to
the randomization of the starting ISI and fixed trial duration, some trials with shorter ISIs presented more pulses than others.
This led to the occurrence of one or two trials with high pulse count (>14), resulting in the large confidence intervals at the
ends of these plots.

7 DISCUSSION
Specific quantitative and qualitative measures to assess human trust
in the agent would be particularly informative for future studies,
especially if such measures could assess changes in levels of trust
over the course of a trial or across sessions. One such task modi-
fication might involve the introduction of a secondary, voluntary
and cognitively demanding task that could be performed simultane-
ously while gathering heat. While engaged with the secondary task,
the participant would need to place trust in the agent to keep track
of the timing in the primary task (i.e., effect a form of cognitive
offloading [20]), making engagement in the secondary task a good
measure of trust.

Supposing that future studies with a direct measure of trust con-
firm that participants trust the TCT agent more than the BC agent,
two points of discussion emerge. First, the apparent differences in
levels of trust between the types of agent can only be attributed
to the different representations of the agents, as all else is equal.
While the BC agent is able to achieve greater prediction accuracy
than the TCT agent (because of the BC agent’s finer feature bins
in the region of the hazard), fast learning appears to be more im-
portant than accuracy for the development of human trust. The
threshold and representation bin-widths in this experiment were
chosen considering late-trial performance, so that once the pre-
dictions stabilized both representations would give roughly equal

notice before a pulse. A lower threshold or wider feature bins would
likely have allowed the BC agent to provide reliably useful signals
earlier in the trials. Understanding the relationship between feature
representation and threshold levels in both early and late-learning
contexts will be important for any future studies or applications
making use of Pavlovian signalling for communication. Second,
the participant in this experiment displayed more richly varied
strategies with the TCT agent than the BC agent, presumably be-
cause of a greater degree of trust. Specific assessments regarding
how participant strategies are affected by trust in the agent may be
illuminating, and should involve specific metrics to assess changing
strategies over time. Finally, using a pre-trained agent as a baseline
comparison will be necessary to assess the effect of active learning
on these measurements.

8 LIMITATIONS
The generality of this pilot study is limited by our use of a single par-
ticipant who was also a member of our study team. While blinded
from the particular conditions they were interacting with, they
were deeply familiar with the agent architectures, task dynamics,
and learning machines in general. We expect that the introduction
of naïve participants will also involve a co-learning phase at the
beginning of sessions where the participant and agent are both
learning the task simultaneously. Since we found early interactions



to be of great influence in trust-building with our expert participant,
we expect that a co-learning phase will affect trust, but make no
hypothesis about what that effect might be.

9 CONCLUSIONS AND FUTUREWORK
This pilot study examined an approach to agent-human support
characterized by real-time machine learning and straightforward
ongoing interactions; our results suggest that trust in the system’s
capabilities is a major component of a human’s interaction with
a continually learning system. There are also indications that this
trust may be dependent mainly on early interactions with the sys-
tem, while the agent is still developing competency. Future studies
should include metrics that specifically measure trust, and should
include analyses to determine possible correlations between lev-
els of trust and agent competence. There may also be correlations
between levels of trust and strategic behaviour. Finally, a future
study should include a greater number of participants, with a di-
versity of experience in interacting with learning machines. For
other future time-based prediction experiments or applications in-
volving human actors with machine agents, we make no particular
recommendations about representation or threshold choices, as
we understand these to be task-specific. We do however stress the
importance of these choices, and recommend that they be made
with both early and late learning stages in mind, and considering
the interaction between the human and machine’s actions.
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