
Is Vanilla Policy Gradient Overlooked?
Analyzing Deep Reinforcement Learning for Hanabi

Bram Grooten

Eindhoven University of Technology

Eindhoven, Netherlands

b.j.grooten@tue.nl

Jelle Wemmenhove

Eindhoven University of Technology

Eindhoven, Netherlands

a.j.wemmenhove@tue.nl

Maurice Poot

Eindhoven University of Technology

Eindhoven, Netherlands

m.m.poot@tue.nl

Jim Portegies

Eindhoven University of Technology

Eindhoven, Netherlands

j.w.portegies@tue.nl

ABSTRACT
In pursuit of enhanced multi-agent collaboration, we analyze sev-

eral on-policy deep reinforcement learning algorithms in the re-

cently published Hanabi benchmark. Our research suggests a per-

haps counter-intuitive finding, where Proximal Policy Optimization

(PPO) is outperformed by Vanilla Policy Gradient over multiple

random seeds in a simplified environment of the multi-agent co-

operative card game. In our analysis of this behavior we look into

Hanabi-specific metrics and hypothesize a reason for PPO’s plateau.

In addition, we provide proofs for the maximum length of a perfect

game (71 turns) and any game (89 turns). Our code can be found at:

https://github.com/bramgrooten/DeepRL-for-Hanabi.

KEYWORDS
Deep reinforcement learning, Hanabi, Vanilla Policy Gradient, PPO,

multi-agent collaboration

1 INTRODUCTION
Many real world scenarios such as autonomous driving require

multi-agent collaboration through partial observability. A new

benchmark was recently developed by a group of researchers from

DeepMind, who coined the Hanabi Challenge as a new frontier

for AI [3]. Reinforcement learning approaches that have been ap-

plied to this benchmark so far include asynchronous advantage

actor-critic (A3C) algorithms [3], deep Q-networks (DQNs) [12],

and search methods [13]. We missed the application of standard

on-policy algorithms such as Vanilla Policy Gradient (VPG) and

Proximal Policy Optimization (PPO), so we were motivated to dis-

cover whether thesemethods performwell in this new environment.

We run experiments to compare the algorithms, and analyze the

behavior of the agents. Our main contributions are:

I. We define a simplified version of Hanabi and apply three deep

reinforcement learning algorithms to it, with VPG being the

unexpected winner.

II. We analyze the agents’ performance through metrics corre-

sponding specifically to Hanabi, and hypothesize why PPO

seems to hit a plateau.

Proc. of the Adaptive and Learning Agents Workshop (ALA 2022), Cruz, Hayes, Silva,
Santos (eds.), May 9-10, 2022, Online, https://ala2022.github.io/ . 2022.

Figure 1: Example of a game state. Image adjusted from [3].

III. We provide proofs for the maximum length of a regular and a

perfect Hanabi game, being 89 and 71 turns respectively. The

latter number contradicts earlier literature.

We will first explain the rules of Hanabi, after which we go into

related work in Section 2. The setup and results of our experiments

are shown in Section 3. Section 4 analyzes the outcomes while

diving into Hanabi-specific properties, such as the game length.

Lastly, Section 5 concludes the paper.

Hanabi
We briefly explain the rules of Hanabi. The card game can be played

with 2 to 5 players who collaborate to achieve the highest score

possible. The twist is that you cannot see your own cards, but you

do see all the other player’s cards. By giving each other (restricted)

hints players can deal with this imperfect information.

The goal of the game is to form stacks of cards, one for each

of the five colors, see Figure 1. Every card has a color and a rank

between 1 and 5. A stack must begin with a rank 1 card, and build

all the way up to 5. If all stacks (also called fireworks1) have been
completed, the perfect score of 25 has been reached.

Players start with 5 cards in their hand (or 4 when playing with

four or five players). During her turn, a player may do one of three

things: give a hint to another player, play a card, or discard a card.

Every time a card is played or discarded, the player gets a new card

from the deck.

To give a hint, a player must choose one rank or color and point

at all the cards with this property in an other player’s hand. This

can be done as long as there are hint tokens available, the game

1Hanabi is actually Japanese for fireworks.

https://github.com/bramgrooten/DeepRL-for-Hanabi
https://ala2022.github.io/

starts with just 8. Fortunately, if a player discards a card the group

retrieves one hint token.
2
Half of the 50 cards in total are duplicates

3
,

so discarding may happen a lot. One hint token is also retrieved

when the stack of a certain color is completed.

When a player is confident enough that one of her cards will fit

on top of a stack, she can play it. If placed successfully the score

goes up by one, otherwise the card will be moved to the discard

pile and the group loses one life token. If all 3 life tokens are lost,

the game ends and the score goes down to 0. The game also ends if

the perfect score has been reached, or when the deck is empty. In

the latter case each player gets one more turn, including the one

who emptied the deck.

2 RELATEDWORK
The challenge paper by Bard et al. [3] served as a starting point

for our research. It provides the Hanabi Learning Environment
4

which we build upon in our implementations. Furthermore, they

defined two separate research domains called self-play and ad-hoc.
In self-play an agent only plays with copies of itself, while in ad-

hoc agents must be able to play with a wide range of other agents

or even human players. Most of the current literature focuses on

self-play, with a couple of exceptions [4, 6]. Our research also stays

in the self-play domain.

Another important distinction is the approach used to program

an agent for Hanabi. We separate them into the categories: with

or without machine learning. We call the agents that do not use

any learning method rule-based, and it turns out that they are still

outperforming the learning agents in many cases. In our previous

work [10] we presented an overview of the state-of-the-art of both

approaches, which we will briefly summarize and update here.

2.1 Rule-based agents
Within the rule-based regime there again exist two categories: bots

that are based on human Hanabi conventions [7], and bots that

use hat-guessing strategies [5]. Both approaches can achieve quite

decent scores in self-play, but not in ad-hoc play.

The hat-guessingmethod is based on amathematical gamewhere

players have to guess the color of their own hat. In Hanabi players

do not know the color of their own cards, so this called for similar

strategies. By using modular arithmetic, a lot of information can

be given with a single hint, provided that all players follow the

same algorithm. The state-of-the-art in self-play (for 3 or more

players) is held by a bot that uses this hat-guessing strategy, called

WTFWThat [22]. Its scores have been improved later on by the

use of search methods [13]. Some of the best bots that use human

conventions include SmartBot [16] and FireFlower [21].

2.2 Learning agents
In their challenge paper, Bard et al. [3] apply two existing ap-

proaches of deep reinforcement learning to their Hanabi Learning

Environment. The Rainbow agent [11] scores an average of about

18.2 out of 25 in self-play,
5
while the Actor-Critic-Hanabi-Agent

2
Except if there are already 8 hint tokens available, then discarding is not allowed.

3
To be exact: there are three duplicates of rank 1 cards, two duplicates of cards with

ranks 2, 3, or 4, and rank 5 cards are unique.

4
See https://github.com/deepmind/hanabi-learning-environment.

5
Average taken over all possible number of players (2, 3, 4, and 5).

Table 1: The state-of-the-art Hanabi agent in self-play for
each number of players, to the best of our knowledge. The
names in parentheses indicate that these agents have been
improved by search methods (RL Search [8], SPARTA [13]),
which increased their original scores. The table includes aver-
age scores ± standard error of the mean, and the percentage
of perfect games. Data is taken from [8, 13].

Players Agent Score

2 Q-learning(+RL Search)

24.62 ± 0.03

75.9%

3 WTFWThat(+SPARTA)

24.83 ± 0.006

85.9%

4 WTFWThat(+SPARTA)

24.96 ± 0.003

96.4%

5 WTFWThat(+SPARTA)

24.94 ± 0.004

95.5%

(ACHA) which Bard et al. based on A3C [14], performed better: 20.3

on average. In the ad-hoc domain both agents have scores close to

zero.

In 2018 the Bayesian Action Decoder (BAD) [9] set a record for

2-player games of Hanabi. The next year, Hu & Foerster improved

the bot with the Simplified Action Decoder (SAD) [12], which dras-

tically increased the scores among learned policies in self-play for

any number of players. The state-of-the-art for 3 to 5 players is

still held by the rule-based bot WTFWThat [22], but reinforcement

learning is ahead in the 2-player domain, see Table 1.

The SAD agent provided a simple, yet elegant solution to the

problem of updating beliefs during the exploration phase. In this

phase many random actions are taken, which can give misleading

information about the state of the game to other agents. Thus, only

during training, the agents were allowed to communicate their

preferred action, while performing a different random action. This

simplified the Bayesian reasoning process.

The scores of SAD were further improved through the tabular

search method SPARTA [13]. The agents start off with a blueprint

policy, which can be any strategy, also a learned one. In every step of

the game, the agents perform a search for the best action usingmany

Monte Carlo rollouts. This action can deviate from the blueprint

policy. To make sure that the other agents do not misinterpret

the action taken, all agents redo the search of every other agent

themselves, using the same random seed (which is shared before the

game starts). Agents now know whether an action came from the

blueprint policy or from search. This improved the state-of-the-art

in self-play for every number of players. Just last year, the same

research group increased the 2-player score slightly further by a

more efficient search method called RL Search [8].

The popular on-policy deep reinforcement learning algorithm

PPO had not been applied to Hanabi yet until last year, when Yu et

al. [23] adjusted the method to MAPPO (Multi-Agent PPO) to make

it more applicable to cooperative games. In the 2-player self-play

domain their scores are comparable to, but slightly lower than the

state-of-the-art. We use the standard, single-agent version of PPO

in this research.

https://github.com/deepmind/hanabi-learning-environment

3 EXPERIMENTS
Reading through the literature onHanabi, wemissed the application

of the standard, or ‘vanilla’, policy gradient algorithm. We were

motivated to discover howwell it would perform on the newHanabi

benchmark against PPO [18], so we setup a few experiments.

3.1 Setup
We compare PPO

6
with the actor-critic algorithm Vanilla Policy

Gradient (VPG), as well as an even simpler algorithm that only has

a policy network (actor) and no value network (critic), which we

call Simple Policy Gradient (SPG). Both SPG and VPG are based on

the classic REINFORCE algorithm [20]. Our implementations are

built upon the SpinningUp documentation by OpenAI [1].

We use the simplified or ‘cheat’ version of Hanabi, which means

that players are now allowed to view their own cards. This greatly

reduces the complexity of the game, although it has been proven

that the problem of finding a winning play sequence is still NP-

complete in this case [2]. If we consider the closed deck of cards

to be part of the transition function of a Markov decision process

(MDP) instead of being part of the state, then the game has now

become fully observable. This can be done by viewing the shuffled

deck as a uniformly random distribution over all cards that are left.

We have reduced the decentralized partially observable MDP (Dec-

POMDP) of Hanabi to a multi-agent or decentralized MDP (MMDP

or Dec-MDP). See Appendix A for an overview of the different

mathematical frameworks.

For us it means that searching through the action space becomes

much more manageable, as our policy networks only need 11 out-

put neurons. We stick to the two-player version of Hanabi, so each

player has 5 cards it can play or discard, giving 10 actions. We in-

clude one more action neuron which produces a random hint when

selected. Sharing information in simplified Hanabi is superfluous,

but the action is still necessary to lower the hint token budget such

that discarding is allowed.
7

We will now go into some implementation details. Our policy

network and value network both receive the state of the game

as input, which is encoded into a binary vector of length 136 in

the following way. First, the firework stacks are represented in

thermometer style, with five binary numbers for each color. For

example, [1, 1, 1, 0, 0] means that the firework of a certain color is

at rank 3. For each of the player’s own cards we include a one-hot

encoding for the color as well as the rank. The Y4 card for instance

is represented by the piece [0, 1, 0, 0, 0, 0, 0, 0, 1, 0]. The discard pile
is included with 10 binary values per color, then grouped by rank.

Thus, [1, 1, 0, 0, 0, 1, 0, 0, 0, 0] means that two rank 1 cards and

one rank 3 card of a certain color have been discarded. Lastly, the

vector pieces [1, 1, 0] and [1, 1, 1, 1, 1, 0, 0, 0] indicate that there are
2 life tokens and 5 hint tokens left. The total length of this state

encoding becomes 5 · 5 + 5 · 10 + 5 · 10 + 3 + 8 = 136.

All networks have 3 hidden layers of differing sizes, with Tanh

activation functions in between. The policy network outputs a prob-

ability distribution over the 11 possible actions through a softmax

activation. The value network (VPG and PPO only) has an output

layer with a single neuron and no activation, to be able to estimate

6
Specifically, PPO-Clip.

7
The random hint action can also be used to ‘pass’ the turn to the other player.

the true state value function of the current policy: 𝑣𝜋𝜽 (𝑠). We use

the Adam optimizer with a learning rate of 3 · 10−4 for both net-

works. The loss function for the value network is mean squared

error, while the objective function for the policy network depends

on the algorithm. For SPG we use:

E𝜋

[∞∑︁
𝑡=0

∇𝜽 log𝜋𝜽 (𝐴𝑡 | 𝑆𝑡) · 𝑞𝜋𝜽 (𝑆𝑡 , 𝐴𝑡)
]

as the policy gradient
8
. Here 𝜋𝜽 (𝑎 | 𝑠) denotes the probability of

selecting action 𝑎 in state 𝑠 with our current policy 𝜋 parameterized

by 𝜽 . Capital letters stand for random variables. Lastly, 𝑞𝜋𝜽 (𝑠, 𝑎) is
the true state-action value function of the current policy, which the

algorithm estimates by running about 10 episodes of Hanabi. For

VPG we have:

E𝜋

[∞∑︁
𝑡=0

∇𝜽 log𝜋𝜽 (𝐴𝑡 | 𝑆𝑡) · 𝐴𝜋𝜽
𝑡

]
where 𝐴

𝜋𝜽
𝑡 , the advantage function, is defined as

𝐴
𝜋𝜽
𝑡 = 𝐴𝜋𝜽 (𝑆𝑡 , 𝐴𝑡) = 𝑞𝜋𝜽 (𝑆𝑡 , 𝐴𝑡) − 𝑣𝜋𝜽 (𝑆𝑡) .

Weuse generalized advantage estimation (GAE) [17] to approximate

this quantity. For PPO a totally different expression is maximized:

E𝜋

[
min

(
𝑟𝑡 (𝜽)𝐴

𝜋𝜽
old

𝑡 , clip (𝑟𝑡 (𝜽), 1 − 𝜀, 1 + 𝜀)𝐴𝜋𝜽
old

𝑡

)]
where

𝑟𝑡 (𝜽) =
𝜋𝜽 (𝐴𝑡 | 𝑆𝑡)
𝜋𝜽old (𝐴𝑡 | 𝑆𝑡)

and clip(𝑥, 𝑎, 𝑏) =


𝑏 if 𝑥 > 𝑏

𝑥 if 𝑎 ≤ 𝑥 ≤ 𝑏

𝑎 if 𝑥 < 𝑎

.

We update the policy network five times per epoch in PPO, such

that the clipping operation has effect.
9
Each epoch collects a batch

of about 1000 environment steps. However, we let the last episode

of a batch finish so every epoch has slightly more than 1000 en-

vironment steps. To make sure that our policies play at least 10

episodes per epoch we determined the maximum length of a Hanabi

game, shown in Section 4.2.

We performed a small hyperparameter search by trying out dif-

ferent network sizes, state encodings, and reward shaping systems.

The final settings that we used in our experiments can be found in

Table 8 of Appendix B.

3.2 Results
To our surprise we notice that PPO is not able to beat the perfor-

mance of VPG, as shown in Figure 2. The five runs of PPO all hit a

plateau at different levels around an average score just above 20,

instead of increasing towards the perfect score of 25. VPG continues

to increase slowly and reaches an average score of 23.72 after 2.5

million epochs. Even SPG nears the performance of PPO eventually,

albeit at a much slower learning pace.

One of the advantages of PPO in our experiments is that it learns

much quicker in the beginning. In Figure 3 we again show the

learning curves, but only until 250,000 epochs. It takes VPG and

8
We are aware that Nota and Thomas [15] have proven this expression to be incorrect,

as it should include a discount factor term: 𝛾𝑡 . The expression has however been used

successfully in practice, so we stick with it.

9
In the first update iteration of each epoch, we have 𝜋𝜽 = 𝜋𝜽

old
so no clipping occurs.

0.0 0.5 1.0 1.5 2.0 2.5
epoch 1e6

0

5

10

15

20

25

sc
or

e

SPG VPG PPO

Figure 2: Complete learning curves of the algorithms. The
curves show the average of 5 distinct random seeds, with the
standard deviation faded above and below. A plot with a sep-
arate line for each seed is shown in Figure 11 of Appendix C.

0.0 0.5 1.0 1.5 2.0 2.5
epoch 1e5

0

5

10

15

20

25

sc
or

e

SPG VPG PPO

Figure 3: Comparing the scores after just 10% of training.
PPO is the quickest to learn how to increase the score above
0, but is surpassed by VPG later on.

SPG quite a lot longer to learn how to increase the score above

0. We noticed that in Hanabi this means an agent needs to learn

how to retain at least one life token. In Section 4 we analyze this

behavior further.

We tested the final algorithms for 1000 episodes per random

seed. The results of these games are shown in Figure 4 and Table 2.

VPG scores 44.5% perfect games, while PPO reaches only 13.5%.

Notice that all algorithms still have some failed games of zero

points, although VPG almost eliminated them. In simplified Hanabi

it should be much easier to reach a perfect score. Note however,

0 5 10 15 20 25
score

0.0

0.1

0.2

0.3

0.4

pr
op

or
tio

n
of

 g
am

es

SPG VPG PPO

Figure 4: Testing 5000 games per algorithm (1000 for each
random seed) after 2.5 million epochs of training.

Table 2: Performance metrics of 5000 test games after 2.5
million epochs of training. The table includes average scores
± standard error of the mean, and the percentage of perfect
games. The environment is 2-player simplified Hanabi in the
self-play domain.

SPG VPG PPO

19.09 ± 0.06

0.7%

23.72 ± 0.04

44.5%

20.66 ± 0.06

13.5%

such a winning play sequence does not always exist
10

[19] so we

cannot expect a 100% perfect game proportion.

4 ANALYSIS
In this Section we inspect the performance of our algorithms by

looking into a few interesting metrics that we recorded during

training, such that we can hypothesize why PPO scored worse than

VPG. We also analyze Hanabi specifically by providing proofs of

the maximum length of a regular and a perfect game.

4.1 Performance analysis
The following metrics give a better impression of how our algo-

rithms are learning. Let us discuss them one by one.

Life tokens.We keep track of how many life tokens were left

over at the end of an episode during training. As we know from

the rules of Hanabi, the score decreases back to 0 once all three

life tokens are lost.
11

As we see in Figure 3, the algorithms need

some time to learn that at least one life token should be left over

to maintain its score. In Figure 5 we see that the number of life

tokens shoots up at the same time as the scores go up. Later on, the

networks learn that it is not necessary to retain many life tokens,

just one is enough. See Appendix C for figures in this section where

the epoch axis goes until the end of training.

10
Imagine the situation where all the rank 1 cards are on the bottom of the deck.

11
There is a variant of Hanabi where the score remains the same, but we do not use it.

0.0 0.5 1.0 1.5 2.0 2.5
epoch 1e5

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

lif
e

to
ke

ns

SPG VPG PPO

Figure 5: Average number of life tokens left at the end of an
episode, shown for the first 10% of training. The algorithms
quickly discover that at least one is needed to get a positive
score.

0.0 0.2 0.4 0.6 0.8 1.0
epoch 1e5

0

5

10

15

20
SPG VPG PPO

firework
score
firework
score

Figure 6: Development of fireworks and scores during train-
ing. We stop the graph after just 100,000 epochs for clarity.

Fireworks. To enable us to see whether an algorithm is actu-

ally making progress in this first phase, where all life tokens are

constantly lost, we have to look at a different metric than the score.

We define the fireworks as the total number of successfully played

cards at the end of an episode. If the agents retain at least one life

token, then this value equals the score. But when they do not, we

can still view their progress with the fireworks metric.

In Figure 6 we show that our agents are actually learning to play

cards successfully before they start to retain some life tokens. A

fireworks value just above 5 is quickly reached by all three algo-

rithms. We think this is because five rank 1 cards can be played

immediately, as long as they have five distinct colors. Playing higher

0.0 0.5 1.0 1.5 2.0 2.5
epoch 1e5

0.0

0.1

0.2

0.3

0.4

0.5

Average policy probabilities
play
discard
hint

Figure 7: Average policy of our five VPG agents during the
first 10% of training. Similar graphs for SPG and PPO are
shown in Appendix C.

ranked cards is more difficult. You must meet the extra restriction

that a card with the prior rank should be on the stack already.

For each algorithm we see that the moment when the fireworks

start to increase far above 5 is simultaneous with the moment that

scores go above 0 (life tokens are retained). It seems that in Hanabi

learning how to play cards with a rank higher than 1 is the same

skill as learning how to retain life tokens, which corresponds to

our intuition.

Action probabilities. To view the development of the action

selection probabilities of each agent throughout their training pro-

cess, we keep track of the average output of the policy networks.

In Figure 7 we combined the 5 play actions into one category, and

did the same with the 5 discard actions. In the very beginning the

agents play a lot of (bad) cards, losing all of their life tokens, while

after 50,000 epochs the probabilities have completely switched. The

agent becomes ‘scared’ to play a card, wanting to retain life to-

kens. Later on the probability of playing starts to increase again,

eventually becoming the preferred action, see Figure 19 in Appen-

dix C. Increasing the probability of playing cards is something we

encouraged with reward shaping. See Appendix B for our specific

rewards.

Positional bias.We want to see whether all card positions in

an agents hand are used equally often. For this we plot a histogram

representing the policy of one of our VPG
12

agents in Figure 8. It is

visible that this agent has a substantial bias towards playing from

card position 4, which is the newest card. For simplified Hanabi

this makes sense: if you receive a playable card, why not play it

immediately?

We want to quantify this positional bias such that we can com-

pare the algorithms. The value should track how large the difference

is in the policy’s preference for a particular card position relative

12
Histograms for SPG and PPO are in Appendix C.

d0 d1 d2 d3 d4 p0 p1 p2 p3 p4 h0.00

0.05

0.10

0.15

0.20

0.25

0.30

Average policy probabilities

Figure 8: Average action selection probabilities of one VPG
run during the last epoch (about 1000 actions). The labels are:
𝑑 for discard, 𝑝 for play, and ℎ for giving a random hint. The
numbers next to 𝑑 or 𝑝 indicate from which index (position
in the agent’s hand) a card is chosen for that action. New
cards always enter the hand at index 4, other cards slide to
the left (one index lower) if necessary.

to the others. We define the positional bias as:

𝑏𝑔 =

max𝑖, 𝑗 ∈A𝑔

(��𝑝𝑖 − 𝑝 𝑗
��)∑

𝑘∈A𝑔
𝑝𝑘

where 𝑔 can refer to any subset of actions A𝑔 ⊆ A and 𝑝𝑖 is the

average probability of selecting action 𝑖 under policy 𝜋 given the

visited states of the current batch: 𝑝𝑖 =
1

|𝐵 |
∑
𝑠∈𝐵 𝜋 (𝑖 |𝑠). We track

the positional bias of two subsets: the five play actions and the five

discard actions.

In words, the positional bias is the greatest distance between

two action probabilities within the same subset of actions. On top

of that, we rescale this distance to a probability distribution on

this specific subset of actions only, to be able to fairly compare

the play bias with the discard bias, even if for example the agent

discards much more than it plays. The positional bias can take on

values between 0 and 1; 0 if the probabilities are all equal, 1 if all

the probability mass is on one action.

The different values of our agents are given in Table 3 and plotted

throughout training in Figure 9. We see that the best performing

agent, VPG, has the lowest positional bias in both categories. Also

noteworthy: the play bias is higher than the discard bias for both

policy gradient algorithms. Apparently these agents spread out

their discard actions more than their play actions, while PPO does

not.

At first thought it might seem best to minimize this bias. How-

ever, when looking at human play, a certain positional bias is often

present as well, for example when applying the popular ‘chop’ con-

vention [7]. It says that if you choose to discard, always discard your

oldest card which has not received any hints. Unfortunately we

cannot say whether we noticed this behavior in our agents, because

0.0 0.5 1.0 1.5 2.0 2.5
epoch 1e6

0.0

0.1

0.2

0.3

0.4

0.5

0.6

pl
ay

 b
ia

s

SPG VPG PPO

Figure 9: Positional bias of the play actions during training.
The development of discard bias is shown in Appendix C.

Table 3: Average positional bias of our agents after 2.5million
epochs of training.

play bias discard bias

SPG 0.44 0.22

VPG 0.31 0.16

PPO 0.33 0.36

in our simplified version of Hanabi the agents only give random

hints. It would be interesting to see if state-of-the-art Hanabi agents

have a high or low positional bias. Our hypothesis is that there

is a substantial positional bias, given that for example the BAD
13

agent seems to play quite human-like according to their anecdotal

analysis [9].

Entropy. In some of our preliminary experiments we noticed

that our agent converged towards near-deterministic policies rather

quickly, even though these policies did not perform well yet. To

stimulate more exploration we included an entropy term in the

objective function of our policies for all three algorithms, as is

regularly done in reinforcement learning and also mentioned in

the PPO paper [18]. The new objective function that our policy

network’s optimizer tries to maximize becomes:

𝐽new (𝜋𝜽) = 𝐽
old

(𝜋𝜽) + 𝛽 · E𝜋 [𝐻𝜋𝜽 (𝑆𝑡)]

where 𝐻 denotes the information theoretic definition of entropy:

𝐻𝜋𝜽 (𝑠) = −
∑︁
𝑎∈A

𝜋𝜽 (𝑎 |𝑠) log𝜋𝜽 (𝑎 |𝑠)

and 𝛽 is the entropy coefficient, which we set to 0.01 after some

fine-tuning.

During training we kept track of the average entropy of our

policies, shown in Figure 10. It is noteworthy that PPO has the

lowest entropy of all, but does not outperform the others. Our

hypothesis is that it has a tendency to get stuck in local minima due

13
For Bayesian Action Decoder, see Section 2.

0.0 0.5 1.0 1.5 2.0 2.5
epoch 1e6

0.0

0.2

0.4

0.6

0.8

1.0

1.2

en
tro

py

SPG VPG PPO

Figure 10: Average entropy of the policies during training.

to its clipping operation. By clipping the gradient’s elements for

some parameters, PPO perhaps limits its own learning potential.

4.2 Game length
To have our algorithms play at least 10 episodes per epoch, we

needed to know the maximum length of a Hanabi game. We notice

that our algorithms take an average of 64.1 steps to complete a

Hanabi game at the end of training. The maximum length out of

the final 1000 test games that each of our agents played was 72

turns. The real maximum is actually quite a bit higher.

Proposition 4.1. The maximum length of a Hanabi game is 89
turns.

Proof. This proof consists of two parts. First we will show that

there exists a Hanabi game of length 89. In Part 2 we prove that no

Hanabi game can have a higher number of turns than 89.

Part 1. Take a Hanabi game of two players. At the start, each

player has 5 cards so there are 40 cards left in the deck. Suppose the

players start the game by giving hints until all information tokens

are gone. This takes 8 turns. Then they start a pattern by alternating

one discard action and one hint action, continuing until the deck is

empty. After the last discard action (which empties the deck) there

have been 40 discard actions, with 39 hints in between. Each player

gets one more turn, in which they could discard another card. This

gives a total of 8 + 40 + 39 + 2 = 89 turns.

Part 2. In this part we define a value Σ𝑡 for a Hanabi game. We

will show that it is impossible for this value to increase during the

game (Σ𝑡+1 ≤ Σ𝑡 ∀𝑡) from which the maximum number of turns

follows. We first define a few values:

𝑡 total number of turns taken

𝑑𝑡 deck size after turn 𝑡

𝑚𝑡 hint tokens left over after turn 𝑡

We further define 𝑐𝑡 , which stands for the number of hint tokens

left over after turn 𝑡 , but with the restriction that these tokens can

Table 4: Effect of actions on the different values.
The three exceptions at the bottom have priority over the
three standard actions at the top.

action 𝑎𝑡 Δ𝑡 Δ𝑐𝑡 Δ𝑑𝑡 Δ𝑢𝑡 Δ𝑝𝑡 ΔΣ𝑡
play +1 0 −1 −1 0 −1
discard +1 +1 −1 −1 0 0

hint +1 −1 0 0 0 0

play a rank 5 successfully * +1 +1 −1 −1 0 0

𝑎𝑡 empties the deck +1 −𝑐𝑡−1 −1 0 0 ≤ 0

𝑎𝑡 while the deck is empty +1 0 0 0 −1 0

* Only if𝑑𝑡−1 > 1 (otherwise it counts as an action that empties the deck or happens

while the deck is empty) and𝑚𝑡−1 < 8 (otherwise it counts as a normal play action,

since we do not gain a hint token with a rank 5 card if the hint budget is already full).

still be used before the deck is empty:

𝑐𝑡 =

{
𝑚𝑡 if 𝑑𝑡 > 0,

0 if 𝑑𝑡 = 0.
(1)

We add the restriction to 𝑐𝑡 here to distinguish between the situa-

tions before and after the deck has been emptied. Once the deck

is empty, hint actions cannot be used to stall the game anymore.

When 𝑑𝑡 = 0, there is a fixed maximum number of turns left, which

we denote by 𝑝𝑡 (initially equal to the number of players 𝑝).

We define one more value:𝑢𝑡 , which we call the undisclosed hints.
This value counts the number of cards that can still retrieve a hint

token which can be used before the deck is empty. We have:

𝑢𝑡 =

{
𝑑𝑡 − 1 if 𝑑𝑡 > 0,

0 if 𝑑𝑡 = 0.
(2)

Every card that is played or discarded can retrieve a hint token. This

can be done 𝑑0 times in total and then the deck is empty. However,

if the last card that empties the deck retrieves a hint token, this

token is only usable after the deck is empty. Thus, the value of 𝑢𝑡
is always one less than the current deck size 𝑑𝑡 (except when the

deck is already empty).

Our Σ𝑡 is now defined as the sum over these previous values:

Σ𝑡 = 𝑡 + 𝑐𝑡 + 𝑑𝑡 + 𝑢𝑡 + 𝑝𝑡 (3)

and can be interpreted as the maximum possible number of total

turns that is still reachable, after time step 𝑡 .

We will now look into the effect of different actions on the values

of 𝑡 , 𝑐𝑡 , 𝑑𝑡 , 𝑢𝑡 , 𝑝𝑡 , and thus Σ𝑡 . A player can choose three actions

in each turn: play, discard, or hint. The effect of each action on the

different values is summarized in Table 4.

We see that the value of Σ𝑡 can never increase during a game.

Furthermore, the values 𝑡 , 𝑑𝑡 , 𝑝𝑡 , and 𝑚𝑡 must always stay non-

negative according to the rules of Hanabi. This also implies that the

values of 𝑐𝑡 and 𝑢𝑡 must always be non-negative, since𝑚𝑡 and 𝑑𝑡
in (1) and (2) are non-negative and integer. With this information,

and from (3), we can conclude that we must always have 𝑡 ≤ Σ𝑡 .
Thus, the maximum value that 𝑡 could possibly reach is equal

to the value of Σ0 (before any action has been taken). We compute

these starting values for every possible number of players 𝑝:

Table 6: Maximum potential number of turns.

players maximum value of Σ𝑡 at end of perfect game

2 89 − (25 − (5 + 2)) = 71

3 80 − (25 − (5 + 3)) = 63

4 79 − (25 − (5 + 4)) = 63

5 72 − (25 − (5 + 5)) = 57

Table 5: Starting values of Σ𝑡 .

𝑝 2 3 4 5

Σ0 89 80 79 72

As shown in Part 1, there is a particular sequence of actions in a

Hanabi game, that gives the following outcome:

𝑡 𝑐𝑡 𝑑𝑡 𝑢𝑡 𝑝𝑡 Σ𝑡
start 0 8 40 39 2 89

end 89 0 0 0 0 89

Therefore, the maximum length of a Hanabi game is 89 turns.

As demonstrated in part 1 of the proof of Proposition 4.1 this

maximum length can be reached if many cards are discarded and

none are played. We are particularly interested in games where the

algorithms perform well, i.e. score 25 points. The maximum length

of a so-called perfect game is 71. We found a different number (65)

in the literature [9], but this is incorrect.

Proposition 4.2. The maximum length of a perfect Hanabi game
is 71 turns.

Proof. This proof also consists of two parts. First we will show

that there exists a perfect Hanabi game of length 71. Part 2 proves

that no perfect Hanabi game can have a higher number of turns

than 71.

Part 1. Again, take a two-player Hanabi game. The initial deck

size is 40. The players start out by spending their 8 hints. Then

they play 22 cards successfully, finishing four fireworks. This gives

them 4 extra hints, which they use immediately. The players now

start a pattern of first discarding one card, and then giving one hint.

This can be done 17 times. Then 1 card is played successfully that

empties the deck. Both players have one more turn, in which they

successfully play the rank 4 and 5 cards of the remaining firework.

The number of turns is 8 + 22 + 4 + 17 · 2 + 1 + 2 = 71.

Part 2.We use the same values as defined in part 2 of the proof

of Proposition 4.1. We will show that the value of Σ𝑡 must decrease

to at most 71 for a game to finish in a perfect score.

To reach this score of 25, we need at least 25 play actions of

course. In Table 4 it is shown that every play action decreases Σ𝑡
by 1, aside from a few exceptions. These exceptions are:

(1.) Play a rank 5 card successfully when the number of hint tokens

is less than 8 and the deck is not empty.

(2.) Any action that empties the deck when the number of hint

tokens is 0.

(3.) Any action when the deck is empty.

These exceptions can all be play actions that do not decrease the

value of Σ𝑡 . Let’s try to keep Σ𝑡 as high as possible (as it represents

the maximum number of turns we can reach) while still scoring

25 points. Thus, we need to make sure as many play actions as

possible are classified as one of the three exceptions.

A perfect game can end before the deck is empty, on the deck-

emptying move, or when it is already empty. Let us investigate the

maximum number of exception play moves in all cases.

If the game ends,

• before the deck is empty: we can use exception (1.) five times,

• on the deck-emptying move: we can use (1.) four times and

(2.) once,

• when the deck is empty: we can use (1.) four times, (2.)

once, and (3.) 𝑝 number of times. Recall that 𝑝 stands for the

number of players.

From all these cases, we see that the maximum possible number

of exception play moves is 5 + 𝑝 . In a two player game, this would

mean that 7 play moves do not decrease Σ𝑡 , while the other 25−7 =

18 do. The maximum number of turns in that case is 89 − 18 = 71.

Recall that 89 is the starting value of Σ𝑡 in the two player case, see

Table 5.

An overview of the maximum potential number of turns for

different values of 𝑝 is shown in Table 6. We see that in the two

player case this value is the highest, meaning that no perfect Hanabi

game can possibly be longer than 71 turns. In Part 1 we have shown

that a perfect game of this length is indeed possible. Therefore, the

maximum length of a perfect Hanabi game is 71 turns.

5 CONCLUSION
We have applied several actor-critic algorithms to Hanabi, a rel-

atively new benchmark for collaborative multi-agent deep rein-

forcement learning. Using a simplified version of the game, we

notice in our experiments that the Vanilla Policy Gradient (VPG)

algorithm outperforms Proximal Policy Optimization (PPO) over

multiple random seeds. In our analysis we see that although PPO

learns quicker in the beginning, it eventually hits a plateau giving

VPG the chance to surpass it. We hypothesize that PPO’s clipping

operation might be a reason for getting stuck in local minima. Our

small hyperparameter search is a limitation of this study, further

research would be necessary to confirm the findings.

ACKNOWLEDGMENTS
Thank you to Decebal Constantin Mocanu for his ongoing guidance,

and to Qiao Xiao and Mickey Beurskens for reviewing the paper.

Also, much graditude goes to Nolan Bard for helping us set up his

team’s Hanabi Learning Environment.

APPENDIX
Please find our Appendices online.

14

14
https://github.com/bramgrooten/DeepRL-for-Hanabi/blob/

59fbbb29da363b9286c017426dc6937f6cbe2b4a/Hanabi_paper_with_appendix.pdf

https://github.com/bramgrooten/DeepRL-for-Hanabi/blob/59fbbb29da363b9286c017426dc6937f6cbe2b4a/Hanabi_paper_with_appendix.pdf
https://github.com/bramgrooten/DeepRL-for-Hanabi/blob/59fbbb29da363b9286c017426dc6937f6cbe2b4a/Hanabi_paper_with_appendix.pdf

REFERENCES
[1] Joshua Achiam. 2018. Spinning Up in Deep Reinforcement Learning. (2018).

https://spinningup.openai.com/.

[2] Jean-François Baffier, Man-Kwun Chiu, Yago Diez, Matias Korman, Valia Mitsou,

André van Renssen, Marcel Roeloffzen, and Yushi Uno. 2016. Hanabi is NP-

complete, Even for Cheaters who Look at Their Cards. CoRR abs/1603.01911

(2016). arXiv:1603.01911 http://arxiv.org/abs/1603.01911

[3] Nolan Bard, Jakob Foerster, Sarath Chandar, Neil Burch, Marc Lanctot, H. Francis

Song, Emilio Parisotto, Vincent Dumoulin, Subhodeep Moitra, Edward Hughes,

Iain Dunning, Shibl Mourad, Hugo Larochelle, Marc Bellemare, and Michael

Bowling. 2020. The Hanabi challenge: A new frontier for AI research. Artificial
Intelligence 280 (2020), 103216. https://doi.org/10.1016/j.artint.2019.103216

[4] Rodrigo Canaan, Julian Togelius, Andy Nealen, and Stefan Menzel. 2019. Di-

verse Agents for Ad-Hoc Cooperation in Hanabi. CoRR abs/1907.03840 (2019).

arXiv:1907.03840 http://arxiv.org/abs/1907.03840

[5] Christopher Cox, Jessica de Silva, Philip Deorsey, Franklin Kenter, Troy Retter,

and Josh Tobin. 2015. How to Make the Perfect Fireworks Display: Two Strategies

for Hanabi. Mathematics Magazine 88, 5 (2015), 323–336. http://www.jstor.org/

stable/10.4169/math.mag.88.5.323

[6] Markus Eger, Chris Martens, and Marcela Alfaro Córdoba. 2017. An Intentional

AI for Hanabi. In 2017 IEEE Conf. on Computational Intelligence and Games (CIG).
IEEE, 68–75.

[7] James Nesta et al. [n.d.]. Hanabi Conventions for The Hyphen-ated Group. https:
//github.com/Zamiell/hanabi-conventions. Accessed: 2020-09-16.

[8] Arnaud Fickinger, Hengyuan Hu, Brandon Amos, Stuart Russell, and Noam

Brown. 2021. Scalable Online Planning via Reinforcement Learning Fine-Tuning.

Advances in Neural Information Processing Systems 34 (2021).
[9] Jakob Foerster, H. Francis Song, Edward Hughes, Neil Burch, Iain Dunning, Shi-

mon Whiteson, Matthew Botvinick, and Michael Bowling. 2018. Bayesian Action

Decoder for Deep Multi-Agent Reinforcement Learning. CoRR abs/1811.01458

(2018). arXiv:1811.01458 http://arxiv.org/abs/1811.01458

[10] Bram Grooten. 2021. Deep Reinforcement Learning for the cooperative
card game Hanabi. Master’s thesis. Eindhoven University of Technol-

ogy. https://research.tue.nl/en/studentTheses/deep-reinforcement-learning-

for-the-cooperative-card-game-hanabi.

[11] Matteo Hessel, Joseph Modayil, Hado van Hasselt, Tom Schaul, Georg Ostro-

vski, Will Dabney, Daniel Horgan, Bilal Piot, Mohammad Gheshlaghi Azar,

and David Silver. 2017. Rainbow: Combining Improvements in Deep Rein-

forcement Learning. CoRR abs/1710.02298 (2017). arXiv:1710.02298 http:

//arxiv.org/abs/1710.02298

[12] Hengyuan Hu and Jakob Foerster. 2019. Simplified Action Decoder for Deep

Multi-Agent Reinforcement Learning. arXiv preprint arXiv:1912.02288 (2019).

arXiv:1912.02288 [cs.AI] https://arxiv.org/abs/1912.02288

[13] Adam Lerer, Hengyuan Hu, Jakob Foerster, and Noam Brown. 2020. Improving

Policies via Search in Cooperative Partially Observable Games. Proc. of the AAAI
Conf. on Artificial Intelligence 34, 05 (April 2020), 7187–7194. https://doi.org/10.

1609/aaai.v34i05.6208

[14] Volodymyr Mnih, Adrià Puigdomènech Badia, Mehdi Mirza, Alex Graves, Timo-

thy P. Lillicrap, Tim Harley, David Silver, and Koray Kavukcuoglu. 2016. Asyn-

chronousMethods for Deep Reinforcement Learning. CoRR abs/1602.01783 (2016).

arXiv:1602.01783 http://arxiv.org/abs/1602.01783

[15] Chris Nota and Philip Thomas. 2019. Is the Policy Gradient a Gradient? arXiv
preprint arXiv:1906.07073 (2019).

[16] Arthur O’Dwyer. 2018. Framework for writing bots that play Hanabi. https:

//github.com/Quuxplusone/Hanabi https://github.com/Quuxplusone/Hanabi.

Accessed: 2020-09-16.

[17] John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel.

2015. High-Dimensional Continuous Control Using Generalized Advantage

Estimation. arXiv preprint arXiv:1506.02438 (2015).
[18] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.

2017. Proximal Policy Optimization Algorithms. arXiv preprint arXiv:1707.06347
(2017).

[19] Mark van den Bergh. 2015. Hanabi, a cooperative game of fireworks. Bach-

elor’s thesis. Leiden University. http://www.math.leidenuniv.nl/scripties/BSC-

vandenBergh.pdf.

[20] Ronald Williams. 1992. Simple statistical gradient-following algorithms for

connectionist reinforcement learning. Machine learning 8, 3 (1992), 229–256.

[21] David Wu. 2018. A rewrite of Hanabi-bot in Scala. https://github.com/lightvector/

fireflower. Accessed: 2020-09-16.

[22] Jeff Wu. 2018. State of the art Hanabi bots + simulation framework in rust. https:
//github.com/WuTheFWasThat/hanabi.rs. Accessed: 2020-09-16.

[23] Chao Yu, Akash Velu, Eugene Vinitsky, Yu Wang, Alexandre Bayen, and Yi Wu.

2021. The Surprising Effectiveness of PPO in Cooperative, Multi-Agent Games.

arXiv preprint arXiv:2103.01955 (2021).

https://spinningup.openai.com/
https://arxiv.org/abs/1603.01911
http://arxiv.org/abs/1603.01911
https://doi.org/10.1016/j.artint.2019.103216
https://arxiv.org/abs/1907.03840
http://arxiv.org/abs/1907.03840
http://www.jstor.org/stable/10.4169/math.mag.88.5.323
http://www.jstor.org/stable/10.4169/math.mag.88.5.323
https://github.com/Zamiell/hanabi-conventions
https://github.com/Zamiell/hanabi-conventions
https://arxiv.org/abs/1811.01458
http://arxiv.org/abs/1811.01458
https://research.tue.nl/en/studentTheses/deep-reinforcement-learning-for-the-cooperative-card-game-hanabi
https://research.tue.nl/en/studentTheses/deep-reinforcement-learning-for-the-cooperative-card-game-hanabi
https://arxiv.org/abs/1710.02298
http://arxiv.org/abs/1710.02298
http://arxiv.org/abs/1710.02298
https://arxiv.org/abs/1912.02288
https://arxiv.org/abs/1912.02288
https://doi.org/10.1609/aaai.v34i05.6208
https://doi.org/10.1609/aaai.v34i05.6208
https://arxiv.org/abs/1602.01783
http://arxiv.org/abs/1602.01783
https://github.com/Quuxplusone/Hanabi
https://github.com/Quuxplusone/Hanabi
https://github.com/Quuxplusone/Hanabi
http://www.math.leidenuniv.nl/scripties/BSC-vandenBergh.pdf
http://www.math.leidenuniv.nl/scripties/BSC-vandenBergh.pdf
https://github.com/lightvector/fireflower
https://github.com/lightvector/fireflower
https://github.com/WuTheFWasThat/hanabi.rs
https://github.com/WuTheFWasThat/hanabi.rs

	Abstract
	1 Introduction
	2 Related Work
	2.1 Rule-based agents
	2.2 Learning agents

	3 Experiments
	3.1 Setup
	3.2 Results

	4 Analysis
	4.1 Performance analysis
	4.2 Game length

	5 Conclusion
	Acknowledgments
	References

