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ABSTRACT

We derive and present deterministic reinforcement learning dy-
namics where the agents only partially observe the actual state of
the environment. Our aim with this work is to obtain an efficient
mathematical description of the emergent behavior of biologically
plausible and parsimonious learning agents for the common case
of environmental and perceptual uncertainty. We showcase the
broad applicability of our dynamics across different classes of agent-
environment systems, highlight emergent effects caused by partial
observability and show how our method allows the application
of dynamical systems theory to partially observable multi-agent
learning. The presented dynamics have the potential to become a
formal yet practical, lightweight, and robust tool for researchers
in biology, social science, and machine learning to systematically
investigate the effects of interacting partially observant agents.

1 MOTIVATION

We do not observe the world as it is but instead as our limited
sensory and cognitive apparatus perceives it. There are always
elements of the world hidden from us, such as the detailed physical
state of our environment and the internal states of other agents. As
such, uncertainty is a fundamental feature of life [24, 31, 37]. Thus,
among other forms of uncertainty, we might not know what will
happen (stochastic uncertainty), what currently is (state uncertainty)
and what others are going to do (strategic uncertainty).

Given the cognitive demands of fully integrating all sources of
uncertainty when learning from experience and making decisions,
natural agents must employ methods of bounded rationality [44]
that use cognitive resources efficiently to obtain acceptable solu-
tions in a timely manner [23]. As such, evolutionary game theory
[29] takes into account strategic uncertainty by assuming that other
agents are not perfectly rational but instead by allowing agents to
adapt to each other sequentially. Tools and methods from evolution-
ary game theory have also been used successfully to formally study
the dynamics of multi-agent reinforcement learning [5, 12]. Borg-
ers and Sarin [13] established the formal relationship between the
learning behavior of one of the most basic reinforcement learning
schemes, Cross learning [15], and the replicator dynamics of evo-
lutionary game theory. Since then, this approach of evolutionary
reinforcement learning dynamics has been extended to stateless Q-
learning [42, 54], regret-minimization [30] and temporal-difference
learning [7], as well as discrete-time dynamics [17], continuous
strategy spaces [18] and extensive-form games [40]. This learning
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dynamic approach offers a formal, lightweight, and deterministi-
cally reproducible way to gain improved, descriptive insights into
the emerging multi-agent learning behavior.

Apart from strategic uncertainty, representing stochastic un-
certainty, i.e., uncertainty about what will happen in the form of
probabilistic events within the environment requires foremost the
presence of an environment. Recent years have seen a growing
interest in moving evolutionary and learning dynamics in state-
less games to changing environments. Here, the term environment
can mean external fluctuations [1, 2], a varying population density
[21, 26], spatial network structure [22, 52], or coupled systems out
of evolutionary and environmental dynamics. Coupled systems may
further be categorized into those with continuous environmental
state spaces [14, 53, 55, 56] or discrete ones [7, 27, 28, 48]. We'll
be focusing on learning dynamics in stochastic games [4, 6, 7, 28]
which encode stochastic uncertainty via action-depended transition
probabilities between environmental states.

However, all dynamics discussed so far are either applicable only
to stateless environments, assume that agents do not tailor their
response to the current environmental state, or, if they do, believe
that agents observe the true states of the environment perfectly.
Yet, often in real-world settings, state observations are noisy and
incomplete. Thus, they lack a systematic way to describe interacting
agents under state uncertainty.

This work relaxes the assumption of perfect observations and
introduces deterministic reinforcement learning dynamics for par-
tially observable environments. With the derived dynamics, we
can study the idealized reinforcement learning behavior in a wide
range of environmental classes, from partially observable Markov
decision processes [POMDPs, 46], decentralized POMDPs [39], and
fully general partially observable stochastic games [25].

Note, while many works on partially observable decision do-
mains are normative, ours is descriptive. For the normative agenda,
agents are often enriched with, e.g., generative models and belief-
state representations [39, 46], abstractions [51] or predictive state
representations [35] in order to learn optimal policies in partially
observable decision domains. Also, the economic value of signals
is often studied by asking how fully rational agents optimally deal
with a specific form of state uncertainty [3]. However, such tech-
niques can become computationally extremely expensive [36]. It
is unlikely that biological agents perform those elaborate calcula-
tions [20] and the focus on unboundedly rational game equilibria
lacks a dynamic perspective [41] making it unable to answer which
equilibrium (of the often many) the agents select.
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Figure 1: Deterministic learning dynamics in an uncertain social dilemma. Panel A illustrates the environment. Panels B and
C show the average rewards at convergence for agent 1 in red and agent 2 in blue (top row) and the time steps it takes the
learners to convergence (bottom row) for various observational noise levels from 0 to 0.5. The plots show a histogram for each
noise level via the color scale. Each histogram results from a Monte Carlo simulation from 100 random initial policies. Panel
B shows the case of homogeneous uncertainty where both agents’ observations are corrupted equally by noise. In Panel C,
only agent 2 is increasingly unable to observe the environment correctly (Heterogeneous Uncertainty).

2 OVERVIEW OF RESULTS

This work takes a dynamical systems perspective on individual
learning agents employing the widely-occurring principle of tem-
poral-difference reinforcement learning [49] in which the agents
treat their observations as if they were the actual states of the
environment. Temporal-difference learning is not only a computa-
tional technique [50], it also occurs in biological agents through
the dopamine reward prediction error signal [16, 43]. We focus on
agents who employ either so-called memoryless policies, at which
they choose their actions based solely on their current observation
[45], or they use a short and fixed history of current and past ob-
servations and actions to base the current action upon. This has
the advantage of being simple to act upon [57], and they are easy
to realize at no or little additional computational cost.

To highlight our dynamics’ broad applicability, we study the
emerging learning behavior across five partially observable envi-
ronment classes. Detailed results can be found in the full paper
[11]. We find various effects caused by partial observability, which
generally depend on the environment and its representation. For
instance, partial observability can lead to better learning outcomes
faster in a single-agent renewable resource harvesting task, stabilize
a chaotic learning process in a multi-state zero-sum game and even
overcome social dilemmas. Compared to fully observant agents, par-
tially observant learning often requires more exploration and less
weight on future rewards to obtain favorable learning outcomes.
Furthermore, our method allows applying dynamical systems the-
ory to partially observable multi-agent learning. We find that partial
observability can cause the emergence of catastrophic limit cycles,
a critical slowing down of the learning processes between reward
regimes, and the separation of the learning dynamics into fast and
slow eigendirections.

3 EXAMPLE: EMERGENCE OF COOPERATION

The emergence of cooperative and sustainable behavior in social
dilemmas is a crucial research challenge for evolutionary biology,
the social and sustainability sciences [8-10, 19, 32, 38, 47]. We’ll
focus on the situation where two agents can either cooperate (C) or
defect (D) and either face a Prisoner’s Dilemma or a Stag Hunt game
with equal probability [Fig. 1 A, cf,, 33, 34]. In the pure Prisoner’s
Dilemma, defection is the Nash equilibrium, which leads to a sub-
optimal reward for both agents. In the pure Stag Hunt game, both
mutual cooperation and mutual defection are Nash equilibria with
the difference that mutual cooperation yields a higher reward than
mutual defection for both agents. Here, we consider the situation
when the agents are uncertain by a certain noise level about the
type of game they face at each decision point.

Fig. 1 shows how homogeneous uncertainty (where both agents
are uncertain) can overcome the social dilemma through the emer-
gence of a stable, mutually high rewarding fixed point above a
critical level of observational noise. However, heterogeneous uncer-
tainty (where only agent 2 is uncertain) leads to reward inequality.
In both cases, the bifurcation is accompanied by a critical slowing
down of the convergence speed. Interestingly, the type of phase
transitions appears to be different between the two scenarios. Under
homogeneous uncertainty, it seems to be discontinuous, whereas,
under heterogeneous uncertainty, it seems to be continuous.

4 CONCLUSION

We hope that the presented dynamics become a formal yet practical,
lightweight, and robust tool for researchers in biology, social sci-
ence, and machine learning to systematically investigate the effect
of uncertainty of interacting agents. Python code to reproduce all
results is available at https://github.com/wbarfuss/POLD.
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