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ABSTRACT
Deep reinforcement learning (DRL) agents are trained through trial-
and-error interactions with the environment. This leads to a long
training time for dense neural networks to achieve good perfor-
mance. Hence, prohibitive computation and memory resources are
consumed. Recently, learning efficient DRL agents has received
increasing attention. Yet, current methods focus on accelerating in-
ference time. In this paper, we introduce for the first time a dynamic
sparse training approach for deep reinforcement learning to accel-
erate the training process. The proposed approach trains a sparse
neural network from scratch and dynamically adapts its topology to
the changing data distribution during training. Experiments on con-
tinuous control tasks show that our dynamic sparse agents achieve
higher performance than the equivalent dense methods, reduce the
parameter count and floating-point operations (FLOPs) by 50%, and
have a faster learning speed that enables reaching the performance
of dense agents with 40 − 50% reduction in the training steps1.
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1 INTRODUCTION
Deep reinforcement learning (DRL) has achieved remarkable suc-
cess in many applications [29]. The power of deep neural networks
as function approximators [6, 10, 15, 19, 30, 45, 67] allows RL agents
to scale to environments with high-dimensional state and action
spaces. This enables high-speed growth in the field and the rise
of many methods that improve the performance and stability of
DRL agents [1, 14, 16, 36, 47, 48, 50, 55, 56, 59]. While the achieved
performance is impressive, a long training time is required to obtain
this performance. For instance, it took more than 44 days to train a
Starcraft II agent using 32 third-generation tensor processing units
(TPUs) [57]. The very long training time of DRL agents leads to
high energy consumption and prohibitive memory and computa-
tion costs. In this paper, we ask the following question: Can we
provide efficient DRL agents with less computation cost and energy
consumption while maintaining superior performance?

1Code available at: https://github.com/GhadaSokar/Dynamic-Sparse-Training-for-
Deep-Reinforcement-Learning.
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Few recent works attempt to accelerate the inference time of DRL
agents via pruning [35] or training a compact network under the
guidance of a larger network (knowledge distillation) [64]. Despite
the computational improvement achieved at inference, extensive
computations throughout the training of dense networks are still
consumed. Our goal is to accelerate the training process as well as
the inference time of DRL agents.

The long training time of a DRL agent is due to two main factors:
(1) the extensive computational cost of training deep neural net-
works caused by the very high number of network parameters [27]
and (2) the learning nature of a DRL agent in which its policy is
improving through many cycles of trial and error while interacting
with the environment and collecting a large amount of data. In
this paper, we introduce dynamic sparse training (DST) [21, 37]
in the DRL paradigm for the first time to address these two fac-
tors. Namely, we propose an efficient training approach that can
be integrated with existing DRL methods. Our approach is based
on training sparse neural networks from scratch with a fixed pa-
rameter count throughout training (1). During training, the sparse
topology is optimized via adaptation cycles to quickly adapt to the
online changing distribution of the data (2). Our proposed training
approach enables reducing memory and computation costs substan-
tially. In addition, the quick adaptation of our dynamic sparse agents
to the new samples from the improving policy during training leads
to a faster learning speed.

In fact, the need for neural networks that can adapt, e.g., change
their control policy dynamically as environmental conditions change,
was broadly acknowledged by the RL community [51]. Although
prior works related to the automatic selection of function approxi-
mation based on neuroevolution exist [20], perhaps the most con-
nected in the spirit to our proposed method is a combination be-
tween NeuroEvolution of Augmenting Topologies (NEAT) [52] and
temporal difference (TD) learning (i.e., NEAT+Q [60]). Still, the chal-
lenge remains, and cutting-edge DRL algorithms do not account
for the benefits of adaptive neural networks training yet.

Our contributions in this paper are as follows:

• The principles of dynamic sparse training are introduced in
the deep reinforcement learning field for the first time.
• Efficient improved versions of two state-of-the-art algorithms,
TD3 [14] and SAC [16], are obtained by integrating our pro-
posed dynamic sparse training approach with the original
algorithms.

https://ala2022.github.io/


• Experimental results show that our training approach re-
duces the memory and computation costs of training DRL
agents by 50% while achieving superior performance. More-
over, it achieves a faster learning speed, reducing the re-
quired training steps.
• Analysis insights demonstrate the promise of dynamic sparse
training in advancing the field and allowing for DRL agents
to be trained and deployed on low-resource devices (e.g.,
mobile phones, tablets, and wireless sensor nodes) where
the memory and computation power are strictly constrained.
See Section 5 for discussion.

2 RELATEDWORK
Sparsity in DRL. To the best of our knowledge, the current ad-
vance in deep reinforcement learning is achieved using dense neural
networks. Few recent studies have introduced sparsity in DRL via
pruning. PoPS [35] first trains a dense teacher neural network to
learn the policy. This dense teacher policy network guides the
iterative pruning and retraining of a student policy network via
knowledge distillation. In [64], the authors aim to accelerate the be-
havior policy network and reduce the time for sampling. They use a
smaller network for the behavior policy and learn it simultaneously
with a large dense target network via knowledge distillation. GST
[28] was proposed as an algorithm for weight compression in DRL
training by simultaneously utilizing weight grouping and pruning.
Some other works [58, 63] studied the existence of the lottery ticket
hypothesis [13] in RL, which shows the presence of sparse subnet-
works that can outperform dense networks when they are trained
from scratch. Pruning dense networks increases the computational
cost of the training process as it requires iterative cycles of pruning
and retraining [7, 18, 24, 39, 40, 42, 46]. This work introduces the
first efficient training algorithm for DRL agents that trains sparse
neural networks directly from scratch and adapts to the changing
distribution.

Dynamic Sparse Training (DST). DST is the class of algo-
rithms that train sparse neural networks from scratch and jointly
optimize the weights and the sparse topology during training. This
direction aims to reduce the computation and memory overhead of
training dense neural networks by leveraging the redundancy in the
parameters (i.e., being over-parametrized) [8]. Efforts in this line of
research are devoted to supervised and unsupervised learning. The
first work in this direction was proposed by [38]. They proposed
a Sparse Evolutionary Training algorithm (SET) that dynamically
changes the sparse connectivity during training based on the val-
ues of the connections. The method achieves higher performance
than dense models and static sparse neural networks trained from
scratch. The success of the SET algorithm opens the path to many
interesting DSTmethods that bring higher performance gain. These
algorithms differ from each other in the way the sparse topology
is adapted during training [3, 9, 12, 25, 33, 41, 44]. DST demon-
strated its success in other fields as well, such as feature selection
[2], ensembling [31], federated learning [66], text classification and
language modeling tasks [34], and adversarial training [43].

In this work, we adopt the topological adaptation from the SET
method in our proposed approach. Themotivation is multifold. First,

SET is simple yet effective; it achieves the same or even higher ac-
curacy than dense models with high sparsity levels across different
architectures (e.g., multi-layer perceptrons, convolutional neural
networks, restricted Boltzmann machines). Second, unlike other
DST methods that use the values of non-existing (masked) weights
in the adaptation process, SET uses only the values of existing sparse
connections. This makes SET truly sparse and memory-efficient
[32]. Finally, it does not need high computational resources for the
adaptation process. It uses readily available information during the
standard training. These factors are favorable for our goal to train
efficient DRL agents suitable for real-world applications. We leave
evaluating other topological adaptation strategies for future work.

3 PROPOSED METHOD
In this section, we describe our proposed method, which introduces
dynamic sparse training for the DRL paradigm. Here, we focus on
integrating our training approach with one of the state-of-the-art
DRL methods; Twin Delayed Deep Deterministic policy gradient
(TD3) [14]. We named our new approach Dynamic Sparse TD3 or
“DS-TD3” for short. TD3 is a popular and efficient DRL method
that offers good performance in many tasks [23, 26, 49, 61, 62]. Yet,
our approach can be merged into other DRL algorithms as well.
The integration with soft actor-critic (SAC) [16] can be found in
Appendix A.

TD3 is an actor-critic method that addresses the overestimation
bias in previous actor-critic approaches. In actor-critic methods,
a policy 𝜋 is known as the actor, and a state-value function 𝑄 is
known as the critic. Target networks are used to maintain fixed
objectives for the actor and critic networks over multiple updates.
In short, TD3 limits the overestimation bias using a pair of critics.
It takes the smallest value of the two critic networks to estimate
the 𝑄 value to provide a more stable approximation. To increase
the stability, TD3 proposed a delayed update of the actor and target
networks. In addition, the weights of the target networks are slowly
updated by the current networks by some proportion 𝜏 . In this work,
we aim to dynamically train the critics and actor networks along
with their corresponding target networks from scratch with sparse
neural networks to provide efficient DRL agents. In the rest of this
section, we will explain our proposed DST approach for TD3. The
full details are also provided in Algorithm 1.

Our proposed DS-TD3 consists of four main phases: sparse topol-
ogy initialization, adaptation schedule, topological adaptation, and
maintaining sparsity levels.

Sparse Topology Initialization (Algorithm 1 L1-L4). TD3
uses two critic networks (𝑄𝜽1 , 𝑄𝜽2 ) and one actor network (𝜋𝝓 )
parameterized by 𝜽1 = {𝜽 𝑙1}|

𝐿
𝑙=1, 𝜽2 = {𝜽 𝑙2}|

𝐿
𝑙=1, and 𝝓 = {𝝓𝑙 }|𝐿

𝑙=1,
respectively; where 𝐿 is the number of layers in a network. We ini-
tialize each of the actor and critic networks with a sparse topology.
Sparse connections are allocated in each layer between the hidden
neurons at layer 𝑙 − 1 and layer 𝑙 . We represent the locations of
the sparse connections by a binary mask 𝑴 = {𝑴𝑙 }|𝐿

𝑙=1. We use
Erdős–Rényi random graph [11] to initialize a sparse topology in
each layer 𝑙 since it shows superiority over uniform distribution
[12]. Namely, the probability of a connection 𝑗 in layer 𝑙 is given



Algorithm 1 DS-TD3 (_𝑙 , [, 𝑒 , 𝑁 , 𝜏 , 𝑑)
1: Initialize critic networks 𝑄𝜽1 , 𝑄𝜽2 and actor network 𝜋𝝓 with

sparse parameters 𝜽1, 𝜽2, 𝝓 with a sparsity level defined by _𝑙 :
2: Create 𝑴𝝓 , 𝑴𝜽1 , and 𝑴𝜽2 with Erdős–Rényi graph
3: 𝜽1 ← 𝜽1⊙ 𝑴𝜽1 , 𝜽2 ← 𝜽2⊙ 𝑴𝜽2 , 𝝓 ← 𝝓 ⊙ 𝑴𝝓
4: Initialize target networks 𝜽 ′

1 ← 𝜽1, 𝜽 ′
2 ← 𝜽2, 𝝓′ ← 𝝓

5: Initialize replay buffer B
6: for 𝑡 = 1 to 𝑇 do
7: Select action with exploration noise 𝑎 ∼ 𝜋𝝓 (𝑠) + 𝜖 ,
8: 𝜖 ∼ N(0, 𝜎) and observe reward 𝑟 and new state 𝑠 ′
9: Store transition tuple (𝑠, 𝑎, 𝑟, 𝑠 ′) in B
10: Sample mini-batch of 𝑁 transitions from B
11: 𝑎 ← 𝜋𝝓′ (𝑠 ′) + 𝜖, 𝜖 ∼ 𝑐𝑙𝑖𝑝 (N (0, �̃�),−𝑐, 𝑐)
12: 𝑦 ← 𝑟 + 𝛾 min𝑖=1,2 𝑄𝜽 ′

𝑖
(𝑠 ′, 𝑎)

13: 𝜽𝒊 ← 𝑎𝑟𝑔𝑚𝑖𝑛𝜽𝒊
1
𝑁

∑(𝑦 −𝑄𝜽𝒊 (𝑠, 𝑎))2
14: if 𝑡 mod 𝑒 then
15: 𝜽𝒊 ← TopologicalAdaptation(𝜽𝒊,𝑴𝜽𝒊 , [) (Algo. 2)
16: end if
17: if 𝑡 mod 𝑑 then
18: Update 𝝓 by the deterministic policy gradient:
19: ∇𝝓 𝐽 (𝝓) ← 1

𝑁

∑∇𝑎𝑄𝜽1 (𝑠, 𝑎) |𝑎=𝜋𝝓 (𝑠)∇𝝓𝜋𝝓 (𝑠)
20: if 𝑡 mod 𝑒 then
21: 𝝓 ← TopologicalAdaptation(𝝓,𝑴𝝓 , [) (Algo. 2)
22: end if
23: Update target networks:
24: 𝜽 ′

𝑖
← 𝜏𝜽𝒊 + (1 − 𝜏)𝜽 ′

𝑖
25: 𝝓′ ← 𝜏𝝓 + (1 − 𝜏)𝝓′

26: 𝜽 ′
𝒊 ←MaintainSparsity(𝜽 ′

𝑖
, ∥𝜽𝒊 ∥0) (Algo. 3)

27: 𝝓′ ←MaintainSparsity(𝝓′, ∥𝝓∥0) (Algo. 3)
28: end if
29: end for

by:

𝑝 (𝑴 𝑗 ) = _𝑙
𝑛𝑙 + 𝑛𝑙−1

𝑛𝑙 × 𝑛𝑙−1 , (1)

where _𝑙 is a hyperparameter to control the sparsity level in layer
𝑙 , and 𝑛𝑙−1 and 𝑛𝑙 are the count of neurons in layers 𝑙 − 1 and 𝑙 ,
respectively. 𝑴 𝑗 ∈ {0, 1}; a value of 1 means the existence of a
weight in location 𝑗 . We omit the index 𝑙 from the mask and weight
matrices for readability. A sparse topology is created in each layer
for the actor and critic networks:

𝝓 = 𝝓 ⊙ 𝑴𝝓 ,

𝜽𝒊 = 𝜽𝒊 ⊙ 𝑴𝜽𝒊 , ∀𝑖 ∈ {1, 2}, (2)

where ⊙ is an element-wise multiplication operator and 𝑴𝝓 , 𝑴𝜽1 ,
and 𝑴𝜽2 are binary masks to represent the sparse weights in the
actor and two critic networks, respectively. The initial sparsity level
is kept fixed during the training.

The target policy and target critic networks are parameterized
by 𝝓′, 𝜽 ′

1, and 𝜽
′
2, respectively. Initially, the target networks have

the same sparse topology and the same weights as the current
networks: 𝝓′ ← 𝝓, 𝜽 ′

1 ← 𝜽1, 𝜽 ′
2 ← 𝜽2.

After the topological and weight initialization, the agent col-
lects enough data before training using a purely exploratory policy.
During training, for each time step, TD3 updates the pair of critics

Algorithm 2 Topological Adaptation ( 𝑿 , 𝑴 , [)

1: 𝑐 ← [ ∥𝑿 ∥0
2: 𝑐𝑝 ← 𝑐/2 ; 𝑐𝑛 ← 𝑐/2
3: �̃�𝑝 ← get_𝑐𝑝 -th_smallest_positive(𝑿 )
4: �̃�𝑛 ← get_𝑐𝑛-th_largest_negative(𝑿 )
5: 𝑴 𝑗 ← 𝑴 𝑗 − 1[(0 < 𝑿 𝑗 < �̃�𝑝 ) ∨ (0 > 𝑿 𝑗 > �̃�𝑛)]
6: Generate 𝑐 random integers {𝑥}|𝑐1
7: 𝑴 𝑗 ← 𝑴 𝑗 + 1[( 𝑗 == 𝑥) ∧ (𝑿 𝑗 == 0)]
8: 𝑿 ← 𝑿 ⊙ 𝑴

Algorithm 3 Maintain Sparsity (𝑿 , 𝑘)

1: �̃� ← Sort_Descending( |𝑋 |)
2: 𝑴 𝑗 = 1[|𝑿 𝑗 | − �̃�𝑘 ≥ 0],∀𝑗 ∈ {1, ... ∥𝑿 ∥0}
3: 𝑿 = 𝑿 ⊙ 𝑴

towards the minimum target value of actions selected by the target
policy 𝜋𝝓′ :

𝑦 = 𝑟 + 𝛾 min
𝑖=1,2

𝑄𝜽 ′
𝑖
(𝑠 ′, 𝜋𝝓′ (𝑠 ′) + 𝜖), (3)

where 𝛾 is the discounting factor, 𝑟 is the current reward, 𝑠 ′ is
the next state, and 𝜖 ∼ 𝑐𝑙𝑖𝑝 (N (0, �̃�),−𝑐, 𝑐) is the proposed clipped
noise by TD3, defined by �̃� , to increase the stability; where 𝑐 is the
clipped value. As discussed, TD3 proposed to delay the update of
the policy network to first minimize the error in the value network
before introducing a policy update. Therefore, the actor network is
updated every 𝑑 steps with respect to𝑄\1 as shown in Algorithm 1
L17-L19.

During the weight optimization of the actor and critic networks,
the values of the existing sparse connections are only updated (i.e.,
the sparsity level is kept fixed). The sparse topologies of the net-
works are also optimized during training according to our proposed
adaptation schedule.

Adaptation Schedule. The typical practice in DST methods
applied in the supervised setting is to perform the dynamic adapta-
tion of the sparse topology after each training epoch. However, this
would not fit the RL setting directly due to its dynamic learning
nature. In particular, an RL agent faces instability during training
due to the lack of a true target objective. The agent learns through
trial and error cycles, collecting the data online while interacting
with the environment. Adapting the topology very frequently in
this learning paradigm would limit the exploration of effective
topologies for the data distribution and give a biased estimate of
the current one. To address this point, we propose to delay the
adaptation process and perform it every 𝑒 time steps, where 𝑒 is a
hyperparameter. This would allow the newly added connections
from the previous adaptation process to grow. Hence, it would also
give better estimates of the connections with the least influence in
the performance and an opportunity to explore other effective ones.
Analysis of the effect of the adaptation schedule in the success of
applying dynamic sparse training in the RL setting is provided in
Section 4.6.

Topological Adaptation (Algorithm 2). We adopt the adapta-
tion strategy of the SET method [38] in our approach. The sparse
topologies are optimized according to our adaptation schedule. Ev-
ery 𝑒 steps, we update the sparse topology of the actor and critic



networks. Here, we explain the adaptation process on the actor
network as an example. The same strategy is applied for the critic
networks.

The adaptation process is performed through a “drop-and-grow”
cycle which consists of two steps.The first step is to drop a fraction
[ of the least important connections from each layer. This fraction
is a subset (𝑐𝑝 ) of the smallest positive weights and a subset (𝑐𝑛) of
the largest negative weights. Thus, the removed weights are the
ones closest to zero. Let �̃�𝑝 and �̃�𝑛 be the 𝑐𝑝 -th smallest positive
and the 𝑐𝑛-th largest negative weights, respectively. The mask 𝑴𝝓
is updated to represent the dropped connections as follows:

𝑴𝒋
𝝓 = 𝑴𝒋

𝝓 − 1[(0 < 𝝓 𝑗 < �̃�𝑝 ) ∨ (0 > 𝝓 𝑗 > �̃�𝑛)], ∀𝑗 ∈ {1, ..., ∥𝝓∥0}, (4)

where 𝑴𝒋
𝝓 is the element 𝑗 in 𝑴𝝓 , 1 is the indicator function, ∨

is the logical OR operator, and ∥.∥0 is the standard 𝐿0 norm. The
second step is to grow the same fraction [ of removed weights in
random locations from the non-existing weights in each layer. 𝑴𝝓
is updated as follows:

𝑴𝒋
𝝓 = 𝑴𝒋

𝝓 + 1[( 𝑗 == 𝑥) ∧ (𝝓 𝑗 == 0)], ∀𝑗 ∈ {1, .., ∥𝝓∥0}, (5)

where 𝑥 is a random integer generated from the discrete uniform
distribution in the interval [1, 𝑛 (𝑙−1) × (𝑛𝑙 )] and ∧ is the logical
AND operator. The weights of the newly added connections are
zero-initialized (𝝓 = 𝝓 ⊙ 𝑴𝝓 ).

Maintain Sparsity Level in Target Networks (Algorithm 3).
TD3 delays the update of the target networks to be performed every
𝑑 steps. In addition, the target networks are slowly updated by some
proportion 𝜏 instead of making the target networks exactly match
the current ones (Algorithm 1 L23-L25). These two points lead to
a slow deviation of the sparse topologies of the target networks
from current networks. Consequently, the slow update of the target
networks by 𝜏 would slowly increase the number of non-zero con-
nections in the target networks over time. To address this, after each
update of the target networks, we prune the extra connections that
make the total number of connections exceed the initial defined
one. We prune the extra weights based on their smallest magnitude.
Assume we have to retain 𝑘 connections. The target masks of the
actor (𝑴 ′

𝝓′ ) and critics (𝑴 ′
𝜽 ′

1
, 𝑴 ′

𝜽 ′
2
) are calculated as follows:

𝑴 ′𝑗

𝝓′ = 1[|𝝓′𝑗 | − 𝝓′𝑘 ≥ 0], ∀𝑗 ∈ {1, ...,
𝝓′


0},

𝑴 ′𝑗

𝜽 ′
𝑖

= 1[|𝜽 ′𝑗
𝑖
| − 𝜽 ′

𝑘
𝑖 ≥ 0], ∀𝑗 ∈ {1, ...,

𝜽 ′
𝑖


0}, ∀𝑖 ∈ {1, 2},

(6)

where 𝝓′𝑘 and 𝜽 ′
𝑖

𝑘
is the 𝑘-th largest magnitude in the actor and

critics, respectively, and | (.) 𝑗 | is the magnitude of element 𝑗 in the
matrix. The target networks are updated as follows:

𝝓′ = 𝝓′ ⊙ 𝑴 ′
𝝓′,

𝜽 ′
𝑖 = 𝜽 ′

𝑖 ⊙ 𝑴 ′
𝜽 ′
𝑖
∀𝑖 ∈ {1, 2}. (7)

4 EXPERIMENTS AND RESULTS
In this section, we assess the efficiency of our proposed dynamic
sparse training approach for the DRL paradigm and compare it to
state-of-the-art algorithms.

4.1 Baselines
We compare our proposed DS-TD3 against the following baselines:
(1) TD3 [14], the original TD3 where dense networks are used for
actor and critic models, (2) Static-TD3, a variant of TD3 where the
actor and critic models are initialized with sparse neural networks
which are kept fixed during training (i.e., there is no topological
optimization), and (3) SAC [17], a popular off-policy algorithm
in which the policy is trained to maximize a trade-off between
expected return and entropy which results in policies that explore
better.

4.2 Benchmarks
We performed our experiments on MuJoCo continuous control
tasks [54], interfaced through OpenAI Gym [4]. We evaluate our
proposed approach on five challenging environments (HalfCheetah-
v3, Hopper-v3, Walker2d-v3, Ant-v3, and Humanoid-v3).

4.3 Metrics
We use multiple metrics to assess the efficiency of the studied DRL
methods:

• Return (R). The average return is the standard metric used
in the RL research to measure the performance of an agent.
The return is the sum of rewards (𝑟 ) obtained in one episode
of 𝑇 steps. 𝑅 is calculated as follows:

𝑅 =

𝑇∑︁
𝑡=1

𝑟𝑡 . (8)

• Learning curve area (LCA).Thismetric estimates the learn-
ing speed of a model. LCA measures the area under the train-
ing curve of a method (i.e., how quickly a model learns).
Intuitively, the higher learning curve, the faster the learner
is. We adapt this metric from [5] to fit the reinforcement
learning paradigm. LCA is calculated as follows:

𝐿𝐶𝐴 =
1
Δ

∫ Δ

0
𝑅(𝑡)𝑑𝑡 = 1

Δ

Δ∑︁
𝑡=0

𝑅(𝑡), (9)

where Δ is the number of training steps and 𝑅 is the average
return.
• Network size (#params). This metric estimates thememory
cost consumed by an agent. The network size is estimated
by the summation of the number of connections allocated
in its layers as follows:

#𝑝𝑎𝑟𝑎𝑚𝑠 =

𝐿∑︁
𝑙=1

𝑾𝑙


0
, (10)

where 𝑾𝑙 is the actual weights used in layer 𝑙 , ∥ .∥0 is the
standard 𝐿0 norm, and 𝐿 is the number of layers in the model.
For sparse neural networks,

𝑾𝑙


0
is controlled by its defined

sparsity level for the model.
• Floating-point operations (FLOPs). This metric estimates
the computational cost of a method by calculating how many
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(a) HalfCheetah-v3.
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(b) Walker2d-v3.
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Figure 1: Learning curves of the studied algorithms on different continuous control tasks. The shaded region represents the
standard deviation of the average evaluation over 5 runs.

FLOPs are required for training. We follow the method de-
scribed in [12] to calculate the FLOPs. The FLOPs are calcu-
lated with the total number of multiplications and additions
layer by layer in the network.

FLOPs is the typical used metric in the literature to compare a DST
method against its dense counterpart. The motivation is twofold.
First, it gives an unbiased estimate of the actual required number
of operations since the running time would differ from one im-
plementation to another. Second, more importantly, existing DST
methods in the literature are currently prototyped using masks
over dense weights to simulate sparsity [21]. This is because most
deep learning specialized hardware is optimized for dense matrix
operations. Therefore, the running time using these prototypes
would not reflect the actual gain in memory and speed using a truly
sparse network. Hence, the FLOPs and network parameters are the
current commonly used metrics to estimate the computation and
memory costs, respectively for sparse neural networks [21].

4.4 Experimental Settings
For a direct comparison with TD3, we follow the same setting as
in [14]. We use multi-layer perceptrons for the actor and critics
networks with two hidden layers of 256 neurons and a ReLU acti-
vation function. A Tanh activation is applied to the output layer
of the actor network. Sparse connections are allocated in the first
two layers for all networks while the output layer is dense. We use
_2 of 64 for all environments. In contrast, _1 varies across environ-
ments because it depends on each environment’s state and action
dimensions. We use _1 of 7 for HalfCheetah-v3, Hopper-v3, and
Walker2d-v3. For Ant-v3 and Humanoid-v3, we use _1 of 40 and
61, respectively. The same sparsity levels are used for Static-TD3.

We adapt the sparse connections every 𝑒 time steps, with 𝑒 =

1000. A fraction of the sparse connections [ is adapted with [ = 0.05.
The networks are trained using Adam optimizer with a learning
rate of 0.001 and a weight decay of 0.0002. The networks are trained
with mini-batches (𝑁 ) of 100, sampled uniformly from a replay
buffer containing the entire history of the agent.

Following the TD3 algorithm [14], we added noise of 𝜖 ∼N(0, 0.2)
to the actions chosen by the target actor network and clipped to
(−0.5, 0.5). The actor and target networks are updated every 2 steps
(𝑑 = 2). The 𝜏 used for updating the target networks equals 0.005.
A purely exploratory policy is used for the first 25000 time steps,
then an off-policy exploration strategy is used with Gaussian noise
of N(0, 0.1) added to each action.

The hyperparameters for DST (_1, _2, [, 𝑒) are selected using
random search. Each environment is run for 1 million time steps
with evaluations every 5000 time steps, where each evaluation
reports the average return over 10 episodes with no exploration
noise. LCA is calculated using the average return computed every
5000 time steps. Our results are reported over 5 seeds.

All models are implemented with PyTorch and trained on Nvidia
GPUs. We use the official code of TD3 [14], which has an MIT
license, to reproduce the results of TD3 with the above settings.

For SAC, we use the Pytorch implementation from [53]. We
follow the settings from the original paper [16] with the same
architecture used for TD3. The networks are trained using Adam
optimizer with a learning rate of 0.0003 and mini-batches of 256.
We use 𝜏 of 0.005 and a target update interval of 1.

4.5 Results
Learning Behavior and Speed. Figure 1 shows the learning curve
of studied methods. DS-TD3 has a much faster learning speed than



Table 1: Average return (𝑅) over the last 10 evaluations of 1 million time steps.

Environment TD3 Static-TD3 DS-TD3 (ours) SAC

HalfCheetah-v3 11153.48 ± 473.29 10583.84 ± 307.03 11459.88 ± 482.55 11415.23 ± 357.22
Walker2d-v3 4042.36 ± 576.57 3951.01 ± 443.78 4870.57 ± 525.33 4566.18 ± 448.25
Hopper-v3 2184.78 ± 1224.14 3570.88 ± 43.71 3587.17 ± 70.62 3387.36 ± 148.73
Ant-v3 4287.69 ± 1080.88 4148.61 ± 801.34 5011.56 ± 596.95 5848.64 ± 385.85
Humanoid-v3 3809.15 ± 1053.40 4989.47 ± 546.32 5238.16 ± 121.71 5518.61 ± 97.03

Table 2: Learning curve area (LCA) (↑) of different DRL meth-
ods.

Environment TD3 Static-TD3 DS-TD3 (ours) SAC

HalfCheetah-v3 1.7686 1.7666 1.9560 1.7297
Walker2d-v3 0.5264 0.5167 0.6956 0.6128
Hopper-v3 0.4788 0.4984 0.5435 0.5572
Ant-v3 0.5524 0.5807 0.6623 0.7969
Humanoid-v3 0.3635 0.5182 0.6089 0.5639

the baselines, especially at the beginning of the training. After 40-
50% of the steps, DS-TD3 can achieve the final performance of TD3.
Static-TD3 does not have this favorable property which reveals the
importance of optimizing the sparse topology during training to
adapt to the incoming data. The learning behavior of DS-TD3 is also
faster than SAC in all environments except one. Table 2 shows the
learning curve area (LCA) of each method. DS-TD3 has higher LCA
than TD3 and static-TD3 in all environments. It is also higher than
SAC in three environments out of five. This metric is important to
differentiate between two agents with similar final performance
but very different LCA.

Performance. Table 1 shows the average return (𝑅) over the last
10 evaluations. DS-TD3 outperforms TD3 in all environments. In-
terestingly, it improves TD3 performance by 2.75%, 20.48%, 64.18%,
16.88%, and 37.51% on HalfCheetah-v3, Walker2d-v3, Hopper-v3,
Ant-v3, and Humanoid-v3, respectively. Static-TD3 has a close per-
formance to TD3 in most cases except for Humanoid-v3, where
Static-TD3 outperforms TD3 by 30.98%. DS-TD3 has a better final
performance than SAC in three environments.

4.6 Analysis
Memory and Computation Costs. We analyze the costs needed
for the training process by calculating the FLOPS and #params for
the actor and critics. We performed this analysis on Half-Cheetah-
v3. #params for dense TD3 is 214784, which requires 1×(1.07e14)
FLOPs to train. With our DS-TD3, we can find a much smaller
topology that can effectively learn the policy and the function
value, achieving higher performance than TD3 with a sparsity level
of 51%. This consequently reduces the number of required FLOPs
to 0.49×.

Adaptation Schedule. We analyze the effect of the adaptation
schedule on the performance. In particular, we ask how frequently
the sparse topology should be adapted? We performed this anal-
ysis on HalfCheetah-v3. Figure 2a shows the learning curves of
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Figure 2: The learning curves of DS-TD3 on HalfCheetah-v3
using different adaptation schedules (a) and sparsity levels
(b).
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Figure 3: Learning curves of agents that start training with
samples drawn from policies trained for 5× 105 (a) and 7× 105

steps (b) on HalfCheetah-v3.

DS-TD3 using different adaptation schedules controlled by the hy-
perparameter 𝑒 (Section 3). Adapting the topology very frequently
(i.e., 𝑒 ∈ {200, 500}) would not allow the connections to grow and
learn in the dynamic changing nature of RL. The current adaptation
process could remove some promising newly added connections
from the previous adaptation process. This would be caused by a
biased estimate of a connection’s importance as it becomes a factor
of the length of its lifetime. Hence, the very frequent adaptation
would increase the chance of replacing some promising topologies.
With less frequent adaptation cycles, 𝑒 = 1000 (the setting from
the paper), DS-TD3 can learn faster and eventually achieves higher
performance than other baselines. Giving the connections a chance
to learn helps in having better estimates of the importance of the
connections. Hence, it enables finding more effective topologies by
replacing the least effective connections with ones that better fit the
data. However, increasing the gap between every two consecutive
adaptation processes to 2000 steps decreases the exploration speed
of different topologies. As illustrated in the figure, DS-TD3 with



𝑒 = 2000 has a close learning behavior and final performance to
the dense TD3. Yet, it still offers a substantial reduction in memory
and computation costs. This analysis reveals the importance of the
adaptation schedule in the success of introducing DST to the DRL
field.

Sparsity Level.We analyze the performance of our proposed
method using different sparsity levels. Figure 2b shows the learn-
ing curves of the dense TD3 and DS-TD3. By removing 25% of the
connections and training the sparse topology dynamically using
DS-TD3, we can achieve a faster learning speed and a performance
increase of 2.11%. More interestingly, with a higher reduction in
the size of the networks by 50%, we achieve a much faster learning
speed. However, when the network has a very high sparsity level
(i.e., 80%), it fails to learn effective representations for the reinforce-
ment learning setting. Learning DRL agents using very high sparse
networks is still an open-challenging task.

Learning Behavior and Speed. DRL agents learn through trial-
and-error due to the lack of true labels. An agent starts training
with samples generated from a purely exploratory policy, and new
samples are drawn from the learning policy over time. Our results
show that dynamic sparse agents have faster adaptability to the
newly improved samples, thanks to the generalization ability of
sparse neural networks [21]. This leads to higher learning speed,
especially at the beginning of the training. We hypothesize that
dense neural networks, being over-parameterized, are more prone
to memorize and overfit the inaccurate samples. A longer time is
required to adapt to the newly added samples by the improved
policy and forget the old ones.

To validate this hypothesis, we analyze the behavior of a dense
TD3 agent when it starts training with samples generated from a
learned policy instead of a purely exploratory one. We performed
this analysis on HalfCheetah-v3. We test two learned policies with
different performance to study how the quality of the initial sam-
ples affects the learning behavior. To this end, we train two dense
policies using TD3 for 5× 105 and 7× 105 steps on Half-Cheetah-v3.
Similarly, we train two sparse policies for the same time steps us-
ing DS-TD3. Instead of using a purely exploratory policy, we draw
samples from the learned policies to fill the initial buffers for dense
and dynamic sparse agents that learn from scratch.

As illustrated in Figure 3, the learning speed of DS-TD3 and TD3
becomes close to each other at the beginning. Afterward, DS-TD3
performs better than TD3 since the new samples are generated from
the current learning policies. With initial samples drawn frommore
improved policy (Figure 3b), dense TD3 learns faster. It achieves
higher performance than the baseline that starts learning with
samples drawn from the policy trained for 5 × 105 steps (Figure
3a). This reveals that the performance of dense DRL agents is more
affected by the initial samples. The better the samples are, the
higher performance is. On the other hand, DS-TD3 is more robust
to over-fitting, less affected by the quality of the initial samples,
and quickly adapt to the improved ones over time.

5 DISCUSSION ON HARDWARE AND
SOFTWARE SUPPORT

As a joint community effort, research on sparsity is going into three
parallel directions: First, hardware that supports sparsity. NVIDIA

released NVIDIA A100, which supports a 50% fixed sparsity level
[65]. Second, software libraries that support truly sparse imple-
mentations. Efforts have been started to be devoted to supervised
learning [32]. Third, algorithmic methods, our focus, that aim to
provide approaches that achieve the same performance of dense
models using sparse networks [21]. With the parallel efforts in
the three directions, we would be able to actually provide faster,
memory-efficient, and energy-efficient deep neural networks. This
is further discussed in [22, 37].

6 CONCLUSION
Introducing dynamic sparse training principles to the deep rein-
forcement learning field provides an efficient training process for
DRL agents. Our dynamic sparse agents achieve higher performance
than the state-of-the-art methods while reducing the memory and
computation costs by 50%. Optimizing the sparse topology during
training to adapt to the incoming data increases the learning speed.
Our findings show the potential of dynamic sparse training in ad-
vancing the DRL field. This would open the path to efficient DRL
agents that could be trained and deployed on low-resource devices
where memory and computation are strictly constrained.

A DS-SAC
In this appendix, we demonstrate that our proposed dynamic sparse
training approach can be integrated with other state-of-the-art DRL
methods. We use the soft actor-critic (SAC) method [17] and name
our improved version of it as Dynamic Sparse SAC or DS-SAC.

SAC is an off-policy algorithm that optimizes a stochastic policy.
A key feature of this method is entropy regularization. The policy
is trained to maximize a trade-off between expected return and
entropy (a measure of randomness). Thus, the agent addresses the
exploration-exploitation trade-off, which results in policies that
explore better. Algorithm 4 shows our proposed DS-SAC. We inte-
grated the four components of our approach (sparse topology initial-
ization, adaptation schedule, topological adaptation, and maintain
sparsity levels) into the original algorithm.

Tasks.We compared our proposed DS-SAC with SAC. We per-
formed our experiments on five MuJoCo control tasks. Namely, we
tested the following environments: HalfCheetah-v3, Hopper-v3,
Walker2d-v3, Ant-v3, and Humanoid-v3.

Experimental settings. We follow the setting from the SAC
method [16]. All networks are multilayer perceptrons with two
hidden layers of 256 neurons and a ReLU activation function. The
networks are training with Adam optimizer and a learning rate
of 0.0003. We use mini-batches of 256. Each environment is run
for 1 million steps. As DRL algorithms and their variants behave
differently in various settings/environments, to cover a wider range
of possible scenarios, we study here the case of hard target update
where 𝜏 = 1 [16]. Following the original paper, target update inter-
val= 1000. We use a temperature 𝛼 of 0.2. Table 3 shows the value
used for _1 and _2 to determine the sparsity levels for DS-SAC. We
use 𝑒 of 1000 and [ of 0.1. The hyperparameters are selected using
a random search. Our results are reported over 5 seeds.

Metrics. We used the same metrics discussed in Section 4 to
assess the performance of our proposed method.



Algorithm 4 DS-SAC

1: Require: _𝑙 , [, 𝑒
2: Create 𝑴𝝓 , 𝑴𝜽1 , and 𝑴𝜽2 with Erdős–Rényi random graph

with sparsity level _𝑙
3: \1 ← \1⊙ 𝑴𝜽1 , \2 ← \2⊙ 𝑴𝜽2 , 𝜙 ← 𝜙 ⊙ 𝑴𝝓

4: Initialize target networks \̄1 ← \1, \̄2 ← \2
5: D ← ∅ // Initialize an empty replay pool
6: for each iteration do
7: for each environment step do
8: 𝑎𝑡 ∼ 𝜋𝜙 (𝑎𝑡 |𝑠𝑡 ) // Sample action from the policy
9: 𝑠𝑡+1 ∼ 𝑝 (𝑠𝑡+1 |𝑠𝑡 , 𝑎𝑡 ) // Sample transition from the envi-

ronment
10: D ← D ∪ {(𝑠𝑡 , 𝑎𝑡 , 𝑟 (𝑠𝑡 , 𝑎𝑡 ), 𝑠𝑡+1)} // Store the transition

in the replay pool
11: end for
12: for each gradient step do
13: \𝑖 ← \𝑖 − _𝑄 ∇̂\𝑖 𝐽𝑄 (\𝑖 ) // Update Q-functions
14: if 𝑡 mod 𝑒 then
15: \𝑖 ← TopologicalAdaptation(\𝑖 ,𝑴𝜽𝒊 , [) (Algo. 2)
16: end if
17: 𝜙 ← 𝜙 − _𝜋 ∇̂𝜙 𝐽𝜋 (𝜙) // Update policy weights
18: if 𝑡 mod 𝑒 then
19: 𝜙 ← TopologicalAdaptation(𝜙,𝑴𝜙 , [) (Algo. 2)
20: end if
21: \̄𝑖 ← 𝜏\𝑖 + (1 − 𝜏)\̄𝑖 // Update target network
22: \̄𝑖 ←MaintainSparsity(\̄𝑖 , ∥\𝑖 ∥0) (Algo. 3)
23: end for
24: end for

Table 3: The value used for _1 and _2 in each environment
for the DS-SAC algorithm.

Environment _1 _2

HalfCheetah-v3 12 80
Walker2d-v3 12 80
Hopper-v3 7 20
Ant-v3 30 64
Humanoid-v3 61 64

Results. Figure 4 shows the learning behavior of DS-SAC and
SAC. Consistent with our previous observations, DS-SAC learns
faster, especially at the beginning of the training. The LCA of DS-
SAC is higher than SAC for all environments, as shown in Table
4. DS-SAC outperforms the final performance of SAC for all envi-
ronments except one where it achieves a very close performance
to it, as illustrated in Table 5. Please note that the results of SAC
are slightly different from the ones obtained in Section 4.5 as we
study here the hard target update case of SAC [17].

These experiments reveal that we can achieve gain in a DRL
agent’s learning speed and performance while reducing its required
memory and computation costs for training.
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Figure 4: Learning curves of SAC and DS-SAC on different
continuous control tasks. The shaded region represents the
standard deviation of the average evaluation over 5 runs.

Table 4: Learning curve area (LCA) of SAC and DS-SAC.

Environment SAC DS-SAC (ours)

HalfCheetah-v3 1.6229 1.7081
Walker2d-v3 0.5368 0.5906
Hopper-v3 0.4441 0.4875
Ant-v3 0.7504 0.8229
Humanoid-v3 0.3776 0.6777

Table 5: Average return over the last 10 evaluations of 1 mil-
lion time steps using SAC and DS-SAC.

Environment SAC DS-SAC (ours)

HalfCheetah-v3 11645.12 ± 425.585 11084.39 ± 445.15
Walker2d-v3 3858.20 ± 689.913 4216.77 ± 236.23
Hopper-v3 3100.39 ± 374.45 3229.39 ± 135.82
Ant-v3 5899.30 ± 197.15 5943.54 ± 169.95
Humanoid-v3 5425.56 ± 196.33 5584.64 ± 109.40
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