
A Survey on Discrete Multi-Objective Reinforcement Learning
Benchmarks

Thomas Cassimon
University of Antwerp - imec
IDLab - Faculty of Applied

Engineering
Antwerp, Belgium

thomas.cassimon@uantwerpen.be

Reinout Eyckerman
University of Antwerp - imec
IDLab - Faculty of Applied

Engineering
Antwerp, Belgium

Siegfried Mercelis
University of Antwerp - imec
IDLab - Faculty of Applied

Engineering
Antwerp, Belgium

Steven Latré
University of Antwerp - imec
IDLab - Faculty of Applied

Engineering
Antwerp, Belgium

Peter Hellinckx
University of Antwerp - imec
IDLab - Faculty of Applied

Engineering
Antwerp, Belgium

ABSTRACT
In this paper, we investigate the current state of the art in Multi-
Objective Reinforcement Learning (MORL) benchmarking for prob-
lems with discrete state and action spaces. Our investigation finds
that there exist a large number of different MORL benchmarks,
but there seems to be little standardization among the MORL com-
munity. Through a quantative comparison, it becomes clear that
many of the MORL benchmarks being used today do not have the
same complexity as their Single-Objective Reinforcement Learn-
ing (SORL) counterparts. Based on the existing benchmarks for
MORL problems, the authors propose an extended version of the
commonly used Deep Sea Treasure (DST) benchmark. The new
benchmark is shown to be flexible enough to cover a wide range
of complexities, from an image-based alteration of the DST bench-
mark, to complexities rivalling those used in contemporary SORL
research. Finally, the authors also provide an implementation of
their benchmark.

KEYWORDS
Multi-Objective Optimization,Multi-Objective Reinforcement Learn-
ing, Reinforcement Learning, Deep Learning, Deep Sea Treasure

1 INTRODUCTION
1.1 Multi-Objective Reinforcement Learning
Multi-Objective Reinforcement Learning (MORL) is the subfield of
Reinforcement Learning (RL) that attempts to find optimal policies
for problems with at least two objectives. Within this field, vari-
ous techniques have been proposed, such as Non-Stationary Policy
Gradients [7], Q-Learning with Lexicographical Thresholding [10]
and outer-loop approaches like Deep Optimistic Linear Support
Learning (DOL) [19]. A property of MORL or even Multi-Objective
Optimization (MOO) in general is that each of the objectives is in
conflict with the others. When two objectives can be optimized con-
currently, the problem becomes equivalent to optimizing the sum
of both objectives, effectively reducing the number of objectives by
one.

Proc. of the Adaptive and Learning Agents Workshop (ALA 2022), Cruz, Hayes, da Silva,
Santos (eds.), May 9-10, 2022, Online, https://ala2022.github.io/ . 2022.

MORL problems are usually formalized using Multi-Objective
Markov Decision Processes (MOMDPs), a multi-objective variation
of a traditional Markov Decision Process (MDP). In [11], Hayes et
al. define a MOMDP as a 6-tuple ⟨𝑆,𝐴,𝑇 ,𝛾, 𝜇, 𝑹⟩:

• 𝑆 is the state space
• 𝐴 is the action space
• 𝑇 : 𝑆 ×𝐴 × 𝑆 → [0, 1] is a probabilistic transition function
• 𝛾 ∈ [0, 1) is a discount factor
• 𝜇 : 𝑆 → [0, 1] is a distribution over initial states
• 𝑹 : 𝑆 × 𝐴 × 𝑆 → R𝑑 is a vector-valued reward function,
giving the immediate reward for 𝑑 different objectives.

1.2 Optimality Criteria
When considering MORL approaches, contrary to Single-Objective
Reinforcement Learning (SORL), there are two different optimality
criteria. Which optimality criterion applies to a specific problem,
depends on how the optimal policy is intended to be used. In their
survey on sequential multi-objective decision making, Roijers et
al. [22] described these two optimality criteria: Expected Scalarized
Return (ESR) and Scalarized Expected Return (SER). In their paper,
they formulate ESR as shown in equation 1, where 𝑢 () is the utility
function:

𝑉 𝜋
𝑢 = E

[
𝑢

(∞∑︁
𝑡=0

𝛾𝑡𝑟𝑡

)
|𝜋, 𝜇0

]
(1)

The mathematical formulation of SER, on the other hand, is
shown in equation 2:

𝑉 𝜋
𝑢 = 𝑢

(
E

[∞∑︁
𝑡=0

𝛾𝑡𝑟𝑡 |𝜋, 𝜇0

])
(2)

Under ESR, a user derives utility from a single roll-out of its
policy, while under SER utility is derived from the expected outcome
(mean over multiple roll-outs). In the context of MOO, the notions
of ESR and SER are valuable, since they describe two fundamentally
different types of solutions. It is important to note that, under a
linear utility function, ESR and SER are equivalent. A practical
example of ESR is selecting the appropriate medical treatment for
a patient. Since this treatment will only be carried out once, it is
important that the policy selecting the treatment optimizes for this

https://ala2022.github.io/

one policy execution [23]. An example of SER is demonstrated by
Khamis et al. in their paper on MORL for traffic signal control [17].
The policy found by Khamis et al. is executed many times, and is
only optimal if it can consistently route traffic in an optimal way,
under different traffic conditions.

1.3 Many-Objective Optimization
While there is no exact definition of when a Multi-Objective Opti-
mization problem becomes a Many-Objective Optimization (MaOO)
problem, the line is typically drawn around 4 objectives, with any-
thing with 4 or more objectives considered a Many-Objective Op-
timization problem. Saxena et al. [24] define a MaOO problem to
have ‘significantly more than five’ objectives, while [18], [33] and
[39] say MaOO problems are any problem with more than three
objectives. Despite these differences, it is generally accepted that
MaOO problems are significantly more challenging and less intu-
itive than MOO problems. While the authors thought it important
to point out the difference between MOO and MaOO, this paper
will restrict itself to MOO problems.

In section 2, the authors discuss existing MOO and MORL bench-
marks, and compare them based on how often they have been used,
their complexity and the availability of implementations for other
researchers to use. Section 3 details a newly proposed benchmark
based on gaps identified in the state-of-the-art. Next, section 4 dis-
cusses the accompanying Pareto front, and some guidelines when
using this benchmark. Finally, the authors provide some potential
directions for future research in section 5.

2 STATE OF THE ART
2.1 Existing Benchmark Suites
In MOO literature, there exist numerous benchmarks, such as the
Walking Fish Group (WFG) Toolkit [13], ZTD Benchmark [40]
and the DTLZ Benchmark [8]. When analyzing benchmarks like
ZTD, DTLZ and WFG, we notice that most of them are not tai-
lored towards sequential decision making problems. While this
provides a nice playground for Multi-Objective Evolutionary Algo-
rithms (MOEAs), it does not suit many RL problems well as they are
usually built as sequential decision making algorithms. Since this
publication focuses on MORL, rather than MOEAs, we will omit
these benchmarks in further comparisons.

In their 2011 paper [26], Vamplew et al. included a link to a list
of benchmarks in their original publication1. We will discuss the
benchmarks mentioned in [26] here again, evaluating them in light
of todays algorithms and challenges.

One of the most popular benchmarks among MORL researchers
is the Deep Sea Treasure (DST) benchmark. This benchmark was
originally proposed by Vamplew et al. [26] in 2011, due to a lack of
standardized, rigorous benchmarking methods for newly developed
MORL techniques. Since this benchmark was proposed, the capa-
bilities of RL algorithms have expanded significantly, reducing the
level of challenge offered by this benchmark. The main reason for
this is the limited size of the state and action space, the fact that it

1https://web.archive.org/web/20120324223820/http://uob-
community.ballarat.edu.au/ pvamplew/MORL.html

only has two objectives, the simplicity of the underlying transition
function, and its determinism.

One possible way of avoiding the triviality of problems like the
DST benchmark is by converting their observations from simple,
scalar observations to image-based observations. This has been
done before in the field of SORL, for example, when using images
of Atari games as benchmarks [4]. In the field of MORL, this was a
technique used by Mossalam et al. [19] to raise the complexity of
the DST problem they used to evaluate their DOL algorithm. While
the problem complexity was increased, it was still not as complex
as contemporary SORL benchmarks.

The multi-objective mountain car problem (MO-MountainCar)
is another common benchmark in the field of MORL. It was also
mentioned in Vamplew et al. [26], and used as a benchmark by,
among others, Mossalam et al [19]. The single-objective problem
that it is derived from is originally continuous, but in their paper,
Vamplew et al. propose a discretized version. In Vamplew et al.’s
version, the state space is discretized to a 6 × 6 grid of the original
state space, with the standard discrete set of 3 possible actions
(forward, idle, reverse). Similar to its SORL counterpart, the MO-
MountainCar offers a relatively simple challenge to modern RL
algorithms.

MO-Puddleworld is another one of the benchmark problems
proposed by Vamplew et al. in their 2011 paper [26]. It is a two-
objective problem inwhich an agentmust reach the top-right square
of a grid as quickly as possible, without hitting any of the puddles
present in the world. These two criteria are the two objectives
that must be optimized for in this problem. The original, SORL
version of the problem used a continuous state and action space,
but similar to MO-MountainCar, Vamplew et al. discretized this, to
reduce the number of policies that need to be evaluated to find a
complete Pareto front. We were not able to find any papers that
used MO-PuddleWorld for evaluation of their methodology.

The Resource Gathering problem originally proposed by Barrett
and Narayanan [2] is another MORL benchmark discussed by Vam-
plew et al. [26]. In the Resource Gathering task, an agent moves
along a discrete grid, gathering different resources (gold and gems
in the original). These resources can be gathered on specific spaces.
There are also spaces occupied by enemies which may attack an
agent with a certain probability. Agents are rewarded based on
three criteria: Enemy attacks, gold gathered, gems gathered. Re-
wards for resources are only awarded to the agent if it manages to
reach the starting square carrying resources without being attacked
along the way.

Another, more recently proposed problem, is the fruit tree navi-
gation task, proposed by Yang et al. in their paper "A Generalized
Algorithm for Multi-Objective Reinforcement Learning and Policy
Adaptation" [38]. In this task, an agent must navigate a full binary
tree of depth 𝑑 , to arrive at a leaf node. Each leaf node has a 6-
objective reward associated with it, and leaf nodes are constructed
in a such a way that there exists a scalarization for which that
leaf node is optimal. Similar to the original DST problem, the fruit
tree navigation problem is completely discrete. While tasks like the
Fruit Tree Navigation problem can serve to check if a new MORL
algorithms could feasibly work, when compared to current SORL
problems, the complexity they offer is limited.

https://web.archive.org/web/20120324223820/http://uob-community.ballarat.edu.au/~pvamplew/MORL.html
https://web.archive.org/web/20120324223820/http://uob-community.ballarat.edu.au/~pvamplew/MORL.html

In their recent paper "A Practical Guide to Multi-Objective Re-
inforcement Learning and Planning" [11], Hayes et al. argue that
many of the currently used MORL benchmarks are quite simple.
One of the possible solutions they propose is themulti-objectification
of SORL benchmarks. One such example is Yang et al.’s use of a
Super Mario game in their paper [38]. Yang et al. modified the
SORL version of Super Mario Bros. [16] to include five objectives:
x-position, time, deaths, coins, and enemies. This creates a bench-
mark which is on par with most contemporary SORL benchmarks
in terms of complexity (when used in an image-based manner), and
offers a relatively large number of objectives. We note that, since
this benchmark has more than three objectives, it is technically
considered a MaOO benchmark.

Hayes et al. [10], in their paper on Dynamic Thresholded Lexi-
cographic Ordering, use a problem called Dynamic Economic Emis-
sions Dispatch (DEED). DEED was originally proposed by Basu [3],
and optimized using Nondominated Sorting Genetic Algorithm -
II (NSGA-II). In DEED aMORL agent must manage nine power gen-
erators in such a way that running costs, emissions and a penalty
function capturing constraint violations are all balanced according
to a set of preferences. In their paper Hayes et al. treat DEED as
a multi-agent reinforcement learning problem, as well as a MORL
problem, which can create a number of complications not present
in single-agent systems.

Bonus World is a relatively recent benchmark, introduced by
Vamplew et al. as part of their research for "Softmax exploration
strategies for multiobjective reinforcement learning" [27]. It fea-
tures an agent moving around a grid. Certain squares of the grid can
not be visited, while others can activate or deactivate a bonus state,
that doubles the agents reward at the end of the episode. Depending
on where the agent ends the episode, it gets a different reward for
two objectives, with the time to complete an episode being a third
objective.

Alongside BonusWorld, Vamplew et al. also introduced the Space
Exploration benchmark in their work [27]. Similar to Bonus World,
Space Exploration involves an agent navigating a 2-dimensional
grid. Agents can move to all 8 neighbouring squares, and must
avoid asteroids and pockets of radiation, while navigating to one
of several planets. The Space Exploration benchmark is a two-
objective benchmark, where an agent must minimize its radiation
exposure, while attempting to find the planet with the highest
desirability.

Many of the benchmarks mentioned in previous paragraphs were
implemented as part of the MORL-Glue benchmark suite [29] and
can be found on GitHub2.

2.2 Popularity Analysis
In Table 1 we show which publications used which discrete bench-
marks to evaluate the performance of their methodologies. Unfor-
tunately, due to time and space constraints, this table is far from ex-
haustive and several benchmarks were omitted (Pyramid MDP [32],
Task-Oriented Dialog Policy Learning [38], Linked Rings [28], . . .).
Due to similar considerations, we also did not go into detailed de-
scriptions of some benchmarks like the (Pressurized) Bountyful Sea
Treasure [32]. Although some benchmarks were not included or

2https://github.com/FedUni/MORL

discussed in detail, we feel like the selected subset is an accurate
representation of the most commonly used MORL benchmarks.

From Table 2, we can see that, despite its relative simplicity, the
DST benchmark is still the most widely used.

We would also like to note that manyMORL techniques have not
been tested on standardized benchmarks, but rather, were tested
directly on the problem they intend to solve. This allows each algo-
rithm’s designers to solve the problem at hand and move on, but
it does further complicate the process of assessing the merits of
different MORL algorithms, and hampers general MORL research.
Examples of this include MoTiAC [37], NPG-NAS [7] and Mnas-
Net [25].

Another conclusion that can be drawn from this enumeration of
MORL benchmark problems is the strong similarities betweenmany
of them. When comparing, for example, the Resource Gathering
task to the Space Exploration task and the BonusWorld task, as well
as the PuddleWorld task and the DST task, it becomes apparent that
all five of these tasks are variations of navigating a two-dimensional
grid, with positive and negative rewards being given for certain grid
squares. While the details such as the exact size of the state space,
action space and Pareto front vary between these benchmarks, the
underlying transition functions are largely the same.

2.3 Complexity Analysis
In section 2.1 we listed a number of MORL benchmarks, and looked
at their popularity, noting which publications used which bench-
marks to evaluate their methodologies. In this section, we will
analyse the same set of benchmarks, based on their complexity.
Each benchmark’s complexity will be assessed in terms of the
size of its state space, action space and the number of objectives
that can be optimized for. While this is not an ideal measure of
complexity for a RL benchmark, it is a complexity measure that
can be easily quantified and compared. In this comparison, we
also included 2 SORL benchmarks to allow readers to compare
the complexity of MORL benchmarks to their SORL counterparts.
The chosen reference benchmarks are space-invaders-v0 and
space-invaders-ram-v0. Both of these are games from the Atari
2600 benchmark, which contains a number of emulated games from
the similarly named video game console. Space invaders is a game in
which the player must shoot up at a number of enemies traversing
the screen left-to-right, alternating direction and dropping down
when they reach the edge of the screen. The players wins when
all enemies are defeated, and loses if one of the enemies manages
to reach the bottom of the screen. space-invaders-ram-v0 uses
the console’s Random-Access Memory (RAM) as an observation,
while space-invaders-v0 allows the agent to observe the screen’s
pixels directly.

From the shapes of the observation spaces of various benchmarks
in Table 2, it can be seen that image-based RL benchmarks have
gained some popularity over the past couple of years. While this is
certainly an option to raise the complexity of these benchmarks,
it does not necessarily complicate the underlying task. It merely
makes the process of feature extraction more challenging. Given
the current state of the art in computer vision, and the pace at
which it continues to advance, we would like to argue against the
use of image-based observations to increase problem complexity,

A
be
ls
et

al
.[
1]

Ba
rr
et
ta

nd
N
ar
ay
an
an

[2
]

Ba
su

[3
]

Ch
en

et
al
.[
6]

H
ay
es

et
al
.[
10
]

H
or
ie
et

al
.[
12
]

M
os
sa
la
m

et
al
.[
19
]

Va
m
pl
ew

et
al
.[
27
]

Va
n
M
off

ae
rt
et

al
.[
30
]

Va
n
M
off

ae
rt
et

al
.[
31
]

Va
n
M
off

ae
rt
an
d
N
ow

é
[3
2]

W
an
g
et

al
.[
34
]

W
ie
rin

g
et

al
.[
35
]

Ya
ng

et
al
.[
38
]

Sum
MO-Super Mario Brothers [38] 1 2
DEED [10] 2
Image-based DST [19] 2
MO-Puddleworld [26] 0
Bonus World [27] 1
Space Exploration [27] 1
Resource Gathering [2] 3
Fruit Tree Navigation [38] 1
Pressurized Bountyful Sea Treasure [32] 1
DST [26] 8
MO-MountainCar [26] 2

Table 1: Table showing which publications tested their algorithms on which benchmarks, along with the total number of
publications using each benchmark.

1 Chen et al.’s version of MO-Super Mario Brothers only used two objectives.

Environment Objectives Obs. Shape |S| Act. Shape |A| |S × A| Known Pareto front
MO-Super Mario Brothers 5 240 × 256 × 3 4.72 × 107 1 7 3.30 × 108
space-invaders-v0[4] 1 210 × 160 × 3 2.58 × 107 1 6 1.55 × 108 N/A
DEED 3 2 2.01 × 104 1 101 2.03 × 106
Image-based DST 2 10 × 11 × 3 8.45 × 104 1 4 3.38 × 105
space-invaders-ram-v0[4] 1 128 × 256 3.28 × 104 1 6 1.97 × 105 N/A
MO-Puddleworld 2 2 4.00 × 102 1 4 1.60 × 103
Bonus World 3 2 1.62 × 102 1 4 6.48 × 102
Space Exploration 2 2 6.50 × 101 1 8 5.20 × 102
Resource Gathering 3 2 1.00 × 102 1 4 4.00 × 102
Fruit Tree Navigation 6 2 1.27 × 102 1 2 2.54 × 102
Pressurized Bountyful Sea Treasure 3 2 6.10 × 101 1 4 2.44 × 102
DST 2 2 6.10 × 101 1 4 2.44 × 102
MO-MountainCar 3 2 3.60 × 101 1 3 1.08 × 102

Table 2: Comparison of state and action space sizes for several single- and multi-objective RL benchmarks. Benchmarks are
ordered in descending order of complexity. SORL benchmarks are written in italics.

since advancements in computer vision are likely to render these
complexity increases redundant in a number of years, when tech-
niques like Vision Transformer (ViT) [9] become more mainstream
and accessible.

Table 2 shows that there do exist MORL benchmarks that rival
contemporary SORL benchmarks in terms of complexity. However,
some of these come with some complications. Most notably, the
DEED benchmark is a multi-agent problem, which can introduce a
number of added complexities that only serve to complicate single-
agent MORL research. While the image-based DST benchmark just

about matches the space-invaders-ram-v0, even this is consid-
ered fairly simple by current SORL standards. We also note that
our comparison ignores various pre-processing techniques often
used in SORL publications targetting image-based benchmarks like
frame-stacking, frame-skipping and grayscale conversions. While
these could be applied to all image-based benchmarks, we focus on
the original problems, rather than the pre-processed ones.

2.4 Availability Comparison
In this section, we will look at the various benchmarks discussed
in previous sections, and see for which of these benchmarks (open-
source) implementations are available. The importance of the avail-
ability of the source code for benchmarks has already been high-
lighted in [11].We believe that Table 1 further shows the importance
of this, since it is clear that, even 10 years after Vamplew et al.’s
original paper pushing for standardized benchmarks [26], there is
still little standardization among MORL users.

When it comes to benchmarking RL algorithms, a commonly
used Application Programming Interface (API) is that of OpenAI’s
gym [5]. Gym proposes a simple software API that encapsulates the
underlyingMDP. Through this API, gym allows for algorithms to be
easily tested on multiple different problems to show an algorithms’
capability to generalize to different problems. While gym’s API has
been adopted by the vast majority of SORL publications, this is not
necessarily the case for MORL publications, which further hampers
easy comparisons between algorithms and benchmarks.

Since DST is one of the most commonly used benchmarks, there
are a couple of implementations already available. Van Moffaert
and Nowé provide an implementation of the DST problem as part
of their paper on Pareto-Q Learning [32]. Their implementation3 is
written in Python, and compliant with the gym interface. They also
provide an alternative variant of the DST problem, the Bountyful
Sea Treasure variant [30].

Another implementation is that of Nguyen et al. [20], as part
of their Multi-Objective Deep Reinforcement Learning (MODRL)
framework. Their framework4 contains both problems and solu-
tion strategies, and is written in Python. The DST environment
is not fully compatible with the OpenAI gym interface (The im-
plementation is missing certain attributes such as action_space
and observation_space, and likely doesn’t implement all func-
tionality present in a regular gym environment, since it does not
inherit from gym.Env class or any of its subclasses). While the API
doesn’t match that of gym, it does present an interface that is simi-
lar enough to allow research to rapidly adapt it to a gym-compatible
environment. This implementation is much more customizable, and
while it doesn’t allow for the specification of arbitrary Pareto fronts,
it does have the built-in capability to present a convex, concave,
linear and mixed (convex and concave) Pareto front.

In Table 3 we list all the investigated benchmarks, and compare
them based on the availability of an (open-source) implementation.
We consider implementations in multiple programming languages,
but note that the vast majority of RL research currently is performed
in Python, thus, any implementation that doesn’t use Python poses
a significant disadvantage for anyone hoping to use it. In some
cases, converting a SORL benchmark to a MORL benchmark is a
reasonable option, because of this, we list both SORL and MORL
implementations of the discussed benchmarks.

Table 3 notes a lack of DEED implementations. While Basu [3]
provided all necessary data and formulae in their paper, they did
not provide any implementation of this problem, and neither did
Hayes et al. [10].

3https://gitlab.ai.vub.ac.be/mreymond/deep-sea-treasure
4https://personal-sites.deakin.edu.au/ thanhthi/drl.htm

3 PROPOSED BENCHMARK
Following the comparisons from section 2.1, 2.3 and 2.4, and some
of the conclusions from [26] and [11] we now propose a new bench-
mark. The aim of this new benchmark is to fill the complexity gap
between image-based DST environments, and the MO-Super Mario
Brothers environment for single-agent MORL techniques. We will
aim to achieve this complexity, not by increasing the complexity
of feature extraction, but by increasing the size of the Pareto front,
and making the underlying dynamics somewhat more complex. We
will also be making this benchmark available for other researchers,
hoping to help improve the state of benchmarking in MORL.
Similar to the Pressurized, Bountyful Deep Sea Treasure [32], our
version of the DST problem involves the optimization of three con-
flicting objectives: Time, Treasure and Fuel. The observation and
action space for our benchmark are also larger than the original
DST problem. Similar to the DST problem, we define this problem
to be a finite-horizon MDP, limited to 1000 time steps.

3.1 State Space
The state space of this new DST problem is significantly larger
than the original one [26]. The new state space consists of eleven
two-element column vectors of integers:

S ∈ Z2×11 (3)
The first column vector represents the agent’s current velocity,

expressed as a separate x- and y-component. The following ten
column vectors each represent the agent’s relative coordinates to
each of the treasures. This observation differs from the original DST
problem in that it directly tells the agent where each of the potential
solutions are. By changing the formulation of the observation space,
the agent’s task changes from memorizing the treasure locations
and a path to them, to learning how to traverse the ocean towards
whatever treasure the agent finds most interesting.

In the standard DST environment, we know that there are 61
positions the agent can visit. In the proposed environment, the
agent’s velocity can not exceed 5 in any direction, meaning that
there are a total of 121 different velocity vectors the agent can
achieve ((5 + 1 + 5)2). While not every velocity vector is achievable
in every position, this still allows us to place an upper bound on
the size of our state space of 7381, which is already significantly
larger than the original DST problem, which had a state space of
60 elements. We note that our implementation also allows users
to define arbitrarily large Pareto fronts, to further increase the
problem complexity.

3.2 Action Space
The action space consists of a two-element vector. The elements
of this vector represent the respective x- and y-components of
the acceleration the agent would like to make. In the new DST
environment, the agent no longer takes discrete steps in one of
the cardinal directions, but rather, the agent can accelerate in one
or both dimensions, allowing for more efficient ways of reaching
each treasure at the cost of a higher fuel consumption. The use of
accelerations, rather than unit velocity in cardinal directions also
increases the complexity of the underlying dynamics, since agents
must now account for built-up inertia. An agent can accelerate up

https://gitlab.ai.vub.ac.be/mreymond/deep-sea-treasure
https://personal-sites.deakin.edu.au/~thanhthi/drl.htm

Benchmark SORL Implementations MORL Implementations
MO-Super Mario Brothers [16] [38]
DEED
Image-based DST [19]1
MO-Puddleworld [14] [15]2
Bonus World [29]5
Space Exploration [29]5
Resource Gathering [29]5
Pressurized Bountyful Sea Treasure4
DST [15]2[19]1[20]3[32][38] [29]5
Fruit Tree Navigation [38]
MO-MountainCar [5] [15]2[20]3[29]5

Table 3: Comparison of the different benchmarks, based on the availability of open-
source implementations

1 Mossalam et al.’s implementation of these benchmarks is written in Lua.
2 Issabekov et al.’s implementation of these benchmarks is written in in Java.
3 Nguyen et al.’s implementation of these benchmarks is written in Python, but does not
adhere to the gym API.

4 Van Moffaert and Nowé do provide an implementation of the similar Bountyful Sea Trea-
sure [32]

5 Part of the MORL-Glue Benchmark Suite, written in Java

to three units in any direction yielding a total size of our action
space of 49 ((3 + 1 + 3)2).

3.3 Dynamics
At a high-level, the dynamics of the new MDP are similar to that
of the original [26]: If the agent attempts to make a move that
would result in a collision, the state is left unchanged, otherwise,
the agent’s desired action is executed. We will only show the dy-
namics function for the x-component for brevity, noting that a set
of identical operations are executed for the y-component. We start
off by defining our action 𝑎:

𝑎 �
(
𝑎𝑥 , 𝑎𝑦

)
(4)

Next, we determine a preliminary next velocity and position,
which will be used for collision checking.

𝑣 ′𝑡+1,𝑥 = 𝑣𝑡,𝑥 + 𝑎𝑥 (5)
𝑥 ′𝑡+1 = 𝑥𝑡 + 𝑣 ′𝑡+1,𝑥 (6)

Knowing the position of the submarine if the action was exe-
cuted, we can check for collisions, and update our actual velocity
and position accordingly. We also set a maximum velocity for the
submarine, 𝑣𝑚𝑎𝑥 , that it can never exceed.

𝑣𝑡+1,𝑥 =

{
𝑚𝑖𝑛

(
𝑣𝑚𝑎𝑥 , 𝑣𝑡,𝑥 + 𝑎𝑥

)
if 𝑐𝑜𝑙𝑙𝑖𝑑𝑒𝑠

(
𝑥 ′
𝑡+1

)
= 0

0 otherwise
(7)

𝑥𝑡+1 = 𝑥𝑡 + 𝑣𝑡+1,𝑥 (8)
We note that in this case, the 𝑐𝑜𝑙𝑙𝑖𝑑𝑒𝑠 () function should not only

check for collisions in the cardinal directions, but also in diagonal
directions. Another important note is that the agent’s velocity is
reduced to zero if an action would cause a collision, which is a

behaviour an agent could attempt to exploit to arrest movement
without consuming fuel.

3.4 Rewards
In terms of rewards, the new DST problem inherits the two objec-
tives from the old DST problem (time, 𝑟𝑏 and treasure, 𝑟𝑝), and adds
a third objective, fuel. The fuel objective was designed in such a
way that it conflicts with the two already existing objectives. When
the agent attempts to find far-away treasures, it will need to spend
more fuel to cover the distance, and when the agent wants to cover
a given distance quicker, it can spend more fuel accelerating and
decelerating.

Formally, we define the fuel objective 𝑟 𝑓 as the negative sum of
the squares of the acceleration in both dimensions, if the action
does not cause a collision, or 0 if the action would cause a collision:

𝑟 𝑓 =

{
−

(
𝑎2𝑥 + 𝑎2𝑦

)
if 𝑐𝑜𝑙𝑙𝑖𝑑𝑒𝑠

(
𝑥 ′
𝑡+1

)
= 0

0 otherwise
(9)

We note that this function creates the exploit mentioned earlier
in section 3.3. The formulation of this reward function also does not
necessarily make collisions sub-optimal, since coasting (Moving
without accelerating using built-up inertia) uses the same amount
of fuel as colliding.

This leads us to 𝑹 (𝑠, 𝑎, 𝑠 ′) as:

𝑹
(
𝑠, 𝑎, 𝑠 ′

)
=

(
𝑟𝑏

(
𝑠, 𝑎, 𝑠 ′

)
, 𝑟𝑝

(
𝑠, 𝑎, 𝑠 ′

)
, 𝑟 𝑓

(
𝑠, 𝑎, 𝑠 ′

))
(10)

3.5 Complexity Analysis
Knowing the observation and state space for our newly proposed
benchmark, we can now perform the same complexity calculations
that we did for other benchmarks. In this complexity comparison,
we will compare two configurations of the proposed benchmark,

the most simple configuration, using the values from section 3.1
and 3.2, and a much more complicated configuration, that rivals the
MO-Super Mario Brothers benchmark in complexity. To allow for
an easier comparison, we will repeat the two closest, single-agent
MORL benchmarks here from Table 2.

The first configuration (Configuration A) we propose is the one
already touched on in section 3.1 and 3.2. It involves the same set
of treasures as the original DST environment, with a maximum
velocity of 5 in any direction and amaximum acceleration of 3 in any
direction. The total size of the state-action space is 3.62×105, which
is comparable to the image-based DST’s complexity of 3.38 × 105.

The next configuration that we propose (Configuration B) is
significantly more complex than the first. It requires adding 48 trea-
sures to the existing Pareto front, for a total of 58. This significantly
increases the number of states available to the agent, as well as the
size of the observation. In order to estimate the total size of the
state space, we assume treasures are added at linearly increasing
depths for these 48 new treasures. Next, we also allow the agent to
accelerate more rapidly, allowing it to cover the larger space much
quicker. The agent is allowed to accelerate up to 10 units in any
direction, and can accumulate up to 12 units worth of velocity. In
its totality, this configuration allows us to visit 1231 spaces, with a
total of 625 ((12 + 1 + 12)2) different velocities, leading to a total
state space size of 7.69 × 105. On top of that, our agent can accel-
erate in 441 ((10 + 1 + 10)2) different ways. This leaves us with a
total combined state-action space size of 3.39 × 108, which slightly
exceeds that of MO-Super Mario Brothers (3.30 × 108).

4 IMPLEMENTATION
We provide an implementation of both the proposed benchmark,
and the original DST problem [26], written in Python5 and com-
patible with gym [5]. The benchmark was also published as a PyPI
package6.

4.1 Pareto Front
In this section, we provide the Pareto front for the proposed bench-
mark, using Configuration A from section 3.5. While we do not
discuss it here, the Pareto front data for the original DST bench-
mark is also available in our repository. The Pareto front of the
proposed benchmark was determined empirically, using exhaustive
graph search. Solving this environment took 33.22 hours using 28
Intel E5-2680v4 Broadwell CPUs. The numerical data for the Pareto
front can be found in the same repository that contains the code
for the environment. Figure 1 shows the obtained Pareto front for
the new benchmark. It is important to note that one optimal solu-
tion was omitted from this Pareto front for clarity. This solution
involved the agent idling for the complete duration of the episode,
in order to minimize fuel consumption, it is however present in
the numerical dataset in the repository. Each point on the Pareto
front has been projected onto the time-treasure plane for clarity,
and horizontal lines have been drawn for all solutions that lead to
the same treasure.

Looking at Figure 1, the first notable property of this Pareto front
is that the number of points on the Pareto front (25 + 1) no longer

5https://github.com/imec-idlab/deep-sea-treasure
6https://pypi.org/project/deep-sea-treasure/

Treasure

0
20

40
60

80
100

120
Time

12
10

8
6

4
2

Fuel

20

15

10

5

0

3-Objective Pareto front

Figure 1: 3-Objective Pareto front. Points in blue lie on the
convex hull, while points in red are contained inside the
convex hull.

Treasure

0246810121416
Time

5
4

3
2

1
0

Fuel

20

15

10

5

0

3-Objective Pareto front (Detailed View)

Figure 2: Detailed view of the low-treasure region of the 3-
Objective Pareto front. Points in blue lie on the convex hull,
while points in red are contained inside the convex hull.

corresponds to the number of treasures (10). In our analysis, we will
ignore the 26th point generated by the submarine performing the
“idle" action 1000 times. While this point is theoretically optimal,
we argue that it does not produce a useful solution, and hence will

https://github.com/imec-idlab/deep-sea-treasure
https://pypi.org/project/deep-sea-treasure/

Environment Objectives Obs. Shape |S| Act. Shape |A| |S × A| Known Pareto front
Configuration B 3 2 × 58 7.69 × 105 2 441 3.39 × 108
MO-Super Mario Brothers 5 240 × 256 × 3 4.72 × 107 7 7 3.30 × 108
Configuration A 3 2 × 11 7.38 × 103 2 49 3.62 × 105
Image-based DST 2 10 × 11 × 3 8.45 × 104 1 4 3.38 × 105

Table 4: Comparison of the proposed state and action space sizes against two MORL benchmarks. Benchmarks are ordered in
descending order of complexity. Proposed benchmarks are marked in bold.

disregard it in further analysis. We can see that for each treasure,
there exist different trade-offs between fuel and time. Note, that not
all treasures are part of the Pareto front, the treasures that make
up the Pareto front are those with values {1, 2, 3, 8, 16, 50, 74, 124},
while the treasures with values {5, 24} are not part of the Pareto
front, as can be seen in the detailed view of the Pareto front in
Figure 2.

By looking at Figure 1 it can also be easily ascertained that the
Pareto front for this environment is not convex. In this Pareto
front, 9 out of 25 solutions lie inside the convex hull, rather than
on it. In the original DST problem, 3 out of 10 points formed local
concavities. Similar to the original DST problem, this presents an
interesting challenge for MORL algorithms, testing their ability to
handle non-convex Pareto fronts.

4.2 Guidelines
While the implementation is highly configurable, we recommend
anyone using our implementation, to always at least report perfor-
mance using the default settings (Configuration A), to ensure that
the results of a specific algorithm can be fairly compared to those
of other algorithms. The implementation and Pareto front dataset
provided by the authors is independently citable through Zenodo7.

5 DISCUSSION & FUTUREWORK
One major omission in this paper is the concept of constraints. Con-
straints in the context of MOO are usually formulated as a set of
(in)equalities that check certain properties of a solution. Constraints
pose an interesting challenge to the API proposed by gym [5], since
the current API provides no natural way of indicating that cer-
tain solutions are “unacceptable" or “invalid". While it is usually
possible to work around this – e.g., by ending episodes early, and
modifying reward functions to make constraint violations guaran-
teed to be sub-optimal – this is not always easy to achieve, and
prompts the question of whether or not gym provides the most
well-suited API for solving constrained optimization problems us-
ing RL agents. One such work-around is used by safety-gym, intro-
duced in OpenAI’s 2019 whitepaper [21]. Safety gym is completely
API-compatible with regular gym environments and simply passes
constraint information through the info dictionary that is returned
by an environment’s step() method.

Besides omitting constraints, we also chose to omit continuous
benchmark problems from this paper. While there are numerous
continuous, MORL problems that represent interesting challenges
to state-of-the-artMORL research, such as theMinecart problem [1],
or multi-objective versions of numerous Mujoco benchmarks [36],

7https://doi.org/10.5281/zenodo.5227091

we were unable to sufficiently address these within the confines of
this paper.

Another potential point of improvement, whose benefits could
extend beyond just the field of MORL, is better methodologies for
examining and comparing the complexity of benchmarks. In this
paper, the size of the state-action space was used as a measure
of problem complexity, but one of the most important, and often
complex parts of any MDP, its transition function, is completely
ignored in this. We believe that, in order to be able to do a fair com-
parison of RL benchmarks, some way of capturing the complexity
of transition functions is a requirement.

While this paper examined individual benchmarks, creating a
larger benchmark suite, composed of several different benchmarks
could help circumvent the weaknesses of individual benchmarks.
Similar efforts have already beenmade in the field ofMOO [8] [13] [40]
and SORL [4] [5]. After assembling such a benchmark suite, MORL
algorithms could be tested on a range of standardized test problems,
providing researchers with a more accurate way to evaluate the
performance of their algorithms. One possible starting point for
such a benchmark suite could be MORL-Glue [29]. This includes
a number of MORL benchmarks that cover a broad range of prob-
lems. MORL-Glue is written in Java, which can hamper adoption;
however, it is likely that a similar benchmark suite could be created
in Python using (some of) the implementations listed in table 3.

In this paper, a number of MORL benchmarks were compared.
Based on this comparison, a new MORL benchmark was proposed,
and an implementation was provided. The newly proposed bench-
mark was compared to existing benchmarks, showing that it filled
a need for medium to high-complexity benchmarks.

ACKNOWLEDGMENTS
This research received funding from the Flemish Government (AI
Research Program). This work was supported by the Research Foun-
dation Flanders (FWO) under Grant Number 1SC8821N. The com-
putational resources (Stevin Supercomputer Infrastructure) and
services used in this work were provided by the VSC (Flemish Su-
percomputer Center), funded by Ghent University, FWO and the
Flemish Government – department EWI.

REFERENCES
[1] Axel Abels, Diederik Roijers, Tom Lenaerts, Ann Nowé, and Denis Steckelmacher.

2019. Dynamic Weights in Multi-Objective Deep Reinforcement Learning. In
Proceedings of the 36th International Conference on Machine Learning (Proceedings
of Machine Learning Research, Vol. 97), Kamalika Chaudhuri and Ruslan Salakhut-
dinov (Eds.). PMLR, 11–20. https://proceedings.mlr.press/v97/abels19a.html

[2] Leon Barrett and Srini Narayanan. 2008. Learning All Optimal Policies with
Multiple Criteria. In Proceedings of the 25th International Conference on Machine
Learning (Helsinki, Finland) (ICML ’08). Association for Computing Machinery,
New York, NY, USA, 41–47. https://doi.org/10.1145/1390156.1390162

https://doi.org/10.5281/zenodo.5227091
https://proceedings.mlr.press/v97/abels19a.html
https://doi.org/10.1145/1390156.1390162

[3] M. Basu. 2008. Dynamic economic emission dispatch using nondominated sorting
genetic algorithm-II. International Journal of Electrical Power Energy Systems 30,
2 (2008), 140–149. https://doi.org/10.1016/j.ijepes.2007.06.009

[4] Marc G. Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. 2012. The
Arcade Learning Environment: An Evaluation Platform for General Agents. CoRR
abs/1207.4708 (2012). arXiv:1207.4708 http://arxiv.org/abs/1207.4708

[5] Greg Brockman, Vicki Cheung, Ludwig Pettersoson, Jonas Schneider, John Schul-
man, Jie Tang, and Wojciech Zaremba. 2016. OpenAI Gym. CoRR abs/1606.01540
(2016). http://arxiv.org/abs/1606.01540

[6] Diqi Chen, Yizhou Wang, and Wen Gao. 2020. Combining a gradient-based
method and an evolution strategy for multi-objective reinforcement learning.
Applied Intelligence 50, 10 (01 Oct 2020), 3301–3317. https://doi.org/10.1007/
s10489-020-01702-7

[7] Zewei Chen, Fengwei Zhou, George Trimponias, and Zhenguo Li. 2020. Multi-
objective neural architecture search via non-stationary policy gradient. arXiv
preprint arXiv:2001.08437 (2020).

[8] Kalyanmoy Deb, Lothar Thiele, Marco Laumanns, and Eckart Zitzler. 2001. Scal-
able Test Problems for Evolutionary Multiobjective Optimization. Evolutionary
Multiobjective Optimization (2001), 105 – 145. https://doi.org/10.1007/1-84628-
137-7_6

[9] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xi-
aohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg
Heigold, Sylvain Gelly, Jakob Uszkoreit, and Neil Houlsby. 2021. An Image is
Worth 16x16 Words: Transformers for Image Recognition at Scale. In Interna-
tional Conference on Learning Representations. https://openreview.net/forum?id=
YicbFdNTTy

[10] Conor F. Hayes, Enda Howley, and Patrick Mannion. 2020. Dynamic Thresholded
Lexicographic Ordering. (2020). https://www.researchgate.net/profile/Conor-
Hayes/publication/348779254_Dynamic_Thresholded_Lexicographic_
Ordering/links/6010134a299bf14088c0f595/Dynamic-Thresholded-
Lexicographic-Ordering.pdf

[11] Conor F. Hayes, Roxana Rădulescu, Eugenio Bargiacchi, Johan Källström,
Matthew Macfarlane, Mathieu Reymond, Timothy Verstraeten, Luisa M. Zintgraf,
Richard Dazeley, Fredrik Heintz, Enda Howley, Athirai A. Irissappane, Patrick
Mannion, Ann Nowé, Gabriel Ramos, Marcello Restelli, Peter Vamplew, and
Diederik M. Roijers. 2021. A Practical Guide to Multi-Objective Reinforcement
Learning and Planning. arXiv:2103.09568 [cs.AI]

[12] Naoto Horie, Tohgoroh Matsui, Koichi Moriyama, Atsuko Mutoh, and Nobuhiro
Inuzuka. 2019. Multi-objective safe reinforcement learning: the relationship
between multi-objective reinforcement learning and safe reinforcement learning.
Artificial Life and Robotics 24, 3 (01 Sep 2019), 352–359. https://doi.org/10.1007/
s10015-019-00523-3

[13] Simon Huband, Luigi Barone, Lyndon While, and Phil Hingston. 2005. A Scalable
Multi-Objective Test Problem Toolkit. Evolutionary Multi-Criterion Optimization
(2005), 280 – 295. https://doi.org/10.1007/978-3-540-31880-4_20

[14] Ehsan Imani. 2020. gym-puddle. https://github.com/EhsanEI/gym-puddle, http://
web.archive.org/web/20201204203830/https://github.com/EhsanEI/gym-puddle.

[15] Rustam Issabekov and Peter Vamplew. 2012. An Empirical Comparison of Two
Common Multiobjective Reinforcement Learning Algorithms. In AI 2012: Ad-
vances in Artificial Intelligence, Michael Thielscher and Dongmo Zhang (Eds.).
Springer Berlin Heidelberg, Berlin, Heidelberg, 626–636.

[16] Christian Kauten. 2018. Super Mario Bros for OpenAI Gym. GitHub. https:
//github.com/Kautenja/gym-super-mario-bros

[17] Mohammed A. Khamis and Walid Homaa. 2014. Adaptive multi-objective re-
inforcement learning with hybrid exploration for traffic signal control based
on cooperative multi-agent framework. Engineering Applications of Artificial
Intelligence 29 (2014), 134 – 151. https://doi.org/10.1016/j.engappai.2014.01.007

[18] Sandeep U. Mane and M. R. Narasinga Rao. 2017. Many-Objective Opti-
mization: Problems and Evolutionary Algorithms – A Short Review. Inter-
national Journal of Applied Engineering Research 12, 20 (2017), 9774 – 9793.
https://www.ripublication.com/ijaer17/ijaerv12n20_72.pdf

[19] Hossam Mossalam, Yannis M. Assael, Diederik M. Roijers, and Shimon Whiteson.
2016. Multi-Objective Deep Reinforcement Learning. arXiv:1610.02707

[20] Thanh Thi Nguyen, Ngoc Duy Nguyen, Peter Vamplew, Saeid Nahavandi, Richard
Dazeley, and Chee Peng Lim. 2018. A Multi-Objective Deep Reinforcement
Learning Framework. CoRR abs/1803.02965 (2018). http://arxiv.org/abs/1803.
02965

[21] Alex Ray, Joshua Achiam, and Dario Amodei. 2019. Benchmarking Safe Explo-
ration in Deep Reinforcement Learning. (2019).

[22] D. M. Roijers, Vamplew P., Whiteson S., and Dazeley R. 2013. A Survey of Multi-
Objective Sequential Decision-Making. Journal of Artificial Intelligence Research
48 (18 Oct 2013). https://doi.org/10.1613/jair.3987

[23] Roxana Rădulescu, Patrick Mannion, Diederik M. Roijers, and Ann Nowé. 2019.
Multi-objective multi-agent decision making: a utility-based analysis and survey.
Autonomous Agents and Multi-Agent Systems 34 (2019). https://doi.org/10.1007/
s10458-019-09433-x

[24] Dhish Kumar Saxena, Tapabrata Ray, Kalyanmoy Deb, and Ashutosh Tiwari. 2009.
Constrained many-objective optimization: A way forward. In 2009 IEEE Congress

on Evolutionary Computation. 545–552. https://doi.org/10.1109/CEC.2009.4982993
[25] Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan, Mark Sandler, Andrew

Howard, and Quoc V. Le. 2019. MnasNet: Platform-Aware Neural Architecture
Search for Mobile. In 2019 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR). 2815–2823. https://doi.org/10.1109/CVPR.2019.00293

[26] Peter Vamplew, Richard Dazeley, Adam Berry, Rustam Issabekov, and Evan
Dekker. 2011. Empirical evaluation methods for multiobjective reinforcement
learning algorithms. Machine Learning 84 (2011), 51 – 80. https://doi.org/10.
1007/s10994-010-5232-5

[27] Peter Vamplew, Richard Dazeley, and Cameron Foale. 2017. Softmax exploration
strategies for multiobjective reinforcement learning. Neurocomputing 263 (2017),
74–86. https://doi.org/10.1016/j.neucom.2016.09.141 Multiobjective Reinforce-
ment Learning: Theory and Applications.

[28] Peter Vamplew, Rustam Issabekov, Richard Dazeley, Cameron Foale, Adam Berry,
Tim Moore, and Douglas Creighton. 2017. Steering approaches to Pareto-optimal
multiobjective reinforcement learning. Neurocomputing 263 (2017), 26–38. https:
//doi.org/10.1016/j.neucom.2016.08.152 Multiobjective Reinforcement Learning:
Theory and Applications.

[29] Peter Vamplew, Dean Webb, Luisa M. Zintgraf, Diederik M. Roijers, Richard
Dazeley, Rustam Issabekov, and Evan Dekker. 2017. MORL-Glue: A Benchmark
Suite for Multi-Objective Reinforcement Learning. In BNAIC 2017 Preproceedings.
389 – 390. https://pure.rug.nl/ws/portalfiles/portal/107483223/preproceedings_
1_.pdf#page=405

[30] Kristof VanMoffaert, Tim Brys, andAnnNowé. 2014. EfficientWeight Space Search
in Multi-Objective Reinforcement Learning. Technical Report. Vrije Universiteit
Brussel. https://www.researchgate.net/publication/261499155_Efficient_Weight_
Space_Search_in_Multi-Objective_Reinforcement_Learning

[31] Kristof Van Moffaert, Madalina M. Drugan, and Ann Nowé. 2013. Scalarized
multi-objective reinforcement learning: Novel design techniques. In 2013 IEEE
Symposium on Adaptive Dynamic Programming and Reinforcement Learning (AD-
PRL). 191–199. https://doi.org/10.1109/ADPRL.2013.6615007

[32] Kristof Van Moffaert and Ann Nowé. 2014. Multi-Objective Reinforcement
Learning using Sets of Pareto Dominating Policies. Journal of Machine Learning
Research 15 (2014), 3663 – 3692. https://jmlr.org/papers/v15/vanmoffaert14a.html

[33] Handing Wang, Licheng Jiao, and Xin Yao. 2015. Two_Arch2: An Improved
Two-Archive Algorithm for Many-Objective Optimization. IEEE Transactions on
Evolutionary Computation 19, 4 (2015), 524–541. https://doi.org/10.1109/TEVC.
2014.2350987

[34] Weijia Wang and Michèle Sebag. 2012. Multi-objective Monte-Carlo Tree
Search. In Proceedings of the Asian Conference on Machine Learning (Proceed-
ings of Machine Learning Research, Vol. 25), Steven C. H. Hoi and Wray Buntine
(Eds.). PMLR, Singapore Management University, Singapore, 507–522. https:
//proceedings.mlr.press/v25/wang12b.html

[35] Marco A.Wiering, Maikel Withagen, andMădălina MDrugan. 2014. Model-based
multi-objective reinforcement learning. In 2014 IEEE Symposium on Adaptive
Dynamic Programming and Reinforcement Learning (ADPRL). 1–6. https://doi.
org/10.1109/ADPRL.2014.7010622

[36] Jie Xu, Yunsheng Tian, Pingchuan Ma, Daniela Rus, Shinjiro Sueda, and Wojciech
Matusik. 2020. Prediction-Guided Multi-Objective Reinforcement Learning for
Continuous Robot Control. In Proceedings of the 37th International Conference on
Machine Learning.

[37] Chaoqi Yang, Junwei Lu, Xiaofeng Gao, Haishan Liu, Qiong Chen, Gongshen Liu,
and Guihai Chen. 2020. MoTiAC: Multi-Objective Actor-Critics for Real-Time
Bidding. CoRR abs/2002.07408 (2020). arXiv:2002.07408 https://arxiv.org/abs/
2002.07408

[38] Runzhe Yang, Xingyuan Sun, and Karthik Narasimhan. 2019. A General-
ized Algorithm for Multi-Objective Reinforcement Learning and Policy Adap-
tation. In Advances in Neural Information Processing Systems, H. Wallach,
H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett (Eds.),
Vol. 32. Curran Associates, Inc. https://proceedings.neurips.cc/paper/2019/file/
4a46fbfca3f1465a27b210f4bdfe6ab3-Paper.pdf

[39] Shengxiang Yang, Miqing Li, Xiaohui Liu, and Jinhua Zheng. 2013. A Grid-Based
Evolutionary Algorithm for Many-Objective Optimization. IEEE Transactions on
Evolutionary Computation 17, 5 (2013), 721–736. https://doi.org/10.1109/TEVC.
2012.2227145

[40] Eckart Zitzler, Kalyanmoy Deb, and Lothar Thiele. 2000. Comparison of Multiob-
jective Evolutionary Algorithms: Empirical Results. Evolutionary Computing 8
(2000), 173 – 195. https://doi.org/10.1162/106365600568202

https://doi.org/10.1016/j.ijepes.2007.06.009
https://arxiv.org/abs/1207.4708
http://arxiv.org/abs/1207.4708
http://arxiv.org/abs/1606.01540
https://doi.org/10.1007/s10489-020-01702-7
https://doi.org/10.1007/s10489-020-01702-7
https://doi.org/10.1007/1-84628-137-7_6
https://doi.org/10.1007/1-84628-137-7_6
https://openreview.net/forum?id=YicbFdNTTy
https://openreview.net/forum?id=YicbFdNTTy
https://www.researchgate.net/profile/Conor-Hayes/publication/348779254_Dynamic_Thresholded_Lexicographic_Ordering/links/6010134a299bf14088c0f595/Dynamic-Thresholded-Lexicographic-Ordering.pdf
https://www.researchgate.net/profile/Conor-Hayes/publication/348779254_Dynamic_Thresholded_Lexicographic_Ordering/links/6010134a299bf14088c0f595/Dynamic-Thresholded-Lexicographic-Ordering.pdf
https://www.researchgate.net/profile/Conor-Hayes/publication/348779254_Dynamic_Thresholded_Lexicographic_Ordering/links/6010134a299bf14088c0f595/Dynamic-Thresholded-Lexicographic-Ordering.pdf
https://www.researchgate.net/profile/Conor-Hayes/publication/348779254_Dynamic_Thresholded_Lexicographic_Ordering/links/6010134a299bf14088c0f595/Dynamic-Thresholded-Lexicographic-Ordering.pdf
https://arxiv.org/abs/2103.09568
https://doi.org/10.1007/s10015-019-00523-3
https://doi.org/10.1007/s10015-019-00523-3
https://doi.org/10.1007/978-3-540-31880-4_20
https://github.com/EhsanEI/gym-puddle
http://web.archive.org/web/20201204203830/https://github.com/EhsanEI/gym-puddle
http://web.archive.org/web/20201204203830/https://github.com/EhsanEI/gym-puddle
https://github.com/Kautenja/gym-super-mario-bros
https://github.com/Kautenja/gym-super-mario-bros
https://doi.org/10.1016/j.engappai.2014.01.007
https://www.ripublication.com/ijaer17/ijaerv12n20_72.pdf
https://arxiv.org/abs/1610.02707
http://arxiv.org/abs/1803.02965
http://arxiv.org/abs/1803.02965
https://doi.org/10.1613/jair.3987
https://doi.org/10.1007/s10458-019-09433-x
https://doi.org/10.1007/s10458-019-09433-x
https://doi.org/10.1109/CEC.2009.4982993
https://doi.org/10.1109/CVPR.2019.00293
https://doi.org/10.1007/s10994-010-5232-5
https://doi.org/10.1007/s10994-010-5232-5
https://doi.org/10.1016/j.neucom.2016.09.141
https://doi.org/10.1016/j.neucom.2016.08.152
https://doi.org/10.1016/j.neucom.2016.08.152
https://pure.rug.nl/ws/portalfiles/portal/107483223/preproceedings_1_.pdf#page=405
https://pure.rug.nl/ws/portalfiles/portal/107483223/preproceedings_1_.pdf#page=405
https://www.researchgate.net/publication/261499155_Efficient_Weight_Space_Search_in_Multi-Objective_Reinforcement_Learning
https://www.researchgate.net/publication/261499155_Efficient_Weight_Space_Search_in_Multi-Objective_Reinforcement_Learning
https://doi.org/10.1109/ADPRL.2013.6615007
https://jmlr.org/papers/v15/vanmoffaert14a.html
https://doi.org/10.1109/TEVC.2014.2350987
https://doi.org/10.1109/TEVC.2014.2350987
https://proceedings.mlr.press/v25/wang12b.html
https://proceedings.mlr.press/v25/wang12b.html
https://doi.org/10.1109/ADPRL.2014.7010622
https://doi.org/10.1109/ADPRL.2014.7010622
https://arxiv.org/abs/2002.07408
https://arxiv.org/abs/2002.07408
https://arxiv.org/abs/2002.07408
https://proceedings.neurips.cc/paper/2019/file/4a46fbfca3f1465a27b210f4bdfe6ab3-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/4a46fbfca3f1465a27b210f4bdfe6ab3-Paper.pdf
https://doi.org/10.1109/TEVC.2012.2227145
https://doi.org/10.1109/TEVC.2012.2227145
https://doi.org/10.1162/106365600568202

	Abstract
	1 Introduction
	1.1 Multi-Objective Reinforcement Learning
	1.2 Optimality Criteria
	1.3 Many-Objective Optimization

	2 State of the Art
	2.1 Existing Benchmark Suites
	2.2 Popularity Analysis
	2.3 Complexity Analysis
	2.4 Availability Comparison

	3 Proposed Benchmark
	3.1 State Space
	3.2 Action Space
	3.3 Dynamics
	3.4 Rewards
	3.5 Complexity Analysis

	4 Implementation
	4.1 Pareto Front
	4.2 Guidelines

	5 Discussion & Future Work
	Acknowledgments
	References

