Developing Sim-to-Real Multi-Task Recommendations via
Open-Ended Learning

Anirudh Jamkhandi
Z0OZO Inc.
Chiba, Japan
anirudh.jamkhandi@zozo.com

ABSTRACT

Collaborative Interactive Recommenders (CIRs) have received grow-
ing attention due to their capability to model sequential user in-
teractions and optimize users’ long-term engagement and overall
satisfaction. Although the long-term planning perspective of CIRs
provides a natural setting for using reinforcement learning (RL), RL
methods require a large amount of online user interaction, which
is restricted due to economic considerations. Previous research has
concentrated on developing simulators to simulate user actions in
real-world systems, intending to maximize only one type of user
response. But real-world recommenders have to simultaneously
solve multiple recommendation tasks, each of which is centered on
optimizing a single type of user feedback, making the sim-to-real
transfer challenging. This is further exacerbated by the severe par-
tial observability and stochasticity of real-world recommendation
environments.

To address the above issues, we propose a method that employs
an open-ended learning algorithm to address the long-term re-
wards of recommendations while handling multiple recommenda-
tion tasks at the same time. This solution amalgamates the fun-
damental concepts of goal switching, novelty search, and quality
diversity into an open-ended recommender agent that can create
complex and diverse recommendation environments and simultane-
ously learn to rank on them. With enough diversity in the simulator,
the real world may appear to the model as just another variation.
We conduct a comprehensive evaluation on real large-scale data
containing millions of events and demonstrate that our solution
outperforms many baselines on standard evaluation metrics.

KEYWORDS

multi-task learning, Open-Ended Learning, Deep Reinforcement
Learning

1 INTRODUCTION

With the explosion of online content, users are often bombarded
with innumerable content. Recommendation systems are a valuable
tool to reduce information overload, increase stakeholder revenue,
and improve user experience [6]. Recommendation techniques are
now widely studied and used in numerous applications.
Traditional recommendation techniques [2, 4, 10, 11, 18, 36, 42,
45, 46, 51, 52, 54] tend to focus on maximizing the immediate (short-
term) rewards of current recommendations, while overlooking the
long-term rewards that can be generated by current recommenda-
tions. Recently, Collaborative Interactive Recommenders systems

Proc. of the Adaptive and Learning Agents Workshop (ALA 2022), Cruz, Hayes, Silva,
Santos (eds.), May 9-10, 2022, Online, https://ala2022.github.io/. 2022.

Masahiro Yasuda
Z0OZO Inc.
Chiba, Japan
masahiro.yasuda@zozo.com

Shusaku Yosa
Z0ZO Inc
Chiba, Japan
shusaku.yosa@zozo.com

(CIRs) have received growing attention due to its awareness of long-
term engagement and dynamic preference. In CIRs, RL techniques
have been recently gaining attention, showing their advantages in
accommodating dynamic user preferences [8, 9, 48].

But previous research on RL techniques for CIRs has focused on
a single recommendation task that aims to maximize a single type
of user response, such as a click. But in many real-world applica-
tions, we are often confronted with multiple recommendation tasks,
each of which requires improving on a single type of user feed-
back. Recommender systems (RS) need to incorporate various user
feedbacks to model user interests and maximize user engagement
and satisfaction. Therefore, it is desideratum to apply multi-task
learning (MTL) in RS to simultaneously model the multiple aspects
of user satisfaction or engagement. And in fact, it has been the
mainstream approach in major industry applications [27, 29, 47].
In order to optimise multiple tasks, large amount of experience and
computation is required to learn the desired policies. Hence to train
agents with limited interaction data, existing RL models in CIRs
often assume that the simulation task and the real task are the same
recommendation task, and count on building simulators to mimic
user behaviors in real systems. However, in practice the trained
models can achieve poor performances due to poor generalization
across users, noisy and dynamic observed behavior of user and
exogenous unobservable events.

In this paper, we propose a method that utilizes open-ended
learning to address the need for solving multiple recommenda-
tion tasks together, each of which corresponds to a single type of
user feedback and maximizing long-term rewards. The open-ended
agent models the interaction between the recommender and user by
Markov decision process (MDP), taking into account of long-term
impacts of current recommendation to subsequent rewards. The
recommendation action incurs the state transition of the user, and
the user’s subsequent responses to later recommendations will be
dependent on the transited state. The open-ended agent automati-
cally generates a curriculum of recommendation environment of
ever-increasing difficulty. If the variability in simulation is signifi-
cant enough, models trained in simulation will generalize to the real
world with no additional training. The open-ended learning agent
employs a deep neural network (DNN) to learn state representation
and the optimal policy for each recommendation task. To facilitate
knowledge transfer and improve the performance over multiple
tasks the agent learns a multi-task policy by combining multiple
expert policies learned for different tasks into a single multi-task
policy that can outperform the separate experts.

Our three main contributions are :

https://ala2022.github.io/

(1) We propose a novel multi-task recommendation framework
based on open-ended learning, that endlessly generates dif-
ferent recommendation environments and learns to rank.
This is the first solution to apply open-ended learning to
recommendation tasks. This solution allows us to obtain a
model with a smaller size and lower response latency, mak-
ing it more appealing for real-world deployments.

(2) We also build a simulator based on Recsim Framework that
enables us to design multi-task long-term reward recommen-
dation environments. To our knowledge, this solution is the
first of its kind in the simulator to real transfer recommen-
dation systems.

(3) We conduct a comprehensive offline experimental evalua-
tion over the ZOZOTOWN E-Commerce Platform, which is
Japan’s largest Fashion E-Commerce. The evaluation results
on millions of real-world log events illustrate that our model
achieves competitive performance over many state-of-the-
art methods based on multiple evaluation metrics.

The rest of this paper unfolds as follows: In Section 2, we review
related works. In Section 3, we provide problem descriptions. Next,
we talk about our proposed approach. Section 5 elucidates how
we design a long-term reward recommendation environment and
experiments to evaluate our proposed framework. Finally, we draw
our conclusion in Section 6.

2 RELATED WORKS

Reinforcement Learning. To address the long-term rewards,
reinforcement learning (RL) has been applied to different recom-
mendation tasks, including video recommendation [7, 8, 20, 26],
e-commerce recommendation [9, 33, 44, 55, 56], news recommenda-
tion [58], and treatment recommendation [48]. Unlike conventional
techniques, RL models consider that rewards of recommendation
are state dependent, and that the current recommendation causes
a state transition. The goal of RL models is to learn an agent’s
action policy to maximize expected long-term rewards in a series
of interactions between the agent and the environment (e.g., the
user) [40]. These RL-based recommenders outperform previous best
practices in several evaluation metrics. However, because these rec-
ommenders are designed to optimize a single type of user feedback,
they cannot handle multiple recommendation tasks. This paper
focuses on tackling such real-world driven problem.

Multi-Task Learning. Multi-task Learning (MTL) models lever-
age useful information shared in multiple related tasks to help
improve the performance of all the tasks [53]. The cross-stitch net-
work [31] learns a unique combination of task-specific hidden-layer
embeddings for each task. MOE [21] first proposes to share some
experts at the bottom and combine experts through a gating net-
work. The YouTube video recommender system in [57] , applies
MMOE [28] to combine shared experts through different gating
networks for each task. To address seesaw phenomenon commonly
observed in MTL models PLE [41] explicitly separates task-common
and task-specific experts and uses progressive separation routing.
Hadash et al. [16] propose a multi-task framework to learn param-
eters of the ranking task and rating task simultaneously. The task
of text recommendation in [3] is improved through sharing repre-
sentations at the bottom. Jing et al. [22] simultaneously solve the

user returning time prediction task and the recommendation task.
Most of these prior works do not address multiple recommendation
tasks simultaneously, let alone considering long-term rewards of
recommendations.

Open-Ended Learning. Artificial life researchers have been
studying the prospects of open-ended computation [5, 15, 24, 25,
39, 49, 50] since many years. Open-ended learning research is also
reflected in recent advances in automatic curriculum learning for
RL, where the intermediate goals of curricula are automatically
generated and selected [1, 30]. Works such as in [14, 43] have also
demonstrated the zero-shot generalization capability of open-ended
learning. None of the methods have applied open-ended learning
to recommendation tasks. We see this as an interesting direction
for future work.

3 PROBLEM STATEMENT

Recommendation task can be described as a sequential decision
process, in which the recommender decides a sequence of recom-
mendations for the users. Tasks are specified by a Markov Decision
Process (MDP), defined as tuple (S, A, P, R, y), state space S rep-
resents user’s and items characteristics and behavior (eg., interests,
preferences, satisfaction, activity, mood, etc.) which can be both
observable and latent, set of all items as action space A, transi-
tion function P (-[s, a), a feedback reward function R(s, a), decay
factor y and the recommender as the “agent”. An action from the
agent causes state transition of the environment, and consequently,
the agent will make a decision at the next time step based on the
transited state.

In order to optimise multiple tasks, one can train a separate
policy for each task. However a large amount of experience and
computation is required to learn the desired policies. It is there-
fore preferable to have a single agent that facilitates the exchange
of information among various tasks. To effectively model the de-
pendency among these types of feedback and objectives we reuse
policies for different tasks by adopting shared state-space S and
action-space A across tasks. The tasks only differ in their transi-
tion function P; and reward function R;. We therefore describe
a task as 7 = (Pr,Rr) and refer to the set of given tasks as T.
For each task 7 € T we aim to maximize the discounted return
G = Ziz]o“ yirt where rl ~ R(sy, a;) is the reward at time step t
and L is the episode length. Given a set of policies {1, ..., 7}, we
denote the return obtained by policy 7; on task & as G (7).

4 PROPOSED SOLUTION

To this end we propose open-ended learning to integrate multi-task
learning into RL based recommender. Although RL-based recom-
menders provide an excellent way to model long term dynamics
of the users, the large action-space combinatorics prevent them
from being employed in practical recommenders. We adapt Paired
open-ended Trailbrazer(POET) algorithm as discussed in [49] for
recommendation tasks. We reduce the action space to three contin-
uous values(co-efficients of the ranking formula). This drastically
reduces the number of computations and improves the latency. The
POET recommender agent builds curricula of increasingly complex
and diverse recommendation environments and simultaneously
learns to optimize on multiple recommendation tasks. There are

several reasons that make POET algorithm suitable for multi-task
recommendations. Firstly, the challenge in black-box optimization
is the presence of local optima, making it impossible for the search
process to move on to better points [13]. Open-Ended Algorithms
like POET use Novelty Search which focus on divergence instead
of convergence. The offsprings are chosen solely on the basis of
their behavioral divergence from an archive of individuals from
previous generations. Truly novel discoveries are often building
blocks to further novel discoveries. Sometimes, completely diverg-
ing from an objective can help optimize faster than pursuing it [23].
This allows the algorithm to discover complex challenges which
may occur in the real world as well. Secondly, POET implements
coevolutionary interaction among all its agents and environments
and also optimizes the behavior of each agent within its paired en-
vironment. It ensures Quality Diversity by maintaining only those
newly-generated environments that are not too hard and not too
easy for the current population of agents. This assures that the algo-
rithm not only discovers increasingly difficult challenges but also
simultaneously learns to solve them. The above mentioned features
enable simulator to real world adaptation [12]. Finally, it encour-
ages knowledge sharing by periodically testing the performance
of offspring agent from one environment in other environments
through Goal Switching. This allows recommender’s performance
to improve on multiple tasks by solving them jointly.

We adopt the simplest model in reinforcement learning ie. Evo-
lutionary Strategies (ES) to derive the optimal recommendation
policy. In ES, E(¢) represents the stochastic reward experienced
over a full episode of an agent interacting with the environment
E(-). ES seeks to maximize the expected fitness over a population
of parameterized policy whose parameter vector is denoted as ¥,
J() = El//NPe(w) [E(¥)], where ¢ is sampled from a probability
distribution pg(y) parameterized by 0.

Following the approach of Salimans et al. [38], the gradient of
J(0) with respect to 0 can be written as

Vol (0) ~ % D> E(0+0e)e (1)
i=1

where, n samples of parameter vectors drawn from an isotropic
multivariate Gaussian with mean 6 and a standard deviation o, €; is
additive Gaussian noise €; ~ N(0,I) to a given parameter vector 6.
Once the optimization step of ES is calculated, the return is added
to the current parameter vector to obtain the next parameter vector.

The fundamental algorithm of POET is illustrated in Algorithm
1. The idea is to maintain a list of active environment-agent pairs
EA_List that begins with a single starting pair (Einit(+), Oinit)
where E;pj; is a simple recommendation environment and 8;p;;
is a randomly-initialized weight vector (e.g. for a neural network).
The POET then performs three main tasks at each iteration of its
main loop: (1) generating new recommendation environments E(-)
from those currently active through mutation of environment pa-
rameters. To generate a new environment, POET randomly perturbs
the parameter vector of an active environment such that paired
agents in the originating (parent) environments have exhibited
sufficient progress to suggest that reproducing their respective en-
vironments would not be a waste of effort. The novel environments

Algorithm 1: Training Algorithm

Input: E;p;;: Initial Recommendation Environment
Oinis: Initial Paired Agent denoted by policy parameter
vector
a: Learning Rate
o: Noise Standard Deviation
T: Iterations
Timutate: Time steps between Mutation
Tiransfer: Time steps between Transfer
Output: EA_List
1 Initialize: EA List =0
2 Ojinir with random weights
3 Add (Einit(.), Oinir) to EA_List
4 for iterationt = 0..(T-1) do

5 if t > 0 and t mod Tytate = 0 then
6 Create new recommendation environments by
mutation and append to EA_List
7 end
8 M = len(EA_List)
9 for m=1..(M)do
10 Optimise each agent with its paired environment
using ES
1 end
12 for m=1..(M)do
13 if M> 1andt mod Tyygnsfer = 0 then
14 Evaluate 01, ..., 0p1 on target environment E(.)
15 Return the top performing agent = 00p
16 Perform one ES_step with all other
17 end
18 end
19 end

that are generated are not added to the current population of en-
vironments unless they are neither too hard nor too easy for the
current population, (2) optimizing paired agents within their respec-
tive environments ES_step. The fact that each agent-environment
pair is being optimized independently affords easy parallelization,
wherein all the optimization steps can in principle be executed
at the same time. and (3) attempting to transfer current agents 0
from one environment to another. Given a list of input candidate
agents 0;...0p1 and a target environment E(-), POET carries out
two types of transfer attempts a) direct transfer, wherein agents
from the originating environment are directly evaluated in the tar-
get environment, and b) proposal transfer, where agents take one
ES optimization step in the target environment and the one with
the highest reward is returned as 0y0p. It is always possible that
progress in one environment could end up helping in another. If
the paired agent 64 in environment E4(-) is stuck in a local opti-
mum, one remedy could be a transfer from the paired agent 6 in
environment EB(.).

Fig. 1 illustrates the architecture of the policy network that is
encoded by a feedforward DNN, where the input is a state s; and
the output has N task specific branches. Each branch has N task-

specific layers and captures the distinct part of ﬂ'éi) (-). All the

Task 1 Task 2 Task t
Prediction Prediction Prediction
a} =n(s,0) a? = n(s,0) cee a} = n(s,0)

Task
XX Specific eee oo

Layers

-
L“““I\......\

Figure 1: DNN Architecture of Policy Network

branches share the first N° layers at the bottom to facilitate knowl-
edge sharing among different recommendation tasks. The output
of the i-th branch is ai where the actions are determined by a
stochastic policy function ai = 7(s;0).

5 EXPERIMENTS

Module A / Module C
Module B ™ Module A
Module C ™ Module B
User A User B
i START

Figure 2: Personalization on ZOZOTOWN using module rank-
ing

Simultaneously operating multiple recommendation tasks with
long-term rewards is an important business requirement for many
platforms to increase revenue and improve user experience. Un-
fortunately, to the best of our knowledge, all publicly available
recommendation-related datasets are not suitable for evaluating
the performance of our open-ended multi-task recommender. This
is mainly because these datasets lack multiple-type feedbacks of rec-
ommendations, and the sequential dependency of those feedbacks
that is captured in our model. Therefore, in this paper, we utilize
the data from ZOZOTOWN E-Commerce platform, one of Japan’s
largest Fashion E-commerce platform, to conduct comprehensive
experiments for evaluating the performance of our method. Fig. 2
illustrates the interface of module recommendation. Each module
represented in red box is a collection of items. The rank of the
modules should be personalized according to the user’s interests
in order to drive engagement and revenue. The home-page of the
ZOZOTOWN recommends modules to users and collects different

types of sequentially-dependent feedbacks: impressions, click and
buy. Our recommendation goal is to simultaneously operate three
recommendation tasks that maximize long-term impressions,clicks
and buys respectively. We would like to note that our method is
applicable to other applications as long as there are multiple rec-
ommendation tasks and long-term rewards to consider.

5.1 Reinforcement Learning modelling

We make use of RecSim [19] to design multi-task recommendations.
We use latent state environment that models the long term user
behavior [32]. This environment depicts a situation in which a
user of an online service interacts with items of content, which
are characterized by their observable quality on a scale of 0 to
1. In particular, items on 0-end (choc) generate engagement, but
lead to decrease in long-term satisfaction but items on 1-end (kale)
increase satisfaction but do not generate as much engagement. The
challenge is to balance the two in order to achieve long-term optimal
trade-off. The dynamics of this system are partially observable, as
satisfaction is a latent variable. It has to be inferred through the
increase/decrease in engagement. It also important to improve
business revenue, hence we borrow ideas proposed in [34] to map
the actions of the user such as impressions etc. to monetary value
and provide suitable recommendations. In the further part of this
subsection we will discuss the design of the simulator with respect
to the above environment.

Document Model: Samples modules from prior distribution of
module features. In the latent state environment, the modules are
represented by a latent feature, namely their clickbaitness score. We
also use CVR(Conversion rate) scores and impressions as the mod-
ule features. We use Beta Distribution to model each feature. The
document sampler samples modules from these three distributions.

User Model: Samples users from prior distribution of user fea-
tures. Each user has a feature called net positive exposure (npe,),
and satisfaction (sat;). Since satisfaction cannot be unbounded, they
are related by logistic function.

sat; = L(t - npe;) (2)

where 7 is a user-specific sensitivity parameter, and £ is sigmoid
function. Once the user chooses a document, the net positive expo-
sure evolves as

npe,,; = p-npe;, +2(C—-0.5)+ N(0,n) (3)

where f is some user-specific memory discount (forgetting factor),
C is clickbaitness score and 7 is innovation standard deviation. This
is the User Transition Model. Finally, the user engages with the
chosen content for s; seconds given by

sqg ~1ogN(C - pe+ (1 = Oy * saty,C-oc+ (1 —C) x o) (4)

where s; is drawn according to a log-normal distribution with
parameters linearly interpolating between the pure kale response
(4g, ox) and the pure choc response (yc, oc). Thus, a user state
is hence defined by the tuple (saty, 7, f, 1, fig, Ok, tics 0c)- The only
dynamic part of the User’s state is satisfaction. Remember that
other static variables help us to simulate different users.

User Choice Model: To simulate user response on ZOZOTOWN,
we develop a multinomial choice model based on a simple Catboost

model that uses User State and Module features and predicts the
probability of the user’s action for each task.

Action: After each user request the agent or the ranking model
outputs predictions for each task, then the weighted-multiplication
based ranking module combines these predicted scores to a final
score through a combination function as shown in the Equation 5
and recommends top ranked modules.

Reward Function: The reinforcement learning problem repre-
sents goals by cumulative rewards. In addition, rewards also provide
intermediate feedback(positive or negative) on the progress towards
the goal. In our setup, our goal is to improve the overall engagement
of the users on ZOZOTOWN by providing multi-task recommen-
dations. Overall reward function consists of two components:

(1) Ranking based reward: The agent predict coefficients of rank-
ing formula a, f, y as in [34]. We then use the predicted coeffi-
cients to calculate rank score for each module. The rankscore
for module i is given by,

rankscore(i) = CTR(i)* x CVR(i)ﬁ x impressions(i)Y (5)

We then extract top K largest rank scores and assign a dis-
counted weight W, (;) for each position and higher position
has greater weight where Wy, (;y = exp(s(i)). Finally rank-
ing reward is calculated as the weighted sum of module
rewards.

Rranking = Z rankscore(i) * Wy (;) 6)

(2) Engagement based reward: Once the choice model predicts
user’s response for agent’s recommendation user engages
with the chosen module for s; seconds according to the Equa-
tion 4. The engagement time provides feedback on user’s
satisfaction towards agent’s recommendation. Hence we use
Rengagement = 4 as a reward.

Ranking-based rewards are rewards for ranking modules, and
engagement-based rewards are rewards for interacting with mod-
ules. The final reward is the sum of ranking-based rewards and
engagement-based rewards.

5.2 Training Procedure

MTL Objectives p |

| Weighted |
@ B . il " Ranking
- A _r 1]

.

MTL Model / Agent

Response

i 1 H
Document Response | User Choice i Recommended
Sampler ‘ ‘ el |y Model }‘_‘—Lwei\m
Environment H

1

Past User
logs

Figure 3: A detailed illustration of MTL ranking system

The entire learning process is parallelized using the Fiber Frame-
work [59]. Generating new environments is how POET continues to

150 1

1254

o
S

ANNECS Value
~
a

50 1

254

0 2000 4000 6000 8000 10000
Iteration

Figure 4: A plot of the ANNECS metric across iterations of
POET recommender agent. Solid lines denotes the mean
across 5 runs and shading denotes the 95% bootstrapped con-
fidence intervals. The increasing curve indicates the new
environments that can pass the Minimal Criterion Coevolu-
tion(MCC) continue to be consistently discovered.

produce new challenges. Each paired agent represented by Neural
Network learns a policy which maps state (User’s state and Mod-
ule’s state simulated by RecSim) to action (coefficients of ranking
formula) that maximizes the expected reward. We restrict EA_List
to store 20 active environments and their pair agents. The ANNECS
score [50] is a counter for the number of environments in which
the new environment has cleared the Minimal Criterion Coevolu-
tion(MCC) [5] process and has exceeded the reward threshold is
used to measure the progress of learning. As the training progresses
the ANNECS score increases as illustrated in Fig. 4 indicating that
the algorithm is increasingly creating meaningful challenges. We
then evaluate each of these Neural Networks against held out offline
data for the Learning to Rank task and choose the best performing
Neural Network as our model. Finally, we compare it with several
other learning to rank models and observe that recommender sys-
tems trained using open-ended learning achieve better results than
other methods.

5.3 Evaluation

Dataset Details To the best of our knowledge, there is no publicly
available E-Commerce dataset that contains important features such
as price and the labels of impression, click and purchase at the same
time. Therefore, we collect a real-world dataset of E-Commerce
recommendation from a popular E-Commerce platform. Due to the
huge amount of online data, we collect two-week data, split the in-
teraction data along time and use 80% of the data as training dataset
for supervised methods and the rest 20% with samples over twenty-
four million impressions for offline evaluations of all the methods.
The dataset will be released to the public to support future studies.
The basic statistics of the data is shown in the Table. 1. The dataset
contains the log of recommended items, user’s multiple types of
feedbacks (i.e., impression, click, and buy) and the timestamps of
receiving the feedback.

Stage Users | Modules Items Impressions | Clicks Buys
Training 3,996,837 53 66,439,403 | 67,167,616 | 2,508,352 | 928,535
Offline Evaluation | 929,497 53 16,364,385 | 24,876,895 783,860 | 241,178

Table 1: Dataset Statistics

Baselines The main goal of this work is to demonstrate how
open-ended learning can be used to simulate real-world multi-task
recommendation. Once the online training using the simulator is
completed we are left with 20 Environments and the parameters of
Neural Networks of their paired agents. We then evaluate each of
these Neural Networks against held out offline data for Learning
to Rank with three other tasks and choose the best performing
Neural Network as our model. Finally, we compare it with several
other learning to rank and multi-task recommendation methods
and observe that recommender systems trained using open-ended
learning achieve better results than other direct methods.

We compare the our method with other baseline methods that
can be grouped into three different categories: (1) traditional rec-
ommendation methods that are based on single-task supervised
learning, (2) deep reinforcement learning methods that are based
on single-task reinforcement learning, and (3) MTL methods that
are based on multi-task supervised learning. The effectiveness of
all competing methods is evaluated using Precision@K, NDCG@K,
and MAP@K, which are the standard metrics used in previous
research on recommender systems.

First category of algorithms include logistic regression(LR) and
factorization machines(FM). The LR method estimates the probabil-
ity of user liking an item through logistic regression over user and
item features. In LR, only first order dependency between features
and output are investigated. FMs [35] and their extensions provide
a popular solution to using second-order feature interaction. We
also evaluate with BPR-MF [37] which is one of the most widely
used ranking methods for top-K recommendation and models rec-
ommendation as a pair-wise ranking problem. Due to their ability
to incorporate high-order feature interactions, deep learning tech-
niques have become the preferred method for working on recom-
mendation system tasks. DNNs usually involve implicit nonlinear
transformations of input features through a hierarchical structure
of neural networks. We use Neural Collaborative filtering(NCF)
[17], fusing both Generalized Matrix Factorization (GMF) and Mul-
tiple Layer Perceptron(MLP) under the NCF framework. Second
category includes Evolutionary Strategies (ES) as proposed in Sali-
mans et al.[38]. Third category includes MTL based methods like
Feature-selected MTL(FMTL) and Mixture of Experts(MMOE).The
DNNs for FMTL is arranged such that the first 2 layers are shared,
and then the shared layers are connected to three task-specific
branches, and outputs a predicted value for one task. The input
to the DNNs is the concatenated features of a user and an item.
The output of one branch is the estimated probability that the user
likes the item in some task. The loss function of FMTL methods is
composed of the cross-entropy loss plus an additional regulariza-
tion term to encourage knowledge sharing among tasks. We use
a multi-gate variant of Mixture of Experts(tMMOE) [28] in which
gating networks take the input features and output softmax gates
assembling the experts with different weights, allowing different

tasks to utilize experts differently. MMoE explicitly models the task
relationships and learns task-specific functionalities to leverage
shared representations. Note that the methods in the third cate-
gory only need to be trained once to handle three tasks. They take
into account the potential of knowledge-sharing in improving the
performance over individual recommendation tasks. Compared to
our method, the methods in the third category fail to consider the
long-term rewards in ranking items to be recommended. These
baseline methods provide a great representation for the state of the
art.

Evaluation Metrics We adopt Normalised Discounted Cumu-
lative Gain(NDCG@K) and Mean Average Precision(MAP@K) as
metrics to evaluate ranking, which are widely used in recommen-
dation systems. By default we set K=10 and report mean values of
the above metrics for all the users during the testing phase.

5.4 Results Discussion

0200 - LR
- BPRFM
- NCF
- ES
0150 - FMTL
— Ours

o176
B | || T
01356 01361 MMOE
0125
0.100
s ooms ocsrmmm
0.075
o os:caeil sossspcssolililc oceo

0.050
0025 I
0.000 |

Impression Click Buy

NDCG@10

0175 om

Figure 5: Bar plot comparing NDCG@K with K=10 of dif-
ferent recommendation methods for three tasks (Impres-
sion, Click, Buy). Our open-ended trained multi-task recom-
mender(Ours) outperforms other supervised and reinforce-
ment learning based methods in all the three tasks.

- R
=
- EPRFM
- NCF
—ES
- FMTL

010 0.001 e ooss MMOE
= ours
008
006
004
0025 (1
002 I .
00 %.
impression i

NDCG@10

Figure 6: Bar plot comparing MAP@K with K=10 of dif-
ferent recommendation methods for three tasks (Impres-
sion, Click, Buy). Our open-ended trained multi-task recom-
mender(Ours) outperforms other supervised and reinforce-
ment learning based methods in all the three tasks.

To evaluate the effectiveness of our open-ended learning based
recommender, we compare it with seven competitors over two
standard evaluation metrics (NDCG@K and MAP@K). Fig. 5 and Fig.
6 show the performance of against LR, FMs and NCF when K = 10
on three types of feedback impression, click, and buy, respectively.
It is interesting to note that, simpler methods such as FM perform
better than NCF over the impression optimization task and click
optimization task but underperform NCF in the buy optimization
task. This happens likely due to the fact that the difficulty decreases
from the click optimization task to the impression optimization
task to the buy optimization task as the data imbalance and label
sparsity are worse from the latter to the former.

As a comparison, LR and FMs assume the output linearly depends
on the first-order or second-order interactions of the features, the
underlying assumptions of which are more likely to hold in simpler
tasks. Another observation is that our method substantially outper-
forms all the three baseline methods over all the recommendation
tasks and all evaluation metrics. Its performance is also relatively
stable among tasks of different levels of difficulties compared to
other competitors. The reason is that all three baseline methods
are based on supervised learning and thus unable to plan the rec-
ommendations in a way that considers the long-term reward. They
also follow the single-task learning framework and thus fail to
take advantage of the knowledge from other tasks to improve its
performance of each task. On the contrary, open-ended learning
agent makes recommendations by optimizing the rewards in the
longer horizon and encourages knowledge-sharing through jointly
learning multiple recommendation tasks.

Fig. 5 illustrates the performance of open-ended learning based
method(Ours) against ES over the same collection of recommen-
dation tasks and evaluation metrics. The ES method is based on
single-task deep reinforcement learning. The open-ended learning
recommender agent shows better performance in all recommenda-
tion tasks, this may be due to the no fact that the stepping stones that
lead to solutions to very challenging environments are more likely
to be found through a divergent, open-ended process than through a
direct attempt to optimize in the challenging environment. Another
interesting observation is that compared to the supervised learn-
ing baselines presented earlier the ES method demonstrates more
stable performance over different tasks with the same evaluation
metrics. The reason is as aforementioned: compared to SL-based
recommenders that optimize short-term rewards, the RL-based rec-
ommenders plan their recommendations to optimize a long-term
goal that may overcome the uncertainty when task difficulty varies.

The regularization term in FMTL allows for different tasks to
learn task-specific features. In other words, FMTL offers more free-
dom in knowledge transfer from easy tasks to difficult tasks as com-
pared to other methods discussed earlier. MMoE’s gating networks
can effectively modularize input information into experts for task
relation and confict modeling. Compared to FMTL, MMOE seems
to favor more difficult tasks than easy ones in knowledge transfer.
As illustrated, One crucial observation is that these two baselines
outperform LR, FMs and NCF, baselines based on single-task super-
vised learning, over almost all tasks and evaluation metrics. This
advantage is largely because of the knowledge-sharing between dif-
ferent tasks. It is also worth emphasizing that our method achieves
outstanding performance over all tasks and almost all evaluation

metrics compared to the two MTL baselines. The reason is that
although both open-ended learning and the baselines follow MTL
framework, our method aims to maximize long-term rewards in
making recommendations and takes into account the impacts of
current recommendation to future rewards.

6 CONCLUSION

In this paper, we started with the description of a few real-world
challenges in designing and developing industrial recommendation
systems, especially ranking systems. These challenges include the
presence of multiple competing ranking objectives, optimising for
long term rewards and simulator to real world adaptation. To tackle
these challenges, we proposed a multi-task ranking system that uses
open-ended learning and applied it to the problem of recommend-
ing modules. The ability of the proposed method to automatically
build curriculum of increasingly complex recommendation envi-
ronments and simultaneously optimize on the ranking objectives
makes it viable for Simulator to Real world transfer. We evaluated
our method using a large-scale dataset collected from experiments
over Japan’s Largest Fashion E-commerce platform ZOZOTOWN.
The evaluation results using multiple metrics demonstrate better ef-
fectiveness and efficiency of our developed method against several
state-of-the-art methods.

REFERENCES

[1] Bowen Baker, Ingmar Kanitscheider, Todor Markov, Yi Wu, Glenn Powell, Bob
McGrew, and Igor Mordatch. 2019. Emergent tool use from multi-agent autocur-
ricula. arXiv preprint arXiv:1909.07528 (2019).

[2] Linas Baltrunas, Bernd Ludwig, and Francesco Ricci. 2011. Matrix Factorization
Techniques for Context Aware Recommendation. In Proceedings of the Fifth
ACM Conference on Recommender Systems (Chicago, Illinois, USA) (RecSys '11).
Association for Computing Machinery, New York, NY, USA, 301-304. https:
//doi.org/10.1145/2043932.2043988

[3] Trapit Bansal, David Belanger, and Andrew McCallum. 2016. Ask the gru: Multi-
task learning for deep text recommendations. In proceedings of the 10th ACM
Conference on Recommender Systems. 107-114.

[4] Jesus Bobadilla, Fernando Ortega, Antonio Hernando, and Abraham Gutiérrez.
2013. Recommender systems survey. Knowl. Based Syst. 46 (2013), 109-132.

[5] Jonathan C Brant and Kenneth O Stanley. 2017. Minimal criterion coevolution: a
new approach to open-ended search. In Proceedings of the Genetic and Evolutionary
Computation Conference. 67-74.

[6] Biao Chang, Hengshu Zhu, Yong Ge, Enhong Chen, Hui Xiong, and Chang

Tan. 2014. Predicting the Popularity of Online Serials with Autoregressive

Models. In Proceedings of the 23rd ACM International Conference on Confer-

ence on Information and Knowledge Management (Shanghai, China) (CIKM

’14). Association for Computing Machinery, New York, NY, USA, 1339-1348.

https://doi.org/10.1145/2661829.2662055

Haokun Chen, Xinyi Dai, Han Cai, Weinan Zhang, Xuejian Wang, Ruiming Tang,

Yuzhou Zhang, and Yong Yu. 2019. Large-scale Interactive Recommendation with

Tree-structured Policy Gradient. In AAAL

Minmin Chen, Alex Beutel, Paul Covington, Sagar Jain, Francois Belletti, and Ed H.

Chi. 2019. Top-K Off-Policy Correction for a REINFORCE Recommender System.

In Proceedings of the Twelfth ACM International Conference on Web Search and Data

Mining (Melbourne VIC, Australia) (WSDM °19). Association for Computing Ma-

chinery, New York, NY, USA, 456-464. https://doi.org/10.1145/3289600.3290999

Shi-Yong Chen, Yang Yu, Qing Da, Jun Tan, Hai-Kuan Huang, and Hai-Hong

Tang. 2018. Stabilizing Reinforcement Learning in Dynamic Environment with

Application to Online Recommendation. In Proceedings of the 24th ACM SIGKDD

International Conference on Knowledge Discovery amp; Data Mining (London,

United Kingdom) (KDD °18). Association for Computing Machinery, New York,

NY, USA, 1187-1196. https://doi.org/10.1145/3219819.3220122

Wanyu Chen, Fei Cai, Honghui Chen, and Maarten De Rijke. 2019. Joint Neural

Collaborative Filtering for Recommender Systems. ACM Trans. Inf. Syst. 37, 4,

Article 39 (aug 2019), 30 pages. https://doi.org/10.1145/3343117

Heng-Tze Cheng, Levent Koc, Jeremiah Harmsen, Tal Shaked, Tushar Chandra,

Hrishi Aradhye, Glen Anderson, Greg Corrado, Wei Chai, Mustafa Ispir, Rohan

Anil, Zakaria Haque, Lichan Hong, Vihan Jain, Xiaobing Liu, and Hemal Shah.

—
)

8

[

[10

[11

https://doi.org/10.1145/2043932.2043988
https://doi.org/10.1145/2043932.2043988
https://doi.org/10.1145/2661829.2662055
https://doi.org/10.1145/3289600.3290999
https://doi.org/10.1145/3219819.3220122
https://doi.org/10.1145/3343117

2016. Wide Deep Learning for Recommender Systems. arXiv:1606.07792 (2016).
http://arxiv.org/abs/1606.07792

Antoine Cully, Jeff Clune, Danesh Tarapore, and Jean-Baptiste Mouret. 2015.
Robots that can adapt like animals. Nature 521, 7553 (2015), 503-507.

Dario Floreano and Claudio Mattiussi. 2008. Bio-Inspired Artificial Intelligence:
Theories, Methods, and Technologies (Intelligent Robotics and Autonomous
Agents). (2008).

Izzeddin Gur, Natasha Jaques, Yingjie Miao, Jongwook Choi, Manoj Tiwari,
Honglak Lee, and Aleksandra Faust. 2021. Environment Generation for Zero-
Shot Compositional Reinforcement Learning. Advances in Neural Information
Processing Systems 34 (2021).

Nicholas Guttenberg, Nathaniel Virgo, and Alexandra Penn. 2019. On the poten-
tial for open-endedness in neural networks. Artificial life 25, 2 (2019), 145-167.
Guy Hadash, Oren Sar Shalom, and Rita Osadchy. 2018. Rank and rate: multi-task
learning for recommender systems. In Proceedings of the 12th ACM Conference on
Recommender Systems. 451-454.

Xiangnan He and Tat-Seng Chua. 2017. Neural factorization machines for sparse
predictive analytics. In Proceedings of the 40th International ACM SIGIR conference
on Research and Development in Information Retrieval. 355-364.

Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng
Chua. 2017. Neural Collaborative Filtering. In Proceedings of the 26th International
Conference on World Wide Web (Perth, Australia) (WWW ’17). International World
Wide Web Conferences Steering Committee, Republic and Canton of Geneva,
CHE, 173-182. https://doi.org/10.1145/3038912.3052569

Eugene Ie, Chih-wei Hsu, Martin Mladenov, Vihan Jain, Sanmit Narvekar, Jing
Wang, Rui Wu, and Craig Boutilier. 2019. Recsim: A configurable simulation
platform for recommender systems. arXiv preprint arXiv:1909.04847 (2019).
Eugene Ie, Vihan Jain, Jing Wang, Sanmit Narvekar, Ritesh Agarwal, Rui Wu,
Heng-Tze Cheng, Tushar Chandra, and Craig Boutilier. 2019. SLATEQ: A
Tractable Decomposition for Reinforcement Learning with Recommendation Sets.
In Proceedings of the 28th International Joint Conference on Artificial Intelligence
(Macao, China) (IJCAI'19). AAAI Press, 2592-2599.

Robert A Jacobs, Michael I Jordan, Steven] Nowlan, and Geoffrey E Hinton. 1991.
Adaptive mixtures of local experts. Neural computation 3, 1 (1991), 79-87.

How Jing and Alexander] Smola. 2017. Neural survival recommender. In Proceed-
ings of the Tenth ACM International Conference on Web Search and Data Mining.
515-524.

[23] Joel Lehman and Kenneth O Stanley. 2011. Abandoning objectives: Evolution

through the search for novelty alone. Evolutionary computation 19, 2 (2011),
189-223.

Joel Lehman and Kenneth O Stanley. 2012. Beyond open-endedness: Quantifying
impressiveness. In ALIFE 2012: The Thirteenth International Conference on the
Synthesis and Simulation of Living Systems. MIT Press, 75-82.

Joel Lehman, Kenneth O Stanley, et al. 2008. Exploiting open-endedness to solve
problems through the search for novelty.. In ALIFE. Citeseer, 329-336.

Yu Lei and Wenjie Li. 2019. Interactive Recommendation with User-Specific Deep
Reinforcement Learning. ACM Trans. Knowl. Discov. Data 13, 6, Article 61 (oct
2019), 15 pages. https://doi.org/10.1145/3359554

Yichao Lu, Ruihai Dong, and Barry Smyth. 2018. Why I like it: multi-task learning
for recommendation and explanation. In Proceedings of the 12th ACM Conference
on Recommender Systems. 4-12.

Jiaqi Ma, Zhe Zhao, Xinyang Yi, Jilin Chen, Lichan Hong, and Ed H Chi. 2018.
Modeling task relationships in multi-task learning with multi-gate mixture-of-
experts. In Proceedings of the 24th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining. 1930-1939.

Xiao Ma, Liqin Zhao, Guan Huang, Zhi Wang, Zelin Hu, Xiaogiang Zhu, and Kun
Gai. 2018. Entire space multi-task model: An effective approach for estimating
post-click conversion rate. In The 41st International ACM SIGIR Conference on
Research & Development in Information Retrieval. 1137-1140.

Nicola Milano and Stefano Nolfi. 2021. Automated curriculum learning for
embodied agents a neuroevolutionary approach. Scientific Reports 11, 1 (2021),
1-14.

Ishan Misra, Abhinav Shrivastava, Abhinav Gupta, and Martial Hebert. 2016.
Cross-stitch networks for multi-task learning. In Proceedings of the IEEE conference
on computer vision and pattern recognition. 3994-4003.

Martin Mladenov, Ofer Meshi, Jayden Ooi, Dale Schuurmans, and Craig Boutilier.
2019. Advantage Amplification in Slowly Evolving Latent-State Environments.
CORR abs/1905.13559 (2019). http://arxiv.org/abs/1905.13559

Harrie Oosterhuis and Maarten de Rijke. 2018. Ranking for relevance and display
preferences in complex presentation layouts. In The 41st International ACM SIGIR
Conference on Research & Development in Information Retrieval. 845-854.
Changhua Pei, Xinru Yang, Qing Cui, Xiao Lin, Fei Sun, Peng Jiang, Wenwu Ou,
and Yongfeng Zhang. 2019. Value-aware recommendation based on reinforced
profit maximization in e-commerce systems. arXiv preprint arXiv:1902.00851
(2019).

Steffen Rendle. 2010. Factorization Machines. 2010 IEEE International Conference
on Data Mining (2010), 995-1000.

Steffen Rendle. 2012. Factorization Machines with LibFM. ACM Trans. Intell. Syst.
Technol. 3, 3, Article 57 (may 2012), 22 pages. https://doi.org/10.1145/2168752.
2168771

Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-Thieme.
2012. BPR: Bayesian personalized ranking from implicit feedback. arXiv preprint
arXiv:1205.2618 (2012).

Tim Salimans, Jonathan Ho, Xi Chen, Szymon Sidor, and Ilya Sutskever. 2017.
Evolution strategies as a scalable alternative to reinforcement learning. arXiv
preprint arXiv:1703.03864 (2017).

Russell K Standish. 2003. Open-ended artificial evolution. International Journal
of Computational Intelligence and Applications 3, 02 (2003), 167-175.

Richard S Sutton and Andrew G Barto. 2018. Reinforcement learning: An intro-
duction. MIT press.

Hongyan Tang, Junning Liu, Ming Zhao, and Xudong Gong. 2020. Progressive
layered extraction (ple): A novel multi-task learning (mtl) model for personalized
recommendations. In Fourteenth ACM Conference on Recommender Systems. 269—
278.

Jiaxi Tang and Ke Wang. 2018. Personalized Top-N Sequential Recommendation
via Convolutional Sequence Embedding. In Proceedings of the Eleventh ACM
International Conference on Web Search and Data Mining (Marina Del Rey, CA,
USA) (WSDM ’18). Association for Computing Machinery, New York, NY, USA,
565-573. https://doi.org/10.1145/3159652.3159656

Open Ended Learning Team, Adam Stooke, Anuj Mahajan, Catarina Barros,
Charlie Deck, Jakob Bauer, Jakub Sygnowski, Maja Trebacz, Max Jaderberg,
Michael Mathieu, et al. 2021. Open-ended learning leads to generally capable
agents. arXiv preprint arXiv:2107.12808 (2021).

Georgios Theocharous, Philip S Thomas, and Mohammad Ghavamzadeh. 2015.
Personalized ad recommendation systems for life-time value optimization with
guarantees. In Twenty-Fourth International Joint Conference on Artificial Intelli-
gence.

Katrien Verbert, Nikos Manouselis, Xavier Ochoa, Martin Wolpers, Hendrik
Drachsler, Ivana Bosnic, and Erik Duval. 2012. Context-Aware Recommender
Systems for Learning: A Survey and Future Challenges. IEEE Transactions on
Learning Technologies 5, 4 (2012), 318-335. https://doi.org/10.1109/TLT.2012.11
Hao Wang, Naiyan Wang, and Dit-Yan Yeung. 2015. Collaborative Deep Learning
for Recommender Systems. In Proceedings of the 21th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (Sydney, NSW, Australia)
(KDD ’15). Association for Computing Machinery, New York, NY, USA, 1235-1244.
https://doi.org/10.1145/2783258.2783273

Jialei Wang, Steven CH Hoi, Peilin Zhao, and Zhi-Yong Liu. 2013. Online multi-
task collaborative filtering for on-the-fly recommender systems. In Proceedings
of the 7th ACM conference on Recommender systems. 237-244.

Lu Wang, Wei Zhang, Xiaofeng He, and Hongyuan Zha. 2018. Supervised Re-
inforcement Learning with Recurrent Neural Network for Dynamic Treatment
Recommendation. In Proceedings of the 24th ACM SIGKDD International Con-
ference on Knowledge Discovery amp; Data Mining (London, United Kingdom)
(KDD ’18). Association for Computing Machinery, New York, NY, USA, 2447-2456.
https://doi.org/10.1145/3219819.3219961

Rui Wang, Joel Lehman, Jeff Clune, and Kenneth O Stanley. 2019. Paired open-
ended trailblazer (poet): Endlessly generating increasingly complex and diverse
learning environments and their solutions. arXiv preprint arXiv:1901.01753 (2019).

Rui Wang, Joel Lehman, Aditya Rawal, Jiale Zhi, Yulun Li, Jeffrey Clune, and
Kenneth Stanley. 2020. Enhanced POET: Open-ended reinforcement learning
through unbounded invention of learning challenges and their solutions. In
International Conference on Machine Learning. PMLR, 9940-9951.

Chenyan Xiong, Zhuyun Dai, Jamie Callan, Zhiyuan Liu, and Russell Power.
2017. End-to-End Neural Ad-Hoc Ranking with Kernel Pooling. In Proceedings
of the 40th International ACM SIGIR Conference on Research and Development
in Information Retrieval (Shinjuku, Tokyo, Japan) (SIGIR ’17). Association for
Computing Machinery, New York, NY, USA, 55-64. https://doi.org/10.1145/
3077136.3080809

Feng Xue, Xiangnan He, Xiang Wang, Jiandong Xu, Kai Liu, and Richang Hong.
2019. Deep Item-Based Collaborative Filtering for Top-N Recommendation. ACM
Trans. Inf. Syst. 37, 3, Article 33 (apr 2019), 25 pages. https://doi.org/10.1145/
3314578

Yu Zhang and Qiang Yang. 2017. A survey on multi-task learning. arXiv preprint
arXiv:1707.08114 (2017).

Hongke Zhao, Qi Liu, Guifeng Wang, Yong Ge, and Enhong Chen. 2016. Portfolio
Selections in P2P Lending: A Multi-Objective Perspective. In Proceedings of the
22nd ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining (San Francisco, California, USA) (KDD ’16). Association for Computing
Machinery, New York, NY, USA, 2075-2084. https://doi.org/10.1145/2939672.
2939861

Xiangyu Zhao, Long Xia, Liang Zhang, Zhuoye Ding, Dawei Yin, and Jiliang
Tang. 2018. Deep reinforcement learning for page-wise recommendations. In
Proceedings of the 12th ACM Conference on Recommender Systems. 95-103.

http://arxiv.org/abs/1606.07792
https://doi.org/10.1145/3038912.3052569
https://doi.org/10.1145/3359554
http://arxiv.org/abs/1905.13559
https://doi.org/10.1145/2168752.2168771
https://doi.org/10.1145/2168752.2168771
https://doi.org/10.1145/3159652.3159656
https://doi.org/10.1109/TLT.2012.11
https://doi.org/10.1145/2783258.2783273
https://doi.org/10.1145/3219819.3219961
https://doi.org/10.1145/3077136.3080809
https://doi.org/10.1145/3077136.3080809
https://doi.org/10.1145/3314578
https://doi.org/10.1145/3314578
https://doi.org/10.1145/2939672.2939861
https://doi.org/10.1145/2939672.2939861

[56]

[57]

Xiangyu Zhao, Liang Zhang, Zhuoye Ding, Long Xia, Jiliang Tang, and Dawei Yin.
2018. Recommendations with Negative Feedback via Pairwise Deep Reinforce-
ment Learning. In Proceedings of the 24th ACM SIGKDD International Conference
on Knowledge Discovery amp; Data Mining (London, United Kingdom) (KDD
’18). Association for Computing Machinery, New York, NY, USA, 1040-1048.
https://doi.org/10.1145/3219819.3219886

Zhe Zhao, Lichan Hong, Li Wei, Jilin Chen, Aniruddh Nath, Shawn Andrews,
Aditee Kumthekar, Maheswaran Sathiamoorthy, Xinyang Yi, and Ed Chi. 2019.

[58

[59

Recommending what video to watch next: a multitask ranking system. In Pro-
ceedings of the 13th ACM Conference on Recommender Systems. 43-51.

Guanjie Zheng, Fuzheng Zhang, Zihan Zheng, Yang Xiang, Nicholas Jing Yuan,
Xing Xie, and Zhenhui Li. 2018. DRN: A deep reinforcement learning framework
for news recommendation. In Proceedings of the 2018 World Wide Web Conference.
167-176.

Jiale Zhi, Rui Wang, Jeff Clune, and Kenneth O Stanley. 2020. Fiber: A platform
for efficient development and distributed training for reinforcement learning and
population-based methods. arXiv preprint arXiv:2003.11164 (2020).

https://doi.org/10.1145/3219819.3219886

	Abstract
	1 Introduction
	2 Related Works
	3 Problem Statement
	4 Proposed Solution
	5 Experiments
	5.1 Reinforcement Learning modelling
	5.2 Training Procedure
	5.3 Evaluation
	5.4 Results Discussion

	6 Conclusion
	References

