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ABSTRACT
Despite astonishing results in the application of reinforcement

learning to game-like domains, for instance chess, Go and vari-

ous Atari games, to the best of our knowledge no such success

has been reported for non-episodic operations research problems

yet, despite their ubiquitous presence in real-world applications.

In this paper, we introduce a novel adaptation of the discounted

reinforcement method, dubbed average reward adjusted discounted
reinforcement learning (ARAL in short) as remedy. Our approach is

based on the Laurent Series expansion of the discounted state value

and a subsequent reformulation of the target function guiding the

learning process. We compare ARAL to competing approaches and

give ample evidence of its usefulness.

KEYWORDS
machine learning, reinforcement learning, average reward learning,

operations research, applications.

1 INTRODUCTION
Reinforcement Learning (RL) is most often applied to control prob-

lems, games and other sequential decision making tasks [28], where

in almost all steps the reward function returns 0. However, in real-

world (economic) applications, where success is usually measured

in terms of profit or costs, the function intuitively returns a non-

zero reward in almost all steps as it continuously reports the actions

results. In this work, we focus on such problems that produce an

average reward per step that cannot be approximated by 0. We

introduce ARAL, a novel adaption of the discounted reinforcement

method and give ample example of the usefulness of ARAL in this

context. Application areas of such a model could be, e.g. (i) an

agent that periodically decides on buying and selling instruments

at the stock market; (ii) an agent performing daily replenishment

decisions; or (iii) many other decision problems that arise in hierar-

chical supply chain and production planning systems, which are

strongly capacity-oriented [33] and with aggregated feedback (see

for example [10, 24]).

The reason for the small number of RL applications to non-

episodic operations research problems, i.e. our original field of

motivation, and the fact that none of the available applications

report tremendous success, as in game-like areas, can be explained

by the average reward (per step) that the agent receives. The average

reward is usually by far the greatest part, when the discounted

state values are decomposed into its sub-components. This results

from the fact, that in contrast to the other parts, the average reward

contributes to the learned state-values in an exponentially up-scaled

fashion. However, for most applications the average reward is equal
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among all states and thus the agent has issues in choosing the

best action. Additionally, iteratively shifting all state values to the

exponentially up-scaled average reward easily causes the learning

process to fail, finding itself in sub-optimal maxima and with that

complicating the hyperparameterisation process tremendously.

We argue that this is the primal reason that discounted rein-

forcement learning is inappropriate for these kind of applications.

Earlier this has already been emphasised by Mahadevan. In a se-

ries of papers, Mahadevan investigate average reward reinforcement
learning, cf. [13–17]. Our contribution aims to combine discounted

and average reward RL, to get the best things of both worlds: the

stability and simplicity of standard discounted RL and the idea of

assessing the average reward separately and aiming for broader op-

timality criteria of average reward RL. Additionally, we contribute

to the operations research domain by providing a new machine

learning algorithm and applying it to a well studied M/M/1 admis-

sion control queuing system. In summary, we make the following

contributions in this paper. (i) First we analyse and illustrate why

standard discounted reinforcement learning is inappropriate for

real-world applications, which often impose an average reward that

cannot be approximated with 0, (ii) Second, we establish a novel

near-Blackwell-optimal reinforcement learning algorithm and an-

alytically prove its optimality, and (iii) Third, show the viability

of the algorithm by experimentally applying it, where, due to lack

of space, we focus on the well-studied M/M/1 admission control

queuing system.

RelatedWork. Only a very limited number of operations research

optimisation papers that are using RL and imposing this structure

are available. In [25], the first author and Haeussler present an RL

algorithm which optimises order release decisions in production

control environments. They use sophisticated additions to allow

the agent to link the actions to the actual rewards. The results were

compared to static order release measures only, which were outper-

formed. Gijsbrechts et al. [8] apply RL on a dual sourcing problem

for replenishment of a distribution center using rail or road, and

compare their results to optimal solutions if tractable or otherwise

established heuristics. They found that hyperparameter tuning is

effort-intensive and the resulting policies are often not optimal, es-

pecially for larger problems. Balaji et al. [1] use out-of-the-box RL

algorithms with simple 2 layer neural networks to tackle stochastic
bin packing, newsvendor and vehicle routing problems (VRP). VRP is a
generalised travelling salesperson problem (TSP), where one or more

vehicles have to visit nodes in a graph. They report to sometimes

beat the benchmarks and find sensible solutions. The capacitated

VRP is also tackled with RL by Nazari et al. [21]. They minimise the

total route length and compare the results to optimal solutions for

small instances. Although the optimum is not reached, one instance,

which keeps track of the most probable paths, performs better than
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well established heuristics. Also for larger problem sizes this tech-

nique seems to outperforms the other tested methods. Vera and

Abad [31] extend this model to a multi-agent algorithm and thus

tackle the capacitated multi-vehicle routing problem with a fixed

fleet size. They also report better results compared to the heuristics,

especially for large problem sizes, but in contrast to [21] are outper-

formed by Google’s OR-Tools
1
. These applications, like other TSP

applications [3, 12, e.g.], of RL to the VRP, except for [1], however,

calculate the reward according to the length to the finished route.

Thus, the average reward for long routes can be approximated with

0 as the decision problem is episodic and therefore perform well.

Finally, there are applications to the beer distribution game [7, 22],

but the problem sizes and thus complexities are small.

All of the above cited papers use highly sophisticated methods,

but essentially remain routed in standard discounted RL frame-

works. Further, only small problem sizes are handled or far-from-

optimal solutions are reported. A different approach was taken

by Mahadevan. In a series of papers the authors investigate aver-

age reward RL, cf. [13–17]. We emphasise that in average reward

RL no discount factor is used but rather nested constraint prob-

lems are approximated iteratively. The latter immediately leads to

computational intensive calculations.

The rest of the paper is structured as follows. The next sec-

tion provides a high-level overview of ARAL. Section 4 introduces

discounted RL and average reward RL, and provides the linkage

between the two frameworks via the Laurent Series Expansion

of discounted state values. The insights gained of the expansion

form the foundations for the developed average reward adjusted

discounted RL method established in Section 5. Section 7 proves

the viability of the algorithm, while Section 8 concludes the paper.

2 OVERVIEW OF ARAL
The overarching goal of businesses is an increase of value. One

key factor for reaching this goal is the maximisation of profit [2,

p.18]. Accordingly, the most intuitive decision taking in economic

optimisations problems is to choose decisions that return the high-

est expected long-term profit at every decision point. Translated

to RL this means that the most intuitive reward function quotes

the accumulated profit of the last decision period. However, most

RL algorithms [e.g. 19, 20, 27] are not designed to cope with such

reward functions and therefore perform poorly on such problems.

Therefore, our approach estimates the average reward value

and uses average reward adjusted discounted state values to be able

to selectively choose the best actions. Best refers to collecting as

much reward as possible, and only afterwards, to choose paths that

collect the reward earlier. The Markov Decision Process (MDP) in

Figure 1 consists of two possible definite policies, with reward of

2 for going left and 0 for moving right. Both policies 𝜋𝐴 (going

left in 1) and 𝜋𝐵 (going right) result in an the average reward

of 1. However, only 𝜋𝐴 is optimal, as the actions with non-zero

rewards are selected earlier. To clarify consider starting in state 1.

Under the policy 𝜋𝐴 the reward sequence is (2, 0, 2, 0, . . .), while for
𝜋𝐵 it is (0, 2, 0, 2, . . .). Hence, simply learning the average reward
is insufficient. Basically, there are two more values to consider.

First, the bias values, which intuitively is the additional reward

1
See https://developers.google.com/optimization.
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Figure 1: A MDP with a single choice (adapted from [14])

received when starting in a specific state. And second, the error
term, which incorporates the number of steps until the reward is

collected. The analytically inferred bias values under policy 𝜋𝐴
are 𝑉 𝜋𝐴 ((𝐴, left)) = 𝑉 𝜋𝐴 ((𝐴, right)) = 0.5. For policy 𝜋𝐵 these

amount to 𝑉 𝜋𝐵 ((𝐴, left)) = 𝑉 𝜋𝐵 ((𝐴, right)) = −0.5. Therefore, 𝜋𝐴
is preferable.

Our algorithm infers i) the average reward based on the state

values of consecutively observed states and the returned reward, ii)

approximates the bias values, and iii) uses a smaller discount factor

to infer the error term values. The latter only exist for discount

factors strictly less than 1. With a discount factor of 0.999 ∈ (0, 1]
our implementation automatically infers policy 𝜋𝐴 in under 10𝑘

iterations. In particular the average reward adjusted discounted

state values 𝑋
𝜋𝐴
0.999
((𝐴, left)) = 0.493 and 𝑋

𝜋𝐴
0.999
((𝐴, right)) = 0.492

are an estimate of the bias values. The bias values slightly differ from

the analytical values due to the error term, as the discount factor is

strictly less than 1. The third decision level is comprised of average

adjusted discounted state values with a smaller discount factor. The

inferred values for a discount factor of 0.8 are𝑋
𝜋𝐴
0.8
((𝐴, left)) = 0.555

and 𝑋
𝜋𝐴
0.8
((𝐴, right)) = 0.145. Thus, action left is preferred over

action right.

3 PRELIMINARIES
Like Miller and Veinott [18] we are concerned with problems that

are observed in a sequence of points in time labeled 0, 1, 2, . . . and

can bemodelled using a finite set of statesS, labelled 1, 2, . . . , |S|. At
each point 𝑡 in time the system is in a state 𝑠𝑡 ∈ S and by choosing

an action 𝑎𝑡 , of a finite set of possible actionsA𝑠 , the system returns

a reward 𝑟𝑡 = 𝑟 (𝑠𝑡 , 𝑎𝑡 ) and transitions to another state 𝑠𝑡+1 ∈ S at

time 𝑡 + 1 with conditional probability 𝑝 (𝑠𝑡+1, 𝑟𝑡 | 𝑠𝑡 , 𝑎𝑡 ). Hence,
we expect the system to possess the Markov property [28, p.63].

RL processes that possess the Markov property are referred to as

Markov decision processes (MDPs) [28, p.66]. Terminal states are
absorbing states and are followed by a reset of the system, which

starts a new episode [28, p.58]. Recurrent states are revisited with

probability 1 [14]. States that are not recurrent are called transient.
For periodic states the greatest common divisor of all path lengths to

itself is greater than 1. A state that is not periodic is termed aperiodic.
The action space is defined as 𝐹 = × |S |

𝑠=1
A𝑠 . A policy is a sequence

𝜋𝛾 = (𝑓0, 𝑓1, 𝑓2, . . .) of elements 𝑓𝑡 ∈ 𝐹 , where 𝛾 is the discount

factor. Using the policy 𝜋𝛾 means that, if the system is in state 𝑠 at

time 𝑡 , the action 𝑓𝑡 (𝑠), i.e. the 𝑠-th component of 𝑓𝑡 , is chosen. As

the optimal policy 𝜋★ for a given MDP is different to the optimal

achievable policy 𝜋★𝛾 with chosen discount factor 𝛾 , we rigorously

write 𝜋𝛾 in this paper. A stationary policy 𝜋𝛾 = (𝑓 , 𝑓 , . . .) does not
depend on time. In the sequel we are concerned with stationary

policies only. An episodic MDP includes terminal states, while non-
episodic MDPs do not [28, p.58]. An ergodic MDP consists of a single

https://ala2022.github.io/
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set of recurrent states under all stationary policies, that is, all states

are revisited with probability 1 [14]. A MDP is termed unichain if

under all stationary policies the transition matrix contains a single

set of recurrent states and (a possible) empty set of transient states.

FormultichainMDPs there exists a policy with at least two recurrent
classes [14]. The aim in RL is to find the optimal stationary policy

𝜋★ of the underlying MDP.

4 THE LAURENT SERIES EXPANSION OF
DISCOUNTED STATE VALUES

This section investigates the discounted RL framework and provides

the Laurent series expansion of its state values, which play a crucial

role in the development of the presented algorithm.

4.1 Discounted Reinforcement Learning
In standard discounted RL the value of a state is defined as the

expected discounted sum of future rewards [e.g. 14, 28].

Definition 4.1. The discounted state value under policy 𝜋𝛾 and

when starting in state 𝑠 is defined as

𝑉
𝜋𝛾
𝛾 (𝑠) = lim

𝑁→∞
E[

𝑁−1∑︁
𝑡=0

𝛾𝑡𝑅
𝜋𝛾
𝑡 (𝑠)] ,

with discount factor 0 ⩽ 𝛾 < 1 and 𝑅
𝜋𝛾
𝑡 (𝑠) = E𝜋𝛾 [𝑟 (𝑠𝑡 , 𝑎𝑡 ) | 𝑠𝑡 =

𝑠, 𝑎𝑡 = 𝑎] the reward received at time 𝑡 by following policy 𝜋𝛾 .

The aim is to find an optimal policy 𝜋★𝛾 , which when followed,

maximises the state value for all states 𝑠 as compared to any other

policy 𝜋𝛾 : 𝑉
𝜋★
𝛾

𝛾 − 𝑉 𝜋𝛾
𝛾 ⩾ 0. This criteria is usually referred to as

discounted-optimality (or 𝛾-optimality) as the discount factor 𝛾 is

fixed [15]. Note that most works omit the index 𝛾 in the policies

𝜋𝛾 , 𝜋
★
𝛾 and thus incorrectly indicate that 𝜋★𝛾 = 𝜋★, where 𝜋★ is

the optimal policy for the underlying problem.
2
We identified four

major issues of standard discounted RL for MDPs with non-zero

average reward per step.

(1) Standard discounted RL infers suboptimal policies due to the

discount factor being strictly less than one, i.e. 𝛾 < 1.

(2) With standard discounted RL it is very difficult to specify a

desired balance between short-term and long-term rewards.

(3) The average reward per step in the decomposed state value

of terminal states is ignored as there are no future states.

This leads to poor policies, even when converged.

(4) The average reward per step is independently assessed for

each state, even though this part of the state value is shared

between more than one or, for unichain MPDs, all states.

This usually leads to an exponentially increased number of

learning steps required for policies to converge.

In the sequel we briefly elaborate on these disadvantages.

Add 1. The (converged optimal) policy depends on the discount

factor 𝛾 . Consider the MDP of the upper part in Figure 2. It returns

reward 5, or 20 respectively, upon traversing to state 1 from state 5,

or 10
′
resp. In all other cases the reward is 0. The average reward

is 1 for the printer-loop and 2 for the mail-loop. Thus, the optimal

2
We use the notations 𝜋𝛾 and 𝜋𝐴 , where Greek letters indicate the discount factor of

the policy, while Latin symbols refer to specific policies.
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Figure 2: A MDP with one action choice (top, adapted3, [15])
and a gridworld MDP with 4 states and 5 actions (bottom).

policy is to choose the mail-loop, but if𝛾 < 3
− 1

5 ≈ 0.8027 a standard

discounted RL agent selects the printer loop.

Add 2.Aswewill see only the long-term reward (average reward),

out of three addends (bias value, error term), of the state-value is

exponentially scaled. For non-zero average reward MDPs this is

problematic, as average reward is multiplied by 1/(1−𝛾). To clarify,
consider the gridworld MDP on the lower part of Figure 2 with

states S = {(𝑥,𝑦) | 𝑥,𝑦 ∈ {0, 1}}. (0, 0) is the goal state, after

which the agent is placed uniformly on the grid by using the action

random (see left side). In all other states the agent can choose to go

up, right, down, or left. When moving out of the grid the state is

unchanged. Action random gives a reward of 10, while any other

action returns a reward of Unif (0, 8). Moving out of the grid adds a

punishment of −1 (see right side). Reaching state (0, 0) with as little

steps as possible is optimal. As by definition the average reward

for unichain MDPs is equal among all states [14], for the optimal

policy it is 7. Hence, the addend of the average reward equals 700

for each single state in case of 𝛾 = 0.99. The other parts of the state

value are diminutive in that regard.

Add 3. For episodic MDPs standard discounted RL is unable to

evaluate the average reward of terminal states correctly, as there is

no consecutive state at the end of an episode.

Add 4. As each state is assessed separately, so is the average

reward. States coincidentally visited more often at the beginning of

the iterative learning process are better evaluated than the others,

regardless of the specific reward feedback. The later is due to the

shared average reward, cf. Add 2. This increases the likeliness that

clusters form, with cyclic paths between the states (e.g. going back

and fourth between some states). Setting a very high exploration

rate is usually no remedy by the same argument. Further, recall

that the average reward increases once the policy improves, e.g.

for smaller exploration rates. This implies that finding the correct

3
[15] incorrectly claims that for 𝛾 < 0.75 the policy is sub-optimal.
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hyperparameter setting (e.g. exploration decay) requires a lot of

effort and experience, as for instance reported in [8].

Clearly under these circumstances optimal policies are difficult to

obtain for non-zero average reward MDPs. Therefore, in the sequel

we present a more refined RL approach for operations research,

which overcomes these issues by separately assessing the average

reward.

4.2 The Laurent Series Expansion of Discounted
State Values

The Laurent series expansion of the discounted state values [18, 23]

provide important insights by giving rise to basically three addends.

For a given discount factor 𝛾 the first addend is solely determined

by the average reward
4
, the second is the bias value and the third

one, actually consisting of infinitely many sub-terms, is the error

term. In the sequel we present the definitions of the average reward

and bias value, before providing the Laurent series expansion.

Definition 4.2. Due to Howard [11] for an aperiodic
5
MDP the

gain or average reward 𝜌𝜋𝛾 (𝑠) of a policy 𝜋𝛾 and a starting state 𝑠

is defined as

𝜌𝜋𝛾 (𝑠) = lim

𝑁→∞

E[∑𝑁−1
𝑡=0 𝑅

𝜋𝛾
𝑡 (𝑠)]

𝑁
.

Clearly 𝜌𝜋𝛾 (𝑠) expresses the expected average reward received

per action taken when starting in state 𝑠 and following policy 𝜋𝛾 . In

the case of unichain MDPs, in which only a single set of recurrent

states exists, the average reward 𝜌𝜋𝛾 (𝑠) is equal for all states 𝑠
[14, 23]. Thus, in the sequel we may simply refer to it as 𝜌𝜋𝛾 .

Definition 4.3. For an aperiodic MDP problem the average ad-

justed sum of rewards or bias value is defined as

𝑉 𝜋𝛾 (𝑠) = lim

𝑁→∞
E[

𝑁−1∑︁
𝑡=0

(𝑅𝜋𝛾𝑡 (𝑠) − 𝜌
𝜋𝛾 (𝑠))] .

Note that the bias values are bounded due to the subtraction of

the average reward. Thus, the bias value describes the reward that

additionally sums up in case the process starts in state 𝑠 . Finally, a

state value 𝑉
𝜋𝛾
𝛾 (𝑠) in standard discounted reinforcement learning

can be decomposed in its average reward, the bias value and an

additional error term 𝑒
𝜋𝛾
𝛾 (𝑠), which actually consists of infinitely

many subterms.

Lemma 4.4. Due to Miller and Veinott [18] the Laurent Series Ex-
pansion of the discounted state value for a state 𝑠 , a discount factor 𝛾
and a policy 𝜋𝛾 is given by

𝑉
𝜋𝛾
𝛾 (𝑠) =

𝜌𝜋𝛾 (𝑠)
1 − 𝛾 +𝑉

𝜋𝛾 (𝑠) + 𝑒𝜋𝛾𝛾 (𝑠) , (1)

where Puterman [23, p.341] shows that lim𝛾→1 𝑒
𝜋𝛾
𝛾 (𝑠) = 0.

The error term 𝑒
𝜋𝛾
𝛾 (𝑠) incorporates the amount and time until

the reward is collected. The higher the discount factor the more

long-sighted is the agent. Note how the first term depending on

4
We assume a positive average reward and the objective for maximisation in this work.

5
In the periodic case the Cesaro limit of degree 1 is required to ensure stationary state

transition probabilities and values [23]. To ease readability we concentrate on unichain

aperiodic MDPs. The theory applies to period unichain MDPs by replacing the limits.
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Figure 3: The (Blackwell-)optimal policy 𝜋𝐴 of the MDP of
Figure 1 as model-based (left) and model-free (right) version

the average reward 𝜌𝜋𝛾 (𝑠) converges to infinity as 𝛾 converges to

1, as well as the second addend does not depend on the discount

factor. If the average reward is non-zero and for large 𝛾-values we

can assume 𝜌𝜋𝛾 (𝑠)/(1 − 𝛾) ≫ 𝑉 𝜋𝛾 (𝑠) + 𝑒𝜋𝛾𝛾 (𝑠) which explains the

behaviour of the standard discounted RL agent, cf. the MDP in the

lower part of Figure 2.

Reconsider the task of Figure 1. The optimal MDP 𝜋𝐴 , that is,

the one that chooses the A-loop, is shown on the left of Figure 3.

The right side depicts the same MDP for the model-free version. In

model-free reinforcement learning state-action pairs as opposed

to state values are estimated. The dashed line indicates that these

states are connected and the agent has to choose among them.

In this case the bias values are 𝑉 𝜋𝐴 ((0, 𝑟 )) = −0.5, 𝑉 𝜋𝐴 ((1, 𝑙)) =
𝑉 𝜋𝐴 ((1, 𝑟 )) = 0.5, and 𝑉 𝜋𝐴 ((2, 𝑙)) = 1.5.

When using standard discounted reinforcement learning, that is,

estimating 𝑉
𝜋𝛾
𝛾 (𝑠) the average reward of 1 scales the state-action

values. E.g. for a discount factor of 𝛾 = 0.99 the inferred values for a

converged system are 𝑉
𝜋𝐴
0.99
((0, 𝑟 )) = 99.497, 𝑉

𝜋𝐴
0.99
((1, 𝑙)) = 100.502,

𝑉
𝜋𝐴
0.99
((1, 𝑟 )) = 100.482, and 𝑉

𝜋𝐴
0.99
((2, 𝑙)) = 101.497. For all states

the discounted state-value consists of the scaled average reward

1/0.01 = 100 and the bias value plus the error term. The duration of

the process of learning the state values is unintentionally increased

as the scaled average reward has to be learned in an iterativemanner

and by every single state separately. Furthermore, the values itself

are hard to interpret and the marginal difference of 0.02 between

optimal and non-optimal action as compared to their actual values

increase the likelihood of choosing sub-optimal actions, especially

when function approximation is used to represent 𝑉
𝜋𝛾
𝛾 (𝑠).

5 AVERAGE REWARD ADJUSTED
DISCOUNTED REINFORCEMENT LEARNING

This section establishes the average reward adjusted discounted

reinforcement learning algorithm, the Bellman Equations and dis-

cusses optimality. For the rest of the paper we assume unichain

MDPs, i.e. we restrict our method to MDPs that posses a scalar

average reward value 𝜌𝜋𝛾 .

Definition 5.1. The average reward adjusted discounted state value
𝑋
𝜋𝛾
𝛾 (𝑠) of a state 𝑠 under policy 𝜋𝛾 and with discount factor 0 ⩽

𝛾 ⩽ 1 is defined as

𝑋
𝜋𝛾
𝛾 (𝑠) B 𝑉 𝜋𝛾 (𝑠) + 𝑒𝜋𝛾𝛾 (𝑠) .

The reformulation 𝑋
𝜋𝛾
𝛾 (𝑠) = 𝑉

𝜋𝛾
𝛾 (𝑠) −

𝜌𝜋𝛾

1−𝛾 depicts that 𝑋
𝜋𝛾
𝛾 (𝑠)

describes the discounted state value adjusted by the average reward.

In average reward RL the bias values are not uniquely defined

without solving the first set of constraints defined by the error term
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addends (see [16, 23, p.346]). This can be overcome by simply re-

quiring 𝛾 to be strictly less than 1. However, our algorithm does not

require the exact solution for 𝑉 𝜋𝛾 (𝑠). Clearly this observation re-

duces the required iteration steps tremendously as finding the exact

solution, especially for large discount factors, is tedious. There-

fore, we allow to set 𝛾 = 1, which induces 𝑋
𝜋𝛾
𝛾 (𝑠) = 𝑉 𝜋𝛾 (𝑠) + 𝑢,

where 𝑢 is a scalar value [23, p.346]. If we are interested in correct

bias values, i.e. 𝛾 is close but strictly less than 1, our approach is

a tremendous advantage over average reward RL. This is due to

a reduced number of iterative learning steps by requiring only a

single constraint per state plus one for the scalar average reward

value. For a MDP with 𝑁 states only one more constraint (𝑁 + 1)
has to be solved in ARAL as compared to (at least) 2𝑁 + 1 nested
constraints for average reward RL. Therefore, it is cheap to compute

𝑋
𝜋𝛾
𝛾 (𝑠), while it is rather expensive to find the correct values of

𝑉 𝜋𝛾 (𝑠) directly. Especially as RL estimates constraints iteratively.

5.1 Bellman Equations
We derive the Bellman equation based on the corresponding coun-

terpart of 𝑉
𝜋𝛾
𝛾 (𝑠) (see e.g. [28, p.70]). As in [28, p.66ff] we use the

notation 𝑅𝑎
𝑠,𝑠′ = E[𝑟𝑡 | 𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎, 𝑠𝑡+1 = 𝑠′] for the expected

reward to receive when traversing from any current state 𝑠 to state

𝑠′ using action 𝑎 and denoting 𝜋𝛾 (𝑎 | 𝑠) the probability of taking

action 𝑎 in state 𝑠 as given by policy 𝜋𝛾 .

𝑉
𝜋𝛾

𝛾 (𝑠 ) = E
𝜋𝛾

[𝑟𝑡 + 𝛾𝑉
𝜋𝛾

𝛾 (𝑠𝑡+1 ) | 𝑠𝑡 = 𝑠 ]

𝑉 𝜋𝛾 (𝑠 ) + 𝑒𝜋𝛾

𝛾 (𝑠 ) = E
𝜋𝛾

[𝑟𝑡 + 𝛾 (𝑉 𝜋𝛾 (𝑠𝑡+1 ) + 𝑒
𝜋𝛾

𝛾 (𝑠𝑡+1 ) ) + 𝜌𝜋𝛾 · 𝛾 − 1

1 − 𝛾 | 𝑠𝑡 = 𝑠 ]

𝑋
𝜋𝛾

𝛾 (𝑠 ) = E
𝜋𝛾

[𝑟𝑡 + 𝛾𝑋
𝜋𝛾

𝛾 (𝑠𝑡+1 ) − 𝜌𝜋𝛾 | 𝑠𝑡 = 𝑠 ]

𝑋
𝜋𝛾

𝛾 (𝑠 ) =
∑︁
𝑎

𝜋𝛾 (𝑎 | 𝑠 )
∑︁
𝑠 ′

𝑝 (𝑠 ′ | 𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎) (𝑅𝑎
𝑠,𝑠 ′ + 𝛾𝑋

𝜋𝛾

𝛾 (𝑠 ′ ) − 𝜌𝜋𝛾 )

Thus, we can compute the average reward adjusted discounted

state value 𝑋
𝜋𝛾
𝛾 (𝑠) of a state 𝑠 by the returned reward, the adjusted

discounted state value 𝑋
𝜋𝛾
𝛾 (𝑠𝑡+1) of the next state 𝑠𝑡+1 and the

average reward 𝜌𝜋𝛾 . Further, note that we use the equivalence

𝜌𝜋𝛾 (𝑠) = E𝜋𝛾 [𝜌𝜋𝛾 (𝑠)] described by the first addend of the Laurent

series expansion (see [18]). In the same manner we derive the Bell-

man optimality equation for average reward adjusted discounted

reinforcement learning, cf. [28, p.76].

𝑉
𝜋★
𝛾

𝛾 (𝑠 ) = max

𝑎
E
𝜋★
𝛾

[𝑟𝑡 + 𝛾𝑉
𝜋★
𝛾

𝛾 (𝑠𝑡+1 ) | 𝑠𝑡 = 𝑠 ]

𝑉 𝜋★
𝛾 (𝑠 ) + 𝑒𝜋

★
𝛾

𝛾 (𝑠 ) = max

𝑎
E
𝜋★
𝛾

[𝑟𝑡 + 𝛾 (𝑉 𝜋★
𝛾 (𝑠 ) + 𝑒𝜋

★
𝛾

𝛾 (𝑠 ) ) + 𝜌𝜋𝛾 · 𝛾 − 1

1 − 𝛾 | 𝑠𝑡 = 𝑠 ]

𝑋
𝜋★
𝛾

𝛾 (𝑠 ) = max

𝑎
E
𝜋★
𝛾

[𝑟𝑡 + 𝛾𝑋
𝜋★
𝛾

𝛾 (𝑠 ) − 𝜌𝜋★
𝛾 | 𝑠𝑡 = 𝑠 ]

𝑋
𝜋★
𝛾

𝛾 (𝑠 ) = max

𝑎

∑︁
𝑠 ′

𝑝 (𝑠 ′ | 𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎) (𝑅𝑎
𝑠,𝑠 ′ + 𝛾𝑋

𝜋★
𝛾

𝛾 (𝑠 ′ ) − 𝜌𝜋★
𝛾 )

As in standard discounted RL the optimal policy is computed by the

expected value of the best action from that state [28, p.76], where

the average reward is subtracted accordingly.

5.2 Near-Blackwell-Optimal Algorithm
The reinforcement learning algorithm is printed in Algorithm 1.

In model-free methods, which is what we aim for, state-action

Algorithm 1Model-free tabular near-Blackwell-optimal RL algo-

rithm for unichain MDPs

1: Set exploration rate 𝑝expl, exponential smoothing rates 𝛼,𝛾 ,

and discount factors 0 < 𝛾0 < 𝛾1 ⩽ 1.

2: while the stopping criterion is not fulfilled do
3: With probability 𝑝expl choose a random action and prob.

1 − 𝑝expl one that fulfills max𝑎 ≼𝜖 (𝑋
𝜋𝛾

1

𝛾1 (𝑠𝑡 , 𝑎), 𝑋
𝜋𝛾

0

𝛾0 (𝑠𝑡 , 𝑎)).
4: Carry out action 𝑎𝑡 , observe reward 𝑟𝑡 and new state 𝑠𝑡+1.
5: if a non-random action was chosen then

𝜌𝜋𝛾1
𝛼← 𝑟𝑡 +max

𝑎
𝑋

𝜋𝛾
1

𝛾1
(𝑠𝑡+1, 𝑎) − 𝑋𝜋𝛾

1𝛾1 (𝑠𝑡 , 𝑎𝑡 )

6: Update average reward adjusted discounted state-values

𝑋𝜋𝛾
0 (𝑠𝑡 , 𝑎𝑡 )

𝛾
← 𝑟𝑡 + 𝛾0 max

𝑎
𝑋𝜋𝛾

0 (𝑠𝑡+1, 𝑎) − 𝜌𝜋𝛾1

𝑋
𝜋𝛾

1

𝛾1
(𝑠𝑡 , 𝑎𝑡 )

𝛾
← 𝑟𝑡 + 𝛾1 max

𝑎
𝑋

𝜋𝛾
1

𝛾1
(𝑠𝑡+1, 𝑎) − 𝜌𝜋𝛾1

7: Set 𝑠 ← 𝑠′, 𝑡 ← 𝑡 + 1 and decay parameters

pairs are computed instead of state values only. Therefore, the algo-

rithm operates on state-action tuples, where for simplicity we write

𝑋
𝜋𝛾
𝛾 (𝑠, 𝑎) instead of 𝑋

𝜋𝛾
𝛾 ((𝑠, 𝑎)). Further, the Bellman optimality

equation is adopted as in [28, p.76], s.t. the agent is able to selectively

choose actions among multiple states, cf. Figure 3. In the action

selection process (step 3) we utilise an 𝜖-sensitive lexicographic

order ≼𝜖 defined as (𝑎1, . . . , 𝑎𝑛) = 𝑎 ≼𝜖 𝑏 = (𝑏1, . . . , 𝑏𝑛) if and only
if |𝑎 𝑗 −𝑏 𝑗 | ⩽ 𝜖 for all 𝑗 < 𝑖 and |𝑎𝑖 −𝑏𝑖 | > 𝜖 . Note that the resulting

sets of actions may not be disjoint. Although unusual in program-

ming, finding the set of maximizing values as in our algorithm is

straightforward and thus cheap to compute. In case the resulting set

of actions contains more than one element a random action of this

set of actions is chosen. All state values are updated using exponen-

tial smoothing, where we write 𝑥
𝛼← 𝑦 for 𝑥 ← (1 − 𝛼)𝑥 + 𝛼𝑦. To

prevent introducing inaccuracies (cf. Theorem 3 of [18]) only when

actions are chosen greedy the average reward is updated (step 5).

The update formula 𝜌𝜋𝛾 (𝑠) +𝑉 𝜋𝛾 (𝑠) − E[𝑉 𝜋𝛾 (𝑠)] = 𝑅𝑡 (𝑠) origins
from the Laurent series expansion from [18] [see also 23, p.346]

and has been identified as superior than exponentially smoothing

the rewards [29]. It infers solid average reward predictions in few

steps and thus quickly leads to better policies. Furthermore, we

additionally prevent retreating to worse policies by adding an ex-

ponentially smoothed
6
bound from below for the average reward

value. The Bellman optimality equation is the basis of the ARAL

state-value update (step 6).

5.3 Optimality Criteria
We consider the notion of𝑛-discount optimality, as, for a sufficiently

large𝑛, it is known that there exists a policy which is optimal [6, 30].

For a comprehensive discussion of optimality criteria in reinforce-

ment learning we refer to [15].

Definition 5.2 ([30]). For MDPs a policy 𝜋★𝛾 is 𝑛-discount-optimal
for 𝑛 = −1, 0, 1, . . . for all states 𝑠 ∈ S with discount factor 𝛾 if and

only if lim𝛾→1 (1 − 𝛾)−𝑛 (𝑉
𝜋★
𝛾

𝛾 (𝑠) −𝑉
𝜋𝛾
𝛾 (𝑠)) ⩾ 0 .

6
With rate

1

50
and update of 97.5% of the current reward in every period.

https://ala2022.github.io/


ALA ’22, May 9-10, 2022, Online, https://ala2022.github.io/ Manuel Schneckenreither and Georg Moser

Hence, the correct solution to the underlying constraint prob-

lem for the optimal policy 𝜋★ of the MDP requires 𝜋1.0. Nonethe-

less, there exists a discount factor 𝛾 < 1 that finds the optimal

policy [6, 16]. A policy can only be𝑚-discount optimal if it is 𝑛-

discount-optimal for all𝑛 < 𝑚 [23, 30]. This leads to the component-

wise comparison when greedily choosing actions, cf. the algorithm.

If a policy is ∞-discount-optimal then it is said to be Blackwell-
optimal [6]. Blackwell-optimal policies are the optimal policy 𝜋★

for the underlying MDP. Put differently, they are the, in the sense of

𝑛-discount-optimality, best achievable policies. They first optimise

for the highest gain, as we have for 𝑛 = −1 a measure for gain-

optimality [14]. Then for 𝑛 = 0 for bias-optimality [14]. And for

𝑛 ⩾ 1 they maximise the error term, where for increasing 𝑛 more

distant steps are considered. For an agent that either expects to

have infinitely many time to collect rewards, or one that is unaware

when the system will halt, this order is the most sensible approach.

In the Literature there are mainly two solution strategies to

RL. First, to use a single discounted state value, and, second, de-

composing the state value into infinitely many addends. The later

in general incorporates solving infinitely many constraints. The

following definition separates these kinds of algorithms.

Definition 5.3. If an algorithm infers for any MDP bias-optimal

policies, and for any given MDP can in theory be configured to

infer ∞-discount-optimal policies, but in practise this ability is

naturally limited due to finite memory availability and accuracy of

floating-point representation of modern computer systems, it is said

to be near-Blackwell-optimal under the given computer system. An

according to a near-Blackwell-optimal algorithm inferred Blackwell-

optimal policy is called near-Blackwell-optimal.

This definition is of practical relevance, as it defines a group

of algorithms that are by far less computationally expensive in

comparison to ones that solve infinitely many constraints, but are

able to deduce sufficiently optimal policies.

5.4 Optimality Analysis
In the sequel we show that ARAL is indeed near-Blackwell-optimal.

For 𝑛 = −1 gain-optimality is required [14].

Theorem 5.4. For 𝛾1 = 1 and unichain MDPs ARAL infers gain-
optimal policies, i.e. it finds a policy 𝜋★𝛾 with 𝜌

𝜋★
𝛾 (𝑠) − 𝜌𝜋𝛾 (𝑠) ⩾ 0

for any other policy 𝜋𝛾 .

Proof. With𝛾1 = 1 and as in unichainMDPs the average reward

is equal among all states [14], we have 𝑋
𝜋𝛾
𝛾 (𝑠) = 𝑉 𝜋𝛾 (𝑠) +𝑢, where

𝑢 is a scalar value [23, p.346]. All bias values 𝑉 𝜋𝛾 (𝑠) are assessed
with the same average reward 𝜌𝜋𝛾 . As by definition the bias value

𝑉 𝜋𝛾 (𝑠) depends on the returned reward and average reward 𝜌𝜋𝛾
only. By learning the average reward greedy only and choosing

actions with the maximum bias value, the theorem follows. □

An interesting insight is, that by definition, for incorrectly fixed

average reward value, the bias values are estimated according to

the given policy induced by the average reward. Furthermore, the

values shift similar as in the standard discounted RL. Hence, the

need to infer the average reward automatically. Reconsider the

MDP of Figure 2 and the discount factor 𝛾 = 0.99. When fixing the

average reward to 𝜌
𝜋𝛾

fix = 1, instead to the correct value of 2, the

algorithm infers values𝑋
𝜋𝛾

fix,𝛾 (𝑠) =
𝜌𝜋𝛾 −𝜌𝜋𝛾fix

1−𝛾 +𝑋𝜋𝛾
𝛾 (𝑠) = 100+𝑋𝜋𝛾

𝛾 (𝑠)
instead.

In the case of 0-Discount-Optimality we have bias-optimality

with 𝑉
𝜋★
𝛾 (𝑠) −𝑉 𝜋𝛾 (𝑠) ⩾ 0 for all policies 𝜋𝛾 and states 𝑠 ∈ S [14].

Theorem 5.5. For a sufficiently large 𝛾1 ⩽ 1, such that for all
states 𝑠 we have |𝑒𝜋𝛾1𝛾1 (𝑠) | ⩽ 𝜖 , ARAL infers bias-optimality policies,

i.e. it finds a policy 𝜋★𝛾 with 𝑉 𝜋★
𝛾 (𝑠) −𝑉 𝜋𝛾 (𝑠) ⩾ 0.

Proof. Recall that lim𝛾→1 𝑒
𝜋𝛾
𝛾 (𝑠) = 0 and 𝜌

𝜋★
𝛾 = 𝜌𝜋𝛾 . We have

lim

𝛾→1

(1 − 𝛾 )0 (𝑉 𝜋★
𝛾

𝛾 (𝑠 ) − 𝑉 𝜋𝛾

𝛾 (𝑠 ) ) ⩾ 0

lim

𝛾→1

( 𝜌
𝜋★
𝛾 − 𝜌𝜋𝛾

1 − 𝛾 +𝑉 𝜋★
𝛾 (𝑠 ) − 𝑉 𝜋𝛾 (𝑠 ) + 𝑒𝜋

★
𝛾

𝛾 (𝑠 ) − 𝑒
𝜋𝛾

𝛾 (𝑠 ) ) ⩾ 0

𝑉 𝜋★
𝛾 (𝑠 ) − 𝑉 𝜋𝛾 (𝑠 ) ⩾ 0

meaning that a 0-discount-optimal policy 𝜋𝛾 has to maximise the

bias values 𝑉 𝜋𝛾 (𝑠) for all states 𝑠 . By definition of the 𝜖-sensitive

lexicographic order (𝑎 ≼𝜖 𝑏 if and only if |𝑎 𝑗 − 𝑏 𝑗 | ⩽ 𝜖), we have

for a sufficiently large 𝛾1-value |𝑒
𝜋𝛾

1

𝛾1 (𝑠) | ⩽ 𝜖 and thus |𝑉 𝜋★
𝛾 (𝑠) −

𝑋
𝜋𝛾

1

𝛾1 (𝑠) | ⩽ 𝜖 for all states 𝑠 . Thus the claim follows. □

Finally, for 𝑛 ⩾ 1, the agent has to choose actions that satisfy

𝑒
𝜋★
𝛾

𝛾 (𝑠) − 𝑒
𝜋𝛾
𝛾 (𝑠) ⩾ 0 once 𝛾 → 1. Hence, we are focusing on the

cases with 𝛾 < 1, i.e. how long-sighted the agent shall be. Therefore,

the number of actions to reach a desired goal or path is taken into

account, as well as when and how much rewards are collected.

However, as the error term depends on infinitely many sub-terms

simply estimating these and summing up does not work.

Hence, the RL algorithm depicted in Algorithm 1 is unable to

generally deduce Blackwell-optimal policies. This is due to the non-

linearity of the error term values in regard to the discount factor.

The MDP of Figure 4 explains the idea. The only action choice is

in state 𝑆 , where the agent either decides to do the top- or bottom-

loop. For both loops the same amount of rewards are collected, thus

regardless of the chosen policy the average reward (0.75) and bias

values are equal (0.25 for the policy that goes up, 0.375 for the policy
that chooses down). But only going down is Blackwell-optimal, as

the full amount of rewards is collected earlier. This also manifests

in a higher bias value. However, recall that the agent is unable to

separate the actions by the bias values in case the same amount of

rewards are collected. If we set 𝛾0 = 0.50 the agent deduces state-

values 𝑉
𝜋Top
𝛾0 (𝑆) = −0.480 and 𝑉 𝜋Bottom

𝛾0 (𝑆) = −0.746 and thus like

for any other value 𝛾0 < 0.84837 chooses the top-loop. Due to the

fact that the state values are adjusted, 𝛾0 of our algorithm functions

exactly as the discount factor in standard RL is supposed to do: It

can be used to balance expected short-term and long-term rewards,

without changing the main optimisation objective, i.e. maximise

for the highest average reward and bias values, before taking path

lengths into account. Especially for highly volatile systems, e.g.

stochastic production and control systems, being able to set the

long-sightedness can be an advantage.

Theorem 5.6. For any given MDP ARAL can be configured such
that it infers a Blackwell-optimal policy, i.e. it finds a policy 𝜋★𝛾 with

𝑒
𝜋★
𝛾

𝛾 (𝑠) − 𝑒
𝜋𝛾
𝛾 (𝑠) ⩾ 0 for any other policy 𝜋𝛾 .
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𝑆

𝑇 1 𝑇 2 𝑇 3 𝑇 4 𝑇 5 𝑇 6

𝐵1 𝐵2 𝐵3 𝐵4 𝐵5 𝐵6

𝐸

up

1 4

1

down 6

Top-Loop

Bottom-Loop

Figure 4: An MDPs in which the discount factor 𝛾0 is used to balance short- and long-sightedness of ARAL.

Proof. Due to 0-discount-optimality we have 𝜌
𝜋★
𝛾 = 𝜌𝜋𝛾 and

𝑉
𝜋★
𝛾 (𝑠) = 𝑉 𝜋𝛾 (𝑠) for all states 𝑠 . Therefore,

lim

𝛾→1

(1 − 𝛾 )−𝑛 (𝑉 𝜋★
𝛾

𝛾 (𝑠 ) − 𝑉 𝜋𝛾

𝛾 (𝑠 ) ) ⩾ 0

lim

𝛾→1

(1 − 𝛾 )−𝑛 ( 𝜌
𝜋★
𝛾 − 𝜌𝜋𝛾

1 − 𝛾 +𝑉 𝜋★
𝛾 (𝑠 ) + 𝑒𝜋

★
𝛾

𝛾 (𝑠 ) − 𝑉 𝜋𝛾 (𝑠 ) − 𝑒𝜋𝛾

𝛾 (𝑠 ) ) ⩾ 0

lim

𝛾→1

(1 − 𝛾 )−𝑛 (𝑒𝜋
★
𝛾

𝛾 (𝑠 ) − 𝑒
𝜋𝛾

𝛾 (𝑠 ) ) ⩾ 0

Note that the error term does not depend on 𝑛. It is known that

for Blackwell-optimal policies 𝜋★𝛾 there exists a discount factor

𝛾★ < 1 such that 𝑉
𝜋★
𝛾

𝛾 (𝑠) ⩾ 𝑉
𝜋𝛾
𝛾 (𝑠) for all 𝛾 ⩾ 𝛾★ and under all

policies 𝜋𝛾 [6, 16]. Hence for sufficiently large 𝛾0 and small 𝜖 we

have |𝑒
𝜋★
𝛾
0

𝛾0 (𝑠) − 𝑋
𝜋𝛾

0

𝛾0 (𝑠) | ⩽ 𝜖 for all states 𝑠 . □

In the Literature the error term is often split into its subterms

by 𝑒
𝜋𝛾
𝛾 (𝑠) B

∑∞
𝑚=1 (

1−𝛾
𝛾 )

𝑚𝑦
𝜋𝛾
𝑚 (for the definition see [18]). Then

for any 𝑛 ⩾ 1 the terms evaluate to maximising 𝑦
𝜋𝛾
𝑛 . This leads to

the approaches of average reward dynamic programming, where

𝑛-nested sets of constraints are solved [23, e.g. p.511ff]. Clearly, this

straightforward approach is computationally very expensive and

infinite. We refrain on adapting this strategy and rather let the user

choose an appropriate 𝛾0 value for the provided situation.

Thus, for any given MDP and under the assumption of correct

approximations, as well as wisely chosen parameters ARAL infers

Blackwell-optimality policies, but this is bounded by the characteris-

tics of the computer system. Therefore, the presented reinforcement

learning algorithm ARAL is near-Blackwell-optimal.

6 BENCHMARK
6.1 Benchmark Algorithm
We compare the algorithm to standard discounted RL, where we

choose the widely applied Q-Learning [28, 32] technique as appro-

priate model-free comparison method. This decision is due to the

fact that ARAL is based on the ideas of Q-Learning and thus well

comparable. The implementation details with adapted parameter

names to match the corresponding counterparts of ARAL are given

Algorithm 2.

6.2 Problem Set
Due to the lack of space, in this version we focus on an admission

control queuing problem. Nonetheless, we have tested the algo-

rithm with success on various problems, like the printer-mail and

gridworld problems of Figure 2, but using a 5 × 5 grid. In general

Algorithm 2Watkins Q-Learning algorithm [32]. Adapted from

the version by Sutton [28, p.149].

1: Set an exploration rate 0 ⩽ 𝑝expl ⩽ 1 and 0 < 𝛾,𝛾1 < 1.

2: while the stopping criterion is not fulfilled do
3: With probability 𝑝expl choose a random action and other-

wise one that fulfills max𝑎 𝑄
𝜋
𝛾1
(𝑠𝑡 , 𝑎) at the current state 𝑠𝑡 .

4: Carry out action 𝑎𝑡 , observe reward 𝑟𝑡 and new state 𝑠𝑡+1.
5: Update the discounted state-values.

𝑄𝜋𝛾
1 (𝑠𝑡 , 𝑎𝑡 )

𝛾
← 𝑟𝑡 + 𝛾1 max

𝑎′
𝑄𝜋𝛾

1 (𝑠𝑡+1, 𝑎′ )

6: Set 𝑠 ← 𝑠′, 𝑡 ← 𝑡 + 1 and decay parameters

we found that our algorithm outperforms Q-Learning on the tested

examples, as the latter struggles with the average reward. We se-

lected the admission control queuing problem as it is key to solve

it with Blackwell-optimality, i.e. bias-optimality is insufficient.

Admission Control Queuing System. Like Mahadevan [13, 16] we

evaluate the algorithm on a simple M/M/1 admission control queu-

ing system assuming one server that processes jobs, which arrive

by an exponential (Markov) interarrvial time distribution. The pro-

cessing duration is assumed to be exponentially distributed. The

arrival and service rate are modeled by parameter 𝜆 and 𝜇 respec-

tively. On each new arrival the agent decides whether to accept the

job and thus add it to the queue, or reject the job. In case of accep-

tance an immediate reward is received, which also incurs a holding

cost depending on the current queue size. The goal is to maximise

the reward by balancing the admission allowance reward and the

holding costs. The discrete time MDP is depicted in Figure 5 and is

the result of a transformation using the uniformisation technique

from a continuous time problem (see [5, 23] for a description of

uniformisation). The set of states consists of elements (𝑙,Arr) with
queue length 𝑙 ∈ N and a Boolean variable Arr ∈ {T, F}, where Arr
symbolises an arrival (T), or no arrival (F). The edges are labelled
with the transition probability and the corresponding action, that

is accept and reject in case of a new arrival, or continue when no

new job arrived. The reward function 𝑟 is defined as in [13, 16]:

𝑟 ( (0, F), continue) = 𝑟 ( (0, T), reject) = 0 if 𝑠 = 0 ,

𝑟 ( (𝑙, F), continue) = −𝑓 (𝑙 + 1) (𝜆 + 𝜇 ) if 𝑙 ⩾ 1 ,

𝑟 ( (𝑙, T), reject) = −𝑓 (𝑙 + 1) (𝜆 + 𝜇 ) if 𝑙 ⩾ 1 ,

𝑟 ( (𝑙, T), accept) = [𝑅 − 𝑓 (𝑙 + 1) ] (𝜆 + 𝜇 ) .

The factor 𝜆+𝜇 is an artifact of the uniformisation of the continuous

time problem to the discrete time MDP.

https://ala2022.github.io/
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Figure 5: This diagram illustrates a simple M/M/1 admission control queuing system (adapted from Mahadevan [13, 16])

Haviv and Puterman [9] show that, if the cost function has the

shape 𝑓 (𝑙) = 𝑐 · 𝑙 , there are at most two gain-optimal control limit

policies. Namely to admit 𝐿 or 𝐿 + 1 jobs. However, only the policy

that admits 𝐿 + 1 jobs is also bias-optimal as the extra reward

received offsets the additional cost of the extra job.

We use exactly this cost function in our experiment, with the

challenging problem setup 𝜆 = 5, 𝜇 = 5, 𝑅 = 12, 𝑐 = 1, and

a maximum queue length of 20 as in [13, 16]. To compute the

optimal solution we implement the constraint formulation of the

Laurent series expansion [18, 23, p.346] using mixed integer linear

programming (MILP). The optimum is 𝐿 = 2, i.e. both policies of

admitting 2 or 3 jobs to the queue are gain-optimal with average

reward of 𝜌
𝜋★
𝛾
1 = 30, but only admitting 3 jobs is also bias-optimal.

And as such also Blackwell-optimal, as it’s the only gain-optimal

policy that is left. This makes sense, as 𝑅 is only collected when

an order is accepted, which is for admitting 3 jobs immediate in

contrast to the policy of admitting 2. The correct queue length for

admitting 2 jobs is 0.67, while for 3 it is 1.12.

The initial setup is 𝛼 = 𝛾 = 0.01, 𝛾0 = 0.80, 𝜖 = 5, 𝑝expl = 1.00.

The learning rates and exploration are exponentially decayed as

follows. 𝛼 with a rate of 0.50 in 50𝑘 steps and a minimum of 10
−5

, 𝛾

with rate of 0.50 in 150𝑘 steps and 10
−3

, and finally the exploration

with rate 0.50 in 100𝑘 steps and a minimum of 0.01. We execute

10
6
learning steps before doing an evaluation run of 100𝑘 steps

for which exploration and learning is disabled. The experiment,

with learning process, is repeated 40 times with the same random

number streams over the setups.

7 EXPERIMENTAL EVALUATION
The results are depicted on the right of Table 1. Gray colored cells

are statistically indistinguishable (Friedman and Conover test [4],

𝑝 = 0.05). The ARAL variants with 𝛾1 = 1.0 and 𝛾1 = 0.999 infer the

Blackwell-optimal policy of admitting 3 jobs, accumulating a reward

of about 29.88 and 29.77 per step over all 40 evaluation replications.

This clearly shows the stability of the ARAL algorithm, especially

when 𝛾1 = 1.0. ARAL 𝛾1 = 0.99 is unable to find the optimal policy

in 12 replications and therefore performs worse as compared to the

other ARAL instances. Statistically the optimal queue length of 1.12

is matched by ARAL 𝛾1 = 0.999 and ARAL 𝛾1 = 1.0. In contrast all

Sum Reward Queue Length

Algorithm Mean StdDev Mean StdDev

ARAL 𝛾1 = 1.0 2988054.750 23977.493 1.075 0.157

ARAL 𝛾1 = 0.999 2976862.250 64688.399 1.122 0.184

ARAL 𝛾1 = 0.99 2683089.250 1021845.424 1.545 1.263

Q-Learning 𝛾1 = 0.99 45360.750 13434.404 0.174 0.057

Q-Learning 𝛾1 = 0.999 32609.250 16216.020 0.181 0.080

Q-Learning 𝛾1 = 0.5 24917.500 1467.415 0.002 0.000

Table 1: Experiment Results. Inferred avg. rewards for 𝛾1 =
1.0, 0.999, and 0.99 are 𝜌𝜋𝛾1 = 29.965, 30.272 and 28.734 resp.

Q-Learning setups are unable to find even close-to-optimal policies,

resulting in rather small amount of collected rewards and very

short mean queue lengths. Furthermore, we investigated how to

get Q-Learning 𝛾1 = 0.99 to find better solutions. Using 𝜖-sensitive

comparison, instead of the max-operator, for the action selection

process we could infer the gain-optimal policy which admits 2 jobs.

However, we were unable to infer the Blackwell-optimal policy

of admitting 3 jobs. Similarly by hyperparameter tuning of ARAL

𝛾1 = 1.0, namely increasing the decay rates of 𝛼 and 𝛾 to 0.8 and

omitting the minimum values, we were able to find more stable

state-action values such that setting 𝜖 ⩽ 1 is possible while still

finding the optimal policy and the average reward stabilizes even

more. We found that the stability of the average reward value is of

major importance for the stability of ARAL.

8 CONCLUSION AND FUTUREWORK
In this work, we focus on such problems that produce an average

reward per step that cannot be approximated by 0. We introduce

ARAL, a novel adaption of the discounted reinforcement method

and give ample evidence of the usefulness of ARAL in this context.

The algorithm is specifically designed for commonly-used unichain

(and thus ergodic) MDPs. ARAL explicitly handles the average

reward per step, which is used to adjust the discounted state values.

Using two different discount factors, the agent infers bias-optimal

policies and for any givenMDP can be configured to infer Blackwell-

optimal policies. In the future we plan to use neural networks

for function approximation (cf. [26]). Adding to this we plan to

investigate the further adaption to an actor-critic version of ARAL.

https://ala2022.github.io/
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