
An Analysis of Discretization Methods for Communication
Learning with Multi-Agent Reinforcement Learning
Astrid Vanneste

University of Antwerp - imec
IDLab - Faculty of Applied

Engineering
Antwerp, Belgium

astrid.vanneste@uantwerpen.be

Simon Vanneste
University of Antwerp - imec
IDLab - Faculty of Applied

Engineering
Antwerp, Belgium

simon.vanneste@uantwerpen.be

Kevin Mets
University of Antwerp - imec

IDLab - Department of Computer
Science

Antwerp, Belgium
kevin.mets@uantwerpen.be

Tom De Schepper
University of Antwerp - imec

IDLab - Department of Computer
Science

Antwerp, Belgium
tom.deschepper@uantwerpen.be

Siegfried Mercelis
University of Antwerp - imec
IDLab - Faculty of Applied

Engineering
Antwerp, Belgium

siegfried.mercelis@uantwerpen.be

Steven Latré
University of Antwerp - imec

IDLab - Department of Computer
Science

Antwerp, Belgium
steven.latre@uantwerpen.be

Peter Hellinckx
University of Antwerp - imec
IDLab - Faculty of Applied

Engineering
Antwerp, Belgium

peter.hellinckx@uantwerpen.be

ABSTRACT
Communication is crucial in multi-agent reinforcement learning
when agents are not able to observe the full state of the environ-
ment. The most common approach to allow learned communication
between agents is the use of a differentiable communication channel
that allows gradients to flow between agents as a form of feedback.
However, this is challenging whenwewant to use discrete messages
to reduce the message size since gradients cannot flow through a
discrete communication channel. Previous work proposed methods
to deal with this problem. However, these methods are tested in
different communication learning architectures and environments,
making it hard to compare them. In this paper, we compare several
state-of-the-art discretization methods as well as two methods that
have not been used for communication learning before. We do this
comparison in the context of communication learning using gradi-
ents from other agents and perform tests on several environments.
Our results show that none of the methods is best in all environ-
ments. The best choice in discretization method greatly depends
on the environment. However, the discretize regularize unit (DRU),
straight through DRU and the straight through gumbel softmax
show the most consistent results across all the tested environments.
Therefore, these methods prove to be the best choice for general use
while the straight through estimator and the gumbel softmax may
provide better results in specific environments but fail completely
in others.

Proc. of the Adaptive and Learning Agents Workshop (ALA 2022), Cruz, Hayes, da Silva,
Santos (eds.), May 9-10, 2022, Online, https://ala2022.github.io/ . 2022.

KEYWORDS
Communication Learning, Multi-Agent, Reinforcement Learning

1 INTRODUCTION
Over the past several years, both single-agent reinforcement learn-
ing (RL) and multi-agent RL (MARL) have gained a lot of interest.
In (MA)RL, the agents often have to deal with partial observability.
The agents can only observe part of the global state, making it hard
to choose appropriate actions. For example, an agent navigating
through an environment cannot see certain parts of the environ-
ment. In MARL, this partial observability can often be alleviated
by allowing the agents to share information with each other. By
combining this information with their own observation, agents get
a more complete view of the environment and can choose better
actions [12, 18]. For example, multiple agents navigating through
the same environment can share the information they can see with
each other, resulting in a more complete view.

One of the subfields within MARL is research towards learned
communication between agents. The most commonly used ap-
proach thus far is allowing gradients to flow between agents as a
form of feedback on the received messages. However, in the case
of discrete communication messages this raises a problem since
gradients cannot flow through a discrete communication channel.
Several different approaches have been proposed in the state of the
art [2, 8, 10, 14] to discretize messages while allowing gradients to
flow through the discretization unit. Each of these methods was
tested using different communication learning approaches and ap-
plied on different environments, making a fair comparison very
difficult.

https://ala2022.github.io/

Table 1: Comparison the state of the art and our work
(DRU - Discretize Regulize Unit, GS - Gumbel Softmax, STE - Straight Through Estimator, ST-DRU - Straight Through DRU, ST-GS - Straight
Through GS)

Message Type Communication Learning Technique Discretization Method

RIAL [2] Discrete DQN using team reward Discrete policy
DIAL [2] Discrete Gradients from other agents DRU
CommNet [16], A3C3 [15] Continuous Gradients from other agents N/A
MADDPG [10, 14] Continuous/Discrete Gradients from the critic GS
Freed et al. [3] Discrete Gradients from other agents Randomized Encoder/Decoder
Jaques et al. [6] Discrete A3C using team reward augmented with social

influence reward
Discrete policy

MACC [19] Discrete Counterfactual reasoning Discrete policy
Lin et al. [8] Discrete Reconstruction loss STE
This Work Discrete Gradients from other agents (ST)-DRU / STE / (ST)-GS

Our contributions consist of two parts. First, we present an in-
depth comparison of several discretization methods used in the
state-of-the-art. In our comparison we focus on using these dis-
cretization methods to allow discrete communication when learn-
ing communication using the gradients of the receiving agents.
We compare each of the approaches on several environments with
increasing complexity as well as analyze their performance when
the environment introduces errors to the communication messages.
Secondly, we present two discretization methods (ST-DRU and ST-
GS) that have not been used in communication learning before.

The remainder of this paper is structured as follows. Section 2
gives an overview of work related to our research. Section 3 con-
tains some additional background information. Section 4 provides
a detailed explanation of the discretization methods we compare in
this paper. In Section 5, the different experiments that were done
are explained along with their results. We discuss the results of
our experiments further in Secion 6. In Section 7 we draw some
conclusions from our experimental results.

2 RELATEDWORK
In this section, we review state-of-the-art work relevant to our
research. We give an overview of several communication learning
methods, focusing on methods that learn discrete communication.
Here, we see some alternative approaches for learning discrete com-
munication beside using a differentiable communication channel
as well as different discretization techniques used in the state of
the art.

Foerster et al. [2] and Sukhbaatar et al. [16] proposed the first suc-
cessful methods for learning inter-agent communication. Foerster
et al. [2] proposed two novel approaches, Reinforced Inter-Agent
Learning (RIAL) and Differentiable Inter-Agent Learning (DIAL).
Both RIAL and DIAL use discrete communication messages, but
learn the communication policy in a different way. RIAL learns
the communication policy the same way as learning the action
policy, by using the team reward. However, the results clearly show
that this is not sufficient in most environments. DIAL proved more
successful by using gradients originating from the agents receiv-
ing the messages which provide feedback on the communication
policy. Sukhbaatar et al. [16] proposed a different approach called

CommNet. Messages consist of the hidden state of the agents, re-
sulting in continuous messages. Similar to DIAL, CommNet uses
gradients that flow through the communication channel to train
the communication.

A lot of the research that follows these works chooses to use
continuous communication like Sukhbaatar et al. [16], avoiding the
problem of discretizing the communication messages [15]. Other
methods choose a different method to learn communication than
using gradients through the communication channel. This also
avoids the challenge of discretizing the messages. Jaques et al. [6]
train the communication policy using the team reward augmented
with a social influence reward. This additional reward is based on
how much the message changes the action policy of the receiving
agents. Vanneste et al. [19] use counterfactual reasoning to directly
learn a communication protocol without the need of a differen-
tiable communication channel. Freed et al. [3] use a randomized
encoder at the sender to encode the continuous messages into dis-
crete messages. At the receiver, a randomized decoder is used to
approximate the original continuous message. They show that by
using this technique they can consider the communication channel
equivalent to a continuous channel with additive noise, allowing
gradients to flow between the sender and receiver agent.

Lowe et al. [10] and Mordatch and Abbeel [14] propose Multi-
Agent Deep Deterministic Policy Gradients (MADDPG). In their
work they evaluate MADDPG on multiple different scenarios, in-
cluding communication tasks. They do not use a differentiable
communication channel to learn communication but they have to
make sure the messages are differentiable to allow the MADDPG
method to work properly since policies are learned using gradients
that originate from the critic. They allow discrete communication
by using a gumbel softmax. Lin et al. [8] use an autoencoder at the
sender to compose a representation of the observation that will be
used as communication message. To discretize these messages they
use a straight through estimator in the autoencoder. Both Lowe
et al. [10], Mordatch and Abbeel [14] and Lin et al. [8] have to use
differentiable discretization techniques in their methods to allow
discrete communication. However, they do not use the techniques
in the same way we do in our work. Lowe et al. [10] and Mordatch
and Abbeel [14] use the discretization method in a similar way as

ENVIRONMENT

A-Net Action Select

A-Net Action Select

A-Net Action Select

A-Net Action Select

u1t

m2t-1

o2t+1
u2t+1o1t

rt+1rt

C-Net

C-Net

C-Net

C-Net
m2

t+1

Ag
en

t 1
Ag

en
t 2

t t+1

Discretization
Unit m1

t

Discretization
Unit

Discretization
Unit

Discretization
Unit

Figure 1: Architecture of DIAL

our work but in MADDPG the gradients that correct the communi-
cation originate from the critic instead of from other agents. Lin
et al. [8] use the discretization method in a very different way since
they train the communication policy entirely using the reconstruc-
tion loss of the autoencoder instead of the gradients from the other
agents.

Summarized, in the state-of-the-art related to our research, we
see that multiple discretization methods have been proposed. But,
differences in communication learning approaches and the fact that
each of these methods is tested on different environments makes
comparing these different discretization methods very hard.

3 BACKGROUND
3.1 Deep Q-Networks (DQN)
In single agent RL [17], the agent chooses an action 𝑢𝑡 ∈ 𝑈 based
on the state 𝑠𝑡 ∈ 𝑆 of the environment. As a result of this action,
the environment will transition to a new state 𝑠𝑡+1 and provide
the agent with a reward 𝑟𝑡+1 ∈ 𝑅. This reward is used to train the
agent. Q-learning uses this reward to calculate a Q-value for each
state action pair 𝑄 (𝑠,𝑢). This Q-value represents a value for each
state action pair, where a higher Q-value indicates a better action.
Therefore, the policy of our agent can be defined by Equation 1.

𝜋 (𝑠) = 𝑎𝑟𝑔𝑚𝑎𝑥
𝑢

(𝑄 (𝑠,𝑢)) (1)

Deep Q-learning [13] uses a neural network with parameters 𝜃
to represent the Q-function. The deep Q-network is optimized at
iteration 𝑖 by minimizing the loss in Equation 2.

L𝑖 (𝜃𝑖) = E𝑠𝑡 ,𝑢𝑡 ,𝑟𝑡 ,𝑠𝑡+1
[
(𝑟𝑡 + 𝛾 max

𝑢𝑡
𝑄 (𝑠𝑡+1, 𝑢𝑡+1, 𝜃−𝑖) −𝑄 (𝑠𝑡 , 𝑢𝑡 , 𝜃𝑖))

2]
(2)

where 𝛾 is the discount factor and 𝜃−
𝑖
are the parameters of the

target network. This target network will be updated after each
training iteration according to Equation 3.

𝜃−𝑖+1 ← 𝜏𝜃𝑖 + (1 − 𝜏)𝜃−𝑖 (3)

where 𝜏 is a weight that indicates how fast the target network
should follow the parameters 𝜃 . In our work, the agent does not
receive the full state 𝑠𝑡 but only a limited observation 𝑜𝑡 ∈ 𝑂 of this
state. This increases the complexity since the observation might
lack important information.

3.2 Differentiable Inter-Agent Learning (DIAL)
To allow for a fair comparison, we will use the same communication
learning approach for each of the different discretization methods.
We use DIAL as proposed by Foerster et al. [2] in our experiments
since it is the most general and well known architecture to learn
discrete communication using gradients from the other agents.
The architecture of DIAL can be seen in Figure 1. We adapted the
original DIAL architecture by separating the action and communi-
cation network. This allows us to keep the communication network
small, making communication learning easier. In our experiments,
we examine environments where the agents only need to share
and encode part of the observation which allows us to make this
adaptation. When the agents are expected to communicate about a
strategy, splitting the action and communication network may no
longer be possible.

Each agent consists of two networks, the A-Net and the C-Net.
The A-Net produces Q-values to determine the action based on the
observation and the incoming messages. The C-Net is responsible
for calculating the messages based on the observation. It does not
receive the incoming messages in our experiments because in these
environments the communication policy does not need the incom-
ing messages to determine the output message. Before the messages
are broadcast to the other agents, the discretization unit applies
one of the discretization techniques that we are comparing in this
paper. To train the agents, we apply the team reward provided by
the environment on the A-Net according to deep Q-learning. The
gradients from the A-Net are propagated to the C-Net of all the
agents that sent a message to that agent. This allows us to train the
C-Net using the feedback of the agents receiving the messages.

4 METHODS
In this section, we describe the different discretization modules,
that we will compare, in more detail. Table 2 provides an overiew
of all the discretization methods and their differences. We show the
difference between the function used to calculate the output of the
discretization unit during training and during evaluation as well as
the function that is used for the backward pass.

4.1 Discretize Regularize Unit (DRU)
In the DIAL method, Foerster et al. [2] propose a module called the
Discretize Regularize Unit (DRU) to allow gradients to be used for

Table 2: Differences between the discretization methods where 𝑥 is the input of the discretization unit (the output of the C-Net),
𝐻 (𝑥) is the heaviside function, 𝑛 ∼ N(0, 𝜎2

𝐺
) is Gaussian noise, 𝑖 ∈ {0, 1}, 𝑔𝑖 ∼ 𝐺 is Gumbel noise, 𝜋0 = 𝜎 (𝑥), 𝜋1 = (1 − 𝜎 (𝑥)), 𝜏 is

the softmax temperature and 𝜎 (𝑥) is the sigmoid function

Training Output (forward pass) Function used for backward pass Evaluation Output (forward pass)

STE 𝐻 (𝑥) 𝑥 𝐻 (𝑥)
DRU 𝜎 (𝑥 + 𝑛) 𝜎 (𝑥 + 𝑛) 𝐻 (𝑥)
GS 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥

(
𝑙𝑜𝑔 (𝜎 (𝑥))+𝑔1

𝜏 ,
𝑙𝑜𝑔 (1−𝜎 (𝑥))+𝑔2

𝜏

)
[0] 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥

(
𝑙𝑜𝑔 (𝜎 (𝑥))+𝑔1

𝜏 ,
𝑙𝑜𝑔 (1−𝜎 (𝑥))+𝑔2

𝜏

)
[0] 𝑜𝑛𝑒_ℎ𝑜𝑡 (𝑎𝑟𝑔𝑚𝑎𝑥

𝑖

[𝑔𝑖 + 𝑙𝑜𝑔𝜋𝑖]) [0]

ST-DRU 𝐻 (𝑥 + 𝑛) 𝜎 (𝑥 + 𝑛) 𝐻 (𝑥)
ST-GS 𝑜𝑛𝑒_ℎ𝑜𝑡 (𝑎𝑟𝑔𝑚𝑎𝑥

𝑖

[𝑔𝑖 + 𝑙𝑜𝑔𝜋𝑖]) [0] 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥

(
𝑙𝑜𝑔 (𝜎 (𝑥))+𝑔1

𝜏 ,
𝑙𝑜𝑔 (1−𝜎 (𝑥))+𝑔2

𝜏

)
[0] 𝑜𝑛𝑒_ℎ𝑜𝑡 (𝑎𝑟𝑔𝑚𝑎𝑥

𝑖

[𝑔𝑖 + 𝑙𝑜𝑔𝜋𝑖]) [0]

0

2500

5000

7500

10000
Train mode with input +/- 0.1 Evaluation mode with input +/- 0.1

0.0 0.2 0.4 0.6 0.8 1.00

2500

5000

7500

10000
Train mode with input +/- 2.0

Negative Input Positive Input
0.0 0.2 0.4 0.6 0.8 1.0

Evaluation mode with input +/- 2.0

Figure 2: Histogram of the output of the DRUwhen calculating
the output 10k times for different input values (positive and
negative) for both train and evaluation mode

0

2000

4000

6000

8000

Train mode with input +/- 0.1 Evaluation mode with input +/- 0.1

0.0 0.2 0.4 0.6 0.8 1.00

2000

4000

6000

8000

Train mode with input +/- 2.0

Negative Input Positive Input
0.0 0.2 0.4 0.6 0.8 1.0

Evaluation mode with input +/- 2.0

Figure 3: Histogram of the output of the GS when calculating
the output 10k times for different input values (positive and
negative) for both train and evaluationmode with temparature
𝜏 = 1.0

training while learning discrete communicationmessages. The DRU
has two modes, discretization and regularization. The discretization
mode is used at execution time and discretizes the input into a
single bit using Equation 4.

𝑚 = 𝐻 (𝑥) (4)

where 𝐻 (𝑥) is a heaviside function and 𝑥 is the input of the dis-
cretization unit (output of the C-Net). This calculation cannot be
used during training because the derivative of the heaviside func-
tion is the Dirac function which is zero everywhere except at 𝑥 = 0,
where the output is infinite. Therefore, the regularization mode
is used during training. When using the regularization mode, the
agents are allowed to communicate using continuous messages.
However, the DRU tries to encourage the communication policy to
generate messages that can easily be discretized at execution time.
This is achieved by applying Equation 5.

𝑚 = 𝜎 (𝑥 + 𝑛) (5)

where 𝑥 is the input of the discretization unit (output of the C-
Net), 𝑛 is noise sampled from a Gaussian distribution with standard
deviation 𝜎𝐺 and 𝜎 (𝑥) is the sigmoid function. The noise will affect
the output of the DRU the most when the input is around zero
since the sigmoid is the steepest there. The influence will be much
smaller for inputs with high absolute values. The output in those

cases will also go towards zero and one, making it very similar to
discrete, binary messages. This can be seen in Figure 2.

4.2 Straight Through Estimator (STE)
A straight through estimator (STE) [1, 20] performs a normal dis-
cretization, as in Equation 4, when calculating the output. However,
when performing backpropagation, it uses the gradients of an iden-
tity function instead of the gradients of the discretization. The
advantage of this technique is that the agent receiving the message
will immediately receive binary numbers and can learn how to
react to these messages while still being able to use the gradients
from the receiving agents to train the communication network. For
the STE, the output will always look like the DRU in evaluation
mode, shown in Figure 2.

4.3 Gumbel Softmax (GS)
The Gumbel Softmax (GS) [5, 11] is a method to approximate a sam-
ple from a categorical distribution in a differentiable way. Normal
sampling techniques are not differentiable and therefore not directly
applicable in this context. The GS achieves this desirable property
by using Gumbel noise and the gumbel-max trick[4]. Using the
gumbel-max trick, we can sample from a categorical distribution

0

2500

5000

7500

10000
Train mode with input +/- 0.1 Evaluation mode with input +/- 0.1

0.0 0.2 0.4 0.6 0.8 1.00

2500

5000

7500

10000
Train mode with input +/- 2.0

Negative Input Positive Input
0.0 0.2 0.4 0.6 0.8 1.0

Evaluation mode with input +/- 2.0

Figure 4: Histogram of the output of the ST-DRU when calcu-
lating the output 10k times for different input values (positive
and negative) for both train and evaluation mode

0

2000

4000

6000

8000

Train mode with input +/- 0.1 Evaluation mode with input +/- 0.1

0.0 0.2 0.4 0.6 0.8 1.00

2000

4000

6000

8000

Train mode with input +/- 2.0

Negative Input Positive Input
0.0 0.2 0.4 0.6 0.8 1.0

Evaluation mode with input +/- 2.0

Figure 5: Histogram of the output of the ST-GS when calculat-
ing the output 10k times for different input values (positive
and negative) for both train and evaluation mode

with class probabilities 𝜋 as described in Equation 6.

𝑧 = 𝑜𝑛𝑒_ℎ𝑜𝑡 (𝑎𝑟𝑔𝑚𝑎𝑥
𝑖

[𝑔𝑖 + 𝑙𝑜𝑔𝜋𝑖]) (6)

where 𝑔1, ...𝑔𝑘 are i.i.d. samples drawn from Gumbel(0,1), 𝑖 ∈ {0, 1},
𝜋0 = 𝜎 (𝑥), 𝜋1 = (1 − 𝜎 (𝑥)), 𝑥 is the input of the discretization unit
(output of the C-Net) and 𝜎 (𝑥) is the sigmoid function. To make
this differentiable, we have to approximate the 𝑜𝑛𝑒_ℎ𝑜𝑡 and 𝑎𝑟𝑔𝑚𝑎𝑥

functions with a 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 function. Since we need two probabilities
to obtain a categorical distribution for both states of a bit we will
obtain the output message by using Equation 7.

𝑚 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥

(
𝑙𝑜𝑔(𝜎 (𝑥)) + 𝑔1

𝜏
,
𝑙𝑜𝑔(1 − 𝜎 (𝑥)) + 𝑔2

𝜏

)
[0] (7)

where 𝑥 is the input of the discretization unit (output of the C-Net),
𝜏 is the softmax temperature and 𝜎 (𝑥) is the sigmoid function. A
low temperature will result in an output that closely matches the
output of Equation 6. The higher the temperature the more the
output will approach a uniform distribution. Figure 3 shows the
behaviour of the GS for different inputs in training and evaluation
mode with temparature 𝜏 = 1.0.

4.4 ST-DRU
We propose a novel discretization method (ST-DRU) that combines
the DRU and STE methods. During execution, we discretize the
input messages in the same way as mentioned in the DRU and
STE methods, shown in Equation 4. During training, we will use a
different function for the forward and backward pass. In the forward
pass, we add gaussian noise and apply the same discretization,
resulting in Equation 8.

𝑚 = 𝐻 (𝑥 + 𝑛) (8)

where 𝑥 is the input of the discretization unit (output of the C-
Net) and 𝑛 is noise sampled from a Gaussian distribution with
standard deviation 𝜎𝐺 . However, during backpropagation we use
the gradients of Equation 5 instead. The advantage of this approach
over the original DRU can be seen in Figure 4. The agents receiving
the messages will receive binary messages from the start of training.
The DRU uses continuous messages during training. Even though

the agents are encouraged by the DRU to produce outputs with a
high absolute value, it will take a while before the output messages
will resemble binary messages. The ST-DRU will also encourage
the agent to produce outputs that can easily be discretized. But,
the receiving agents will immediately receive discrete messages,
allowing them to learn to interpret them more quickly.

4.5 ST-GS
Similarly to the ST-DRU, we also test a straight through version of
the GS as proposed by Jang et al. [5]. Here, we will use the sampling
technique described in Equation 6 to calculate the output, while
using the gradients of the softmax approximation in Equation 7 to
train the communication network. Similarly to the DRU, the GS
produces continuous messages during training. When evaluating
the agents the GS will discretize the messages. If the sending agent
is not producing outputs with a high enough absolute value, the
difference between the messages at training time and at evaluation
time will be very large. This prevents the receiving agents from
correctly interpreting the message and choosing the appropriate
actions. The ST-GS on the other hand will produce discretized
messages at evaluation time and at training time, as can be seen in
Figure 5. This way, we make sure that the receiving agent knows
how to correctly interpret discrete messages.

5 EXPERIMENTS
In this section, we explain each of our experiments and analyze
the results. For each experiment we show the average performance
over five different runs for each of the discretization methods. The
hyperparameters and network architectures are identical for each
of the discretization methods since our hyperparameter search
showed that the best hyperparameters and network architecture
were not influenced by the choice in discretization method. All of
our experiments are run using the RLlib framework [7].

5.1 Matrix Environment
The Matrix environment is inspired by the Matrix Communication
Games presented by Lowe et al. [9]. In the Matrix environment 𝑁

0 2 4 6 8
Training Iterations 1e4

2.2

2.4

2.6

2.8

3.0

M
ea

n
Re

tu
rn

DRU STE GS ST-DRU ST-GS

Figure 6: Results in the Simple Matrix environment

0 2 4 6 8
Training Iterations 1e4

2.5

3.0

3.5

4.0

4.5

5.0

M
ea

n
Re

tu
rn

DRU STE GS ST-DRU ST-GS

Figure 7: Results in the Complex Matrix environment

Table 3: Reward matrices for the Matrix environment (𝑁 = 2
and any value for𝑀). The agents have two possible actions,
indicating they got the samenumber (S) or a different number
(D)

(a) The agents received the
same number

S D

S 2, 2 1, 1
D 1, 1 0, 0

(b) The agents received a differ-
ent number

S D

S 0, 0 1, 1
D 1, 1 2, 2

Table 4: Different configurations of the Matrix environment

N M

Simple Matrix Environment 3 4
Complex Matrix Environment 5 256

agents receive a natural number in [0, 𝑀 − 1]. The values for 𝑁
and 𝑀 can be chosen independent of each other. The agents are
allowed to broadcast one message to the other agents before they
have to indicate whether all agents received the same number or
not. The odds of the agents receiving the same number are 50%
regardless of the value of 𝑁 and𝑀 . The minimum number of bits
required to be able to represent each possible input number can
easily be determined by applying a base two logarithm on𝑀 . The
team reward in this environment is equal to the number of agents
that correctly determined whether all agents got the same number
or not. Therefore, the maximum reward is equal to 𝑁 . Table 3 shows
the reward matrices that correspond with a Matrix environment
with 𝑁 = 2 and any value for𝑀 .

We examine the results for two different configurations of this
environment which can be seen in Table 4. In each of these experi-
ments, we show the evaluation reward of our agents, measured by
performing 100 evaluation episodes after each 100 training itera-
tions. During the evaluation episodes, the agents do not explore
and the discretization methods are applied in evaluation mode. In
this environment, all of the agents are identical. Therefore, we can
use parameter sharing between the agents, which improves their
performance significantly as shown in the results of Foerster et al.
[2].

5.1.1 Simple Matrix Environment. In Figure 6 and Table 5, the
results for the different discretization methods are shown. The
maximum reward the agents can achieve in this scenario is a reward
of 3. We can see that most of the methods are able to achieve a
reward very close to this maximum except for the GS. The ST-GS
does not have the same issue as the GS to achieve the maximum
reward. We also see that the STE method is faster at the beginning
of the training but this difference disappears rather quickly. Due to
the limited complexity of this environment, the differences between
the methods are still small.

5.1.2 Complex Matrix Environment. The Complex Matrix envi-
ronment has more agents (𝑁 = 5) as well as more possible input
numbers (𝑀 = 256). The agents need a message consisting of a full
byte to be able to encode each of the possible input numbers. Figure
7 and Table 5 show the results of this experiment. The maximum
reward in this configuration is 5. We see that the difference between
the methods is larger than in the Simple Matrix environment due to
the added complexity. We see that the STE method is the only one
that is able to reach the maximum reward in this training period.
It reaches a reward close to the maximum reward after only 5k
training iterations. The other methods only start improving after
15k training iterations and take over 60k training iterations to reach
their maximal performance. We can also see that the adapted ver-
sions of the DRU and GS which include the STE technique also
perform better than the version without the STE technique. The
ST-DRU has an average reward that is 0.072 higher than the DRU
and the ST-GS has an average reward that is 0.176 higher than
the GS during the final 10% of training iterations. The communica-
tion amplitude in Figure 8 provides an explanation for the training
speed of the STE method. The communication amplitude is the
mean absolute value of the input of the discretization unit. We can
see a clear difference between the STE and the other methods. The
communication amplitude of the STE stays below 0.5 while the
communication amplitude of the DRU and GS approaches 1.8 and
the communiation amplitude of the ST-DRU and the ST-GS exceeds
2.0. This is caused by the noise that is included in all of the dis-
cretization methods except for the STE. For a low communication
amplitude the output of each of these discretization methods is still
very random. The output during training will be determined by
the noise instead of by the sign of the input which is done during
evaluation. This encourages the agent to produce outputs with a
higher communication amplitude. However, this puts a delay on

0 2 4 6 8
Training Iterations 1e4

0.0

0.5

1.0

1.5

2.0

M
ea

n
Co

m
m

un
ica

tio
n

Am
pl

itu
de DRU STE GS ST-DRU ST-GS

Figure 8: Communication amplitude in the Complex
Matrix environment smoothed with an exponentially
weighted moving average function with 𝛼 = 5 · 10−5

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Training Iterations 1e4

60

50

40

30

20

M
ea

n
Re

tu
rn

DRU STE GS ST-DRU ST-GS

Figure 9: Results in the Speaker Listener environment

0 2 4 6 8
Training Iterations 1e4

5

6

7

8

9

10

M
ea

n
Re

tu
rn

DRU STE GS ST-DRU ST-GS

Figure 10: Results in the Matrix environment with a 50%
chance that a bit error will occur at a random location in the
message

the speed at which the agents can discover communication proto-
cols. In Figure 8 we see that the communication amplitude starts
rising more quickly at around 15k training iterations. Once the
communication amplitude starts rising we can see in Figure 7 that
the rewards that the agents receive also starts rising, indicating that
they are starting to learn how to communicate with each other.

5.2 Speaker Listener Environment
As a more complex environment, we use the speaker listener sce-
nario from the particle environment by OpenAI [10, 14]. This is one
of the environments that was used to evaluate MADDPG [10, 14].
In this environment there are two agents and three landmarks. One
of the agents, the speaker, observes which landmark is the target
during this episode. The speaker then has to communicate this
information to the other agent, the listener. Next, the listener has
to navigate to the target landmark. Both agents are rewarded using
a team reward that is composed based on the distance of the lis-
tener to the target landmark. Contrary to the Matrix environment,
the agents are not the same in this environment. The speaker will
only consist of a communication policy while the listener will only
consist of an action policy. In this experiment, we show the evalua-
tion reward of our agents, measured by performing 10 evaluation
episodes after each 50 training iterations. During the evaluation
episodes, the agents do not explore and the discretization methods
are applied in evaluation mode.

Figure 9 and Table 5 show the results in the speaker listener
environment. We see that the STE is no longer performing as good
as in our earlier experiments. It results in the worst result while
the GS and DRU provide the best results. The delay that is caused
by the noise in the DRU, GS, ST-DRU and ST-GS is no longer the
determining factor in the training speed. The exploration that is
done in the communication policy by the DRU, GS, ST-DRU and
ST-GS due to the noise appears to have a beneficial result.

5.3 Error Correction
In addition to comparing the different discretization methods in
ideal circumstances, we also want to make this comparison in a
situation with more uncertainty. Therefore, we perform some ad-
ditional experiments on the Matrix environment as discussed in
Section 5.1. However, instead of perfect communication circum-
stances without any errors as done before, we flip a certain amount
of random bits with a certain probability. This causes the receiver to
receive different information than intended by the sender. Depend-
ing on the maximum amount of bits that can be flipped, the agents
need more message bits to be able to counteract the errors that
are introduced. We use a simple Matrix environment with 𝑁 = 10
and𝑀 = 2. In this experiment, we show the evaluation reward of
our agents, measured by performing 100 evaluation episodes after
each 100 training iterations. During the evaluation episodes, the
agents do not explore and the discretization methods are applied in
evaluation mode. In this environment, all of the agents are identical.
Therefore, we can use parameter sharing between the agents, which
improves their performance significantly as shown in the results of
Foerster et al. [2].

We perform a test where there is 50% chance that an error will
occur. Normally, the agents would be able to represent both possible
incoming numbers using a single bit. However, if they have to be
able to correct the errors that get introduced, they require three bits.
The results of this experiment can be seen in Figure 10 and Table
5. We see that the STE is not able to correct the errors that occur.
Therefore, it is not able to achieve good results. However, the other
discretization methods are able to detect and correct the errors. Our
hypothesis is that these methods are more robust to errors due to
the noise that is used within these discretization methods.

To see how the agents are able to correct the introduced errors,
we examine which message the agents choose for which incoming

Table 5: The average return and the standard deviation for each of the experiments during the final 10% of training iterations

Experiment Name DRU STE GS ST-DRU ST-GS

Simple Matrix 2.924 ± 0.152 2.999 ± 0.005 2.685 ± 0.275 2.944 ± 0.112 2.906 ± 0.123
Complex Matrix 4.600 ± 0.118 4.972 ± 0.018 4.588 ± 0.048 4.672 ± 0.134 4.764 ± 0.047
Speaker Listener −22.330 ± 4.514 −32.224 ± 6.833 −21.533 ± 4.758 −29.966 ± 9.430 −24.211 ± 5.177
Error Correction 9.904 ± 0.051 5.140 ± 0.413 9.892 ± 0.051 9.906 ± 0.048 9.842 ± 0.059

Before Errors After Errors

DRU

00
0

00
1

01
0

01
1

10
0

10
1

11
0

11
1

0

1

0 1000 0 0 0 0 0 0

0 0 0 0 0 0 1000 0

00
0

00
1

01
0

01
1

10
0

10
1

11
0

11
1

0

1

173 478 0 178 0 171 0 0

0 0 158 0 175 0 490 177

STE

00
0

00
1

01
0

01
1

10
0

10
1

11
0

11
1

0

1

0 0 0 0 0 0 0 1000

0 0 0 0 0 0 0 1000

00
0

00
1

01
0

01
1

10
0

10
1

11
0

11
1

0

1

0 0 0 165 0 164 174 497

0 0 0 175 0 166 173 486

GS

00
0

00
1

01
0

01
1

10
0

10
1

11
0

11
1

0

1

1 0 983 9 0 0 7 0

0 0 0 0 0 997 0 3

00
0

00
1

01
0

01
1

10
0

10
1

11
0

11
1

0

1

169 4 508 173 2 0 141 3

0 159 0 0 145 525 0 171

ST-DRU

00
0

00
1

01
0

01
1

10
0

10
1

11
0

11
1

0

1

0 0 0 1000 0 0 0 0

0 0 0 0 0 1000 0 0

00
0

00
1

01
0

01
1

10
0

10
1

11
0

11
1

0

1

0 167 157 531 0 0 0 145

170 0 0 0 501 167 162 0

ST-GS

00
0

00
1

01
0

01
1

10
0

10
1

11
0

11
1

0

1

0 0 0 0 991 3 5 0

0 0 0 999 0 0 0 1

00
0

00
1

01
0

01
1

10
0

10
1

11
0

11
1

0

1

167 0 2 0 520 152 156 3

1 163 153 513 0 0 0 170

Figure 11: The communication protocol for the Matrix envi-
ronment (𝑁 = 10,𝑀 = 2) for each of the discretization units
before and after introducing errors. On the y-axis the differ-
ent possible input numbers are displayed. On the x-axis the
different possible output messages are displayed.

number. Figure 11 shows the different communication policies for
the different discretization methods. We can see the output message
depending on which input number was given to the agent before
and after the errors are introduced. We see that the agents with
the DRU, GS, ST-DRU or ST-GS have chosen messages where the
possible messages after the introduction of errors do not overlap
between the possible input numbers. This way the agents make sure
that the messages are still comprehensible, even if errors occur. For
the GS we see that there are 9 messages that overlap with the output
messages for a different input number after error introduction.
The same thing can be observed for the ST-GS in 6 cases. We see
that when we use the STE, the agents are not able to find this
communication protocol. Even before the errors are introduced, the
messages for both possible inputs are the same. This indicates that
the agents did not find a useful communication protocol.

6 DISCUSSION
In our experiments, we compared different discretization techniques
in different environments where the agents need to learn a com-
munication protocol to achieve the goal. In this section, we discuss
some general trends that we saw accross the experiments. Table 5

shows how each of the different methods performed in each exper-
iment. It shows the average return and standard deviation during
the last 10% of training iterations. In our results, we saw only small
differences in a simple environment. However, the differences be-
come a lot more apparent when using a more complex environment.
The STE method performs very well in both the Simple and Com-
plex Matrix environment, while performing worst in the speaker
listener and not being able to achieve the goal in the error correc-
tion task. This makes the use of the STE as a standard method not
recommended, especially in environments where perfect commu-
nication cannot be guaranteed. Similarly, the GS either performs
the best among the tested methods or the worst. The ST-GS has a
more consistent performance than the regular GS. The DRU and
the ST-DRU perform very similar except in the speaker listener
environment. There, the DRU clearly outperforms the ST-DRU.

Overall, we can state that in most cases, either the DRU, ST-
DRU or ST-GS should be used to discretize communication. These
methods provide consistent results across the experiments while
the STE and GS might achieve a higher return or be faster in some
cases but fail dramatically in others.

7 CONCLUSION
In this paper we compared several discretization methods in dif-
ferent environments with different complexities and challenges.
We focus on the situation where these discretization methods are
used to discretize communication messages between agents that
are learning to communicate with each other while acting in an
environment.

The results showed that the choice of discretization method can
have a big impact on the performance. Across all of the experiments,
the DRU, ST-DRU and ST-GS performed best. The STE performs a
lot better in the matrix environment in terms of speed and return.
However, in the speaker listener environment, the STE performs
the worst and in the error correction task, it fails to learn a commu-
nication protocol. The GS performs best among all of the methods
in the evironments where the STE fails, but performs the worst
in the Matrix environment. The DRU, ST-DRU and ST-GS show
more consistent results, close to the best result, making them a
better standard choice. However, sometimes it may prove useful to
perform additional experiments to establish the best discretization
method.

ACKNOWLEDGMENTS
This work was supported by the Research Foundation Flanders
(FWO) under Grant Number 1S12121N andGrant Number 1S94120N.
We gratefully acknowledge the support of NVIDIA Corporation
with the donation of the Titan Xp GPU used for this research.

REFERENCES
[1] Yoshua Bengio, Nicholas Léonard, and Aaron Courville. 2013. Estimating or

Propagating Gradients Through Stochastic Neurons for Conditional Computation.
arXiv:1308.3432 [cs.LG]

[2] Jakob Foerster, Ioannis Alexandros Assael, Nando De Freitas, and Shimon White-
son. 2016. Learning to communicate with deep multi-agent reinforcement learn-
ing. In Advances in neural information processing systems. 2137–2145.

[3] Benjamin Freed, Guillaume Sartoretti, Jiaheng Hu, and Howie Choset. 2020. Com-
munication Learning via Backpropagation in Discrete Channels with Unknown
Noise. Proceedings of the AAAI Conference on Artificial Intelligence 34, 05 (Apr.
2020), 7160–7168. https://doi.org/10.1609/aaai.v34i05.6205

[4] Emil Julius Gumbel. 1954. Statistical theory of extreme values and some practical
applications: a series of lectures. Vol. 33. US Government Printing Office.

[5] Eric Jang, Shixiang Gu, and Ben Poole. 2017. Categorical Reparameterization
with Gumbel-Softmax. arXiv:1611.01144 [stat.ML]

[6] Natasha Jaques, Angeliki Lazaridou, Edward Hughes, Caglar Gulcehre, Pedro
Ortega, Dj Strouse, Joel Z. Leibo, and Nando De Freitas. 2019. Social Influence
as Intrinsic Motivation for Multi-Agent Deep Reinforcement Learning. In Pro-
ceedings of the 36th International Conference on Machine Learning (Proceedings of
Machine Learning Research, Vol. 97), Kamalika Chaudhuri and Ruslan Salakhutdi-
nov (Eds.). PMLR, 3040–3049. https://proceedings.mlr.press/v97/jaques19a.html

[7] Eric Liang, Richard Liaw, Robert Nishihara, Philipp Moritz, Roy Fox, Ken Gold-
berg, Joseph E. Gonzalez, Michael I. Jordan, and Ion Stoica. 2018. RLlib: Ab-
stractions for Distributed Reinforcement Learning. In International Conference
on Machine Learning (ICML).

[8] Toru Lin, Minyoung Huh, Chris Stauffer, Ser-Nam Lim, and Phillip Isola.
2021. Learning to Ground Multi-Agent Communication with Autoencoders.
arXiv:2110.15349 [cs.LG]

[9] Ryan Lowe, Jakob Foerster, Y-Lan Boureau, Joelle Pineau, and Yann Dauphin.
2019. On the Pitfalls of Measuring Emergent Communication. In Proceedings of
the 18th International Conference on Autonomous Agents and MultiAgent Systems
(Montreal QC, Canada) (AAMAS ’19). International Foundation for Autonomous
Agents and Multiagent Systems, Richland, SC, 693–701.

[10] Ryan Lowe, YiWu, Aviv Tamar, Jean Harb, Pieter Abbeel, and IgorMordatch. 2020.
Multi-Agent Actor-Critic for Mixed Cooperative-Competitive Environments.

arXiv:1706.02275 [cs.LG]
[11] Chris J. Maddison, Andriy Mnih, and Yee Whye Teh. 2017. The Con-

crete Distribution: A Continuous Relaxation of Discrete Random Variables.
arXiv:1611.00712 [cs.LG]

[12] Francisco S. Melo, Matthijs T. J. Spaan, and Stefan J. Witwicki. 2012. Query-
POMDP: POMDP-Based Communication in Multiagent Systems. In Multi-Agent
Systems, Massimo Cossentino, Michael Kaisers, Karl Tuyls, and Gerhard Weiss
(Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 189–204.

[13] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness,
Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg
Ostrovski, et al. 2015. Human-level control through deep reinforcement learning.
nature 518, 7540 (2015), 529–533.

[14] Igor Mordatch and Pieter Abbeel. 2018. Emergence of Grounded Compositional
Language in Multi-Agent Populations. https://www.aaai.org/ocs/index.php/
AAAI/AAAI18/paper/view/17007

[15] David Simões, Nuno Lau, and Luís Paulo Reis. 2020. Multi-agent actor centralized-
critic with communication. Neurocomputing 390 (2020), 40–56. https://doi.org/
10.1016/j.neucom.2020.01.079

[16] Sainbayar Sukhbaatar, Arthur Szlam, and Rob Fergus. 2016. Learning Multiagent
Communication with Backpropagation. In Advances in Neural Information Pro-
cessing Systems, D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, and R. Garnett (Eds.),
Vol. 29. Curran Associates, Inc. https://proceedings.neurips.cc/paper/2016/file/
55b1927fdafef39c48e5b73b5d61ea60-Paper.pdf

[17] Richard S Sutton, Andrew G Barto, et al. 1998. Introduction to reinforcement
learning. Vol. 135. MIT press Cambridge.

[18] Ming Tan. 1993. Multi-agent reinforcement learning: Independent vs. cooperative
agents. In Proceedings of the tenth international conference on machine learning.
330–337.

[19] Simon Vanneste, Astrid Vanneste, Kevin Mets, Ali Anwar, Siegfried Mercelis,
Steven Latré, and Peter Hellinckx. 2021. Learning to Communicate Using Coun-
terfactual Reasoning. arXiv:2006.07200 [cs.LG]

[20] Penghang Yin, Jiancheng Lyu, Shuai Zhang, Stanley Osher, Yingyong Qi, and Jack
Xin. 2019. Understanding Straight-Through Estimator in Training Activation
Quantized Neural Nets. arXiv:1903.05662 [cs.LG]

https://arxiv.org/abs/1308.3432
https://doi.org/10.1609/aaai.v34i05.6205
https://arxiv.org/abs/1611.01144
https://proceedings.mlr.press/v97/jaques19a.html
https://arxiv.org/abs/2110.15349
https://arxiv.org/abs/1706.02275
https://arxiv.org/abs/1611.00712
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17007
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17007
https://doi.org/10.1016/j.neucom.2020.01.079
https://doi.org/10.1016/j.neucom.2020.01.079
https://proceedings.neurips.cc/paper/2016/file/55b1927fdafef39c48e5b73b5d61ea60-Paper.pdf
https://proceedings.neurips.cc/paper/2016/file/55b1927fdafef39c48e5b73b5d61ea60-Paper.pdf
https://arxiv.org/abs/2006.07200
https://arxiv.org/abs/1903.05662

	Abstract
	1 Introduction
	2 Related Work
	3 Background
	3.1 Deep Q-Networks (DQN)
	3.2 Differentiable Inter-Agent Learning (DIAL)

	4 Methods
	4.1 Discretize Regularize Unit (DRU)
	4.2 Straight Through Estimator (STE)
	4.3 Gumbel Softmax (GS)
	4.4 ST-DRU
	4.5 ST-GS

	5 Experiments
	5.1 Matrix Environment
	5.2 Speaker Listener Environment
	5.3 Error Correction

	6 Discussion
	7 Conclusion
	Acknowledgments
	References

