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ABSTRACT
Symbolic Optimization has been used to solve varied challenging
and relevant problems such as Symbolic Regression and Neural
Architecture Search. However, the current state-of-the-art typically
learns each problem from scratch, and is unable to leverage pre-
existing knowledge and datasets that are available for many applica-
tions. Inspired by the similarity between sequence representations
learned in Natural Language Processing and the formulation of
symbolic optimization as a discrete sequence optimization problem,
we propose Language Model-Accelerated Deep Symbolic Optimiza-
tion (LA-DSO), a method that leverages language models to learn
symbolic optimization solutions more efficiently. We demonstrate
LA-DSO in two tasks: symbolic regression, which allows us to com-
pare against the state-of-the-art approaches, and computational
antibody optimization, which shows that our proposal accelerates
learning for challenging real-world problems.

KEYWORDS
Transfer Learning, Reinforcement Learning, Discrete Optimization,
BERT.

Solutions for many relevant real-world problems can be found
by modeling them as Symbolic Optimization problems, where a
sequence of tokens that optimizes a black-box reward/fitness func-
tion has to be found. Symbolic Regression [17], Neural Architecture
Search [39], and Program Synthesis [14] are popular problems that
are naturally modeled in this way.

Algorithms for Symbolic Optimization must deal with exploring
the huge, combinatorial search space of token sequences. Ideally,
such approaches may prune the search space and/or bias the search
toward more promising token sequences; however, this might be
challenging due to the black-box nature of the fitness function.
The Deep Symbolic Optimization (DSO) [26] framework efficiently
solves this class of problems by modeling the token sampling pro-
cess as a Reinforcement Learning (RL) problem. DSO achieves state-
of-the-art results in symbolic regression, in part due to its ability
to effectively prune and bias the search through in situ priors and
constraints. However, this process requires a human to manually
encode this knowledge, which might be difficult to define and tune.
Therefore, we focus on a more automated approach instead of lever-
aging priors.

On the other hand, transfer learning is paramount to many re-
cent advances in Natural Language Processing (NLP). Inspired by
similarities between sequence representations learned in NLP and
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the formulation of symbolic optimization as a discrete sequence op-
timization problem, we combine ideas from both fields to integrate
transfer learning into symbolic optimization algorithms.

We propose Language Model-Accelerated Deep Symbolic Opti-
mization (LA-DSO), a symbolic optimization algorithm that lever-
ages language models trained on real-world token sequences to
learn faster. Our contributions in this paper are three-fold: (i) We
propose LA-DSO as a way to leverage language models in the
learning process to solve symbolic optimization problems more ef-
ficiently; (ii) We implement LA-DSO in two challenging real-world
domains, symbolic regression and antibody optimization; and (iii)
We empirically show significant benefits when using LA-DSO in
those domains, compared to when using the basic DSO algorithm
without language models.

This paper is organized as follows. In Section 1, we present
relevant background for our approach. In Section 2, we describe
LA-DSO and discuss its implementation details. In Section 3, we
present our empirical setting and results. In Section 4, we describe
the main related works and position our proposal within state-of-
the-art methodologies. Finally, in Section 5, we summarize our main
findings.

1 BACKGROUND
We provide the relevant background knowledge on symbolic opti-
mization and language models to fully understand our proposal.

1.1 Symbolic Optimization
The symbolic optimization problem consists of finding the optimal
combination of discrete symbols relative to a quality score function,
that is, it is a (constrained) combinatorial optimization problem.
Let L = {𝜏1, . . . , 𝜏𝑡 } be the library, i.e., a set of individual tokens 𝜏𝑖
which define the space of possible token sequences 𝜏★ = ⟨𝜏1, . . . , 𝜏𝑛⟩
that can be built for solving the problem at hand. In principle, the
sequence can be of any length. The reward function 𝑅 : 𝜏 → R
defines the fitness of each sequence. Any valid sequence 𝜏 can
have its reward value queried by 𝑅(𝜏). The solution of a symbolic
optimization problem is given by:

arg𝑚𝑎𝑥𝑛∈N,𝜏 [𝑅(𝜏)] with 𝜏 = ⟨𝜏1, . . . , 𝜏𝑛⟩, 𝜏𝑖 ∈ L . (1)

That is, the problem is solved by finding the sequence that maxi-
mizes the reward function. The main challenge of this problem is
searching the set of possible solutions, which defines an extremely
large combinatorial search space. Learning to solve this problem by
training a machine learning model to sample high-reward token
sequences has been a very successful approach that has set new
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state-of-the-art results for relevant applications [26]. We describe
our base learning algorithm in the next subsection.

1.2 Deep Symbolic Optimization
Deep Symbolic Optimization (DSO) [26] is a framework for solving
Symbolic Optimization problems. By modeling the token sampling
process as a Reinforcement Learning problem, each token is sam-
pled sequentially until the whole sequence is formed.

DSO is a policy gradient-based RL method that employs a Recur-
rent Neural Network (RNN) to sample token sequences. The RNN
provides a parameterized distribution over sequences, 𝑝 (𝜏 |𝜃 ), with
network parameters 𝜃 . Sampling a sequence occurs in an autore-
gressive fashion, in which tokens are sampled sequentially and are
independent, given the tokens sampled so far: 𝑝 (𝜏𝑖 |𝜏1:(𝑖−1) ;𝜃 ) =
softmax(𝜓 (𝑖) )L(𝜏𝑖 ) , where𝜓 (𝑖) are the outputs of the RNN for the
𝑖th sequence position. A batch of promising token sequences T is
generated and their rewards are used to train the RNN. The Risk-
Seeking Policy Gradient [26] is a common way of training this
RNN:

L(𝜃 ) = 1
𝜀 |T |

∑︁
𝜏 ∈T
(𝑅(𝜏) − 𝑅̃𝜀 )∇𝜃 log 𝑝 (𝜏 |𝜃 )1𝑅 (𝜏)>𝑅̃𝜀

(2)

where 𝜀 determines the degree of risk-seeking and 𝑅̃𝜖 is the empir-
ical (1 − 𝜀) reward quantile of T . This training objective aims to
optimize the search for best tokens sequences, rather than trying
to optimize the estimation of average qualities.

DSO was shown to be very effective for symbolic optimization
problems due to easily allowing the integration of expert domain
knowledge into the learning through in situ priors and constraints
[11, 15, 22, 26, 27].

However, a key limitation of DSO is that it still has to learn
the interactions among tokens from scratch for each new problem.
This results in a relatively high starting cost to learn how each
token interacts with others in the sequence and how this affects
the reward landscape.

1.3 Language Models
NLP requires understanding the intricate relationship between
the words across sentences and their possible multiple, context-
dependent, meanings. The huge amount of textual data currently
available enabled training deep learning models, such as BERT [9],
that can learn complex representations of human language.

Language modeling is often framed as unsupervised distribution
approximation from a set of sentences (𝑆1, 𝑆2, 𝑆3, ..., 𝑆𝑁 ), where
each 𝑆𝑖 is comprised of a list of words (tokens) 𝑠1, 𝑠2, 𝑠3, ..., 𝑠𝐿 . The
task of language modeling is then to learn the conditional probabil-
ity distribution 𝑝 (𝑠𝑖 |𝐶𝑖 ), where 𝐶𝑖 is the context for predicting 𝑠𝑖 .
In the case of an autoregressive language model, 𝐶𝑖 = ⟨𝑠1, ..., 𝑠𝑖−1⟩
while in the case of a bidirectional languagemodel, such as BERT [9],
𝐶𝑖 = ⟨𝑠1, ..., 𝑠𝑖−1, 𝑠𝑖+1, ..., 𝑠𝐿⟩. After training, such language models
can providemeaningful token representations for downstream tasks
[9, 29], often by mapping token sequences to a higher-dimension
embedding vector [28], where semantically similar words are clus-
tered together.

Since training such models requires a large corpus of data and
intensive computing power, transfer learning [35], in which em-
beddings or portions of the models are repurposed for other tasks,
is common for NLP applications. By fine-tuning and/or replacing
layers on a language model network architecture, it is often possible
to solve different but related tasks, while leveraging the acquired
knowledge of how the human language is structured.

2 INTEGRATING LANGUAGE MODELS INTO
DSO

DSO handles discrete tokens, sampled sequentially and concate-
nated into sequences. Likewise, NLP tasks require handling sen-
tences of words converted into discrete tokens. Therefore, the sen-
tences on NLP tasks can be seen as equivalent to sequences of
tokens for DSO (although not all NLP tasks are solved by sam-
pling the “best” sequence of tokens, unlike symbolic optimization
problems).

Due to the difficulty of learning the complexities of natural lan-
guage, NLP tasks are typically not trained from scratch unless abun-
dant data and computational resources are available. In practice,
transfer learning is often applied in the form of reusing embeddings
or language models (either the entire model or a subset of its layers).
Yet, despite the aforementioned similarities, DSO always starts the
learning process from scratch.

Figure 1 describes our proposal in high level. Given that lan-
guage models are already able to handle discrete tokens and to
learn the relation between them in well-formed sequences, we
assume the domain of interest allows training a language model.
The intuition behind this approach is to use the language model
to learn the “language" of the symbolic optimization task to be
learned. For example, in a neural architecture search task, we could
train a language model in a dataset of neural network architectures
that have been used to solve real problems. The language model
would then learn what a useful architecture “looks like” and how
different architectural components are commonly together (e.g.,
pooling layers often follow CNN layers). Other domains that could
leverage language model training are Symbolic Regression and An-
tibody Optimization, which are further detailed in our experimental
evaluation (Section 3).

The knowledge encoded in the language model will be useful for
learning how to solve new tasks. The language model can provide
contextual information which would otherwise be unavailable to
DSO, which we argue can help speeding up the learning process.
Although this idea is applied to DSO in this particular paper, this
approach is more general and could potentially be applied in any
RL domain in which it would make sense to train a language model.

Algorithm 1 presents an algorithmic view of our proposal, here-
inafter called Language Model-Accelerated Deep Symbolic Optimiza-
tion (LA-DSO). We consider the language model training as a pre-
training process, that has to be executed before DSO is used. There-
fore, the algorithm starts by training the language model using
a database of token sequences T . The purpose of this database
is to “teach" the language model how good token sequences look
like. This could contain, for example, sequences extract from public
repositories (such as our experiment in Section 3.1).



Figure 1: High-level illustration of LA-DSO. We propose to
leverage the representation learned by language models to
learn faster. At every time the RNN is used to sample a new
token, the current partial sequence is forwarded by both
DSO’s standard featurization process and the languagemodel.
The defined features and language model embeddings are
then concatenated, before they are used as observation in
DSO’s RNN.

Algorithm 1 Language Model-Accelerated Deep Symbolic Opti-
mization

Input: T : database of real-world token sequences; 𝑙𝑚: language
model; Γ: DSO RNN; 𝑅: reward function; 𝑛𝑒 : number of training
iterations; 𝑛𝑙 maximum sequence length.
if 𝑙𝑚 untrained then
𝑙𝑚.train(T )

end if
𝑏𝑒𝑠𝑡 ← ∅
for 𝑒 ∈ {1, . . . , 𝑛𝑒 } do
𝝉 ← ∅
for 𝑖 ∈ {1, . . . , 𝑛𝑙 } do
𝑜𝑏𝑠𝑠 ← ℎ𝑖𝑒𝑟𝑎𝑟𝑐ℎ𝑖𝑐𝑎𝑙 (𝝉 )
𝑜𝑏𝑠𝑙 ← 𝑙𝑚.𝑔𝑒𝑡_𝑒𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔(𝝉𝑖 |𝝉1:𝑖−1)
𝑜𝑏𝑠 ← 𝑐𝑜𝑛𝑐𝑎𝑡 (𝑜𝑏𝑠𝑠 , 𝑜𝑏𝑠𝑙 )
𝝉 ← 𝑐𝑜𝑛𝑐𝑎𝑡 (𝝉 , Γ.𝑠𝑎𝑚𝑝𝑙𝑒 (𝑜𝑏𝑠))

end for
if 𝑅(𝝉 ) > 𝑅(𝑏𝑒𝑠𝑡) then
𝑏𝑒𝑠𝑡 ← 𝝉

end if
Γ.𝑡𝑟𝑎𝑖𝑛(𝝉 , 𝑅)

end for
Return 𝑏𝑒𝑠𝑡

After the model has been trained, we enter the main DSO learn-
ing loop. DSO samples each token sequentially, taking into account
information about the partial sequence sampled so far. Normally,
DSO would build a token tree, and the RNN would use only hierar-
chical information (parent and sibling of the token to be sampled)
about the partial sequence to take actions on which next token to
sample (we call the process of defining those hierarchical features
as ℎ𝑖𝑒𝑟𝑎𝑟𝑐ℎ𝑖𝑐𝑎𝑙 in the algorithm). LA-DSO, however, will also add
the language model information to the RNN observation space.
This is performed by concatenating the usual observations (𝑜𝑏𝑠𝑠 )
to the embeddings (𝑜𝑏𝑠𝑙 ) from the language model (normally the
last hidden layer). Any neural network-based language model can
be used, to allow flexibility. Based on the concatenated observation
𝑜𝑏𝑠 , the RNN can then sample the next token (Γ.𝑠𝑎𝑚𝑝𝑙𝑒 (𝑜𝑏𝑠)).

This process is executed iteratively (in batches of sequences)
until a maximum sequence length is achieved. This batch of sam-
pled sequences can then be used to train the RNN, which will au-
tonomously bias the search towards the most promising sequences.
The knowledge from the language model helps the RNN to bias the
search more quickly, by leveraging the representations built for the
sequences of tokens.

We perform an empirical evaluation in two different domains of
interest in the next section, where we show the advantages of our
proposal.

3 EXPERIMENTAL EVALUATION
In this section we present our empirical evaluation in two chal-
lenging and relevant domains: Symbolic Regression and Antibody
Optimization.

3.1 Symbolic Regression Leveraging Wikipedia
Symbolic regression aims to identify mathematical expressions that
best fit a set of observations. This can be used, for example, to
discover equations that explain physical phenomena, by searching
over the space of tractable (i.e. concise, closed-form) expressions.
Specifically, given a dataset (𝑿 ,𝒚), where each observation𝑿𝑖 ∈ R𝑛
is related to a target value 𝑦𝑖 ∈ R, symbolic regression aims to iden-
tify a function 𝑓 : R𝑛 → R that best fits the dataset, where the
functional form of 𝑓 is a finite mathematical expression. The re-
sulting expression can be readily interpreted and/or provide useful
scientific insights simply by inspection. The reward function simply
involves evaluation of the expression against the (𝑿 ,𝒚) dataset.

Symbolic regression exhibits several unique features that make it
an ideal testbed problem for benchmarking symbolic optimization:

(1) Well-established and challenging benchmarks are available
[36];

(2) The success criteria is clearly defined (exact symbolic cor-
rectness);

(3) Well-established baseline methods are available; and
(4) Computing the quality of candidate expressions is computa-

tionally inexpensive, allowing repeating experiments until
statistical significance is achieved.

The space of mathematical expressions is discrete (in model
structure) and continuous (in model parameters - when continuous
constants are allowed), growing exponentially with the length of



the expression, rendering symbolic regression a very challenging
machine learning problem [17].

Humans have handcrafted equations describing varied physical
phenomena. For symbolic regression, our language model is trained
using this body of knowledge, to learn what human-generated equa-
tions typically “look like.” As a repository for human-defined equa-
tions, we useWikipedia 1. Wikipedia provides raw text data from
its pages as XML (Extensible Markup Language) “dump” files.2 We
parse these files and extract any embedded mathematical expres-
sions, which are annotated via <math> tags. Those expressions are
represented by LaTeX text, which we then convert into a tree-based
representation—called an algebraic expression tree—via the com-
puter algebra system SymPy [19]. Finally, we encode expressions
as sequences of tokens corresponding to the pre-order traversal
of the algebraic expression tree. This sequence data becomes then
directly compatible with the way DSO represents sequences, and
is ready for training the language model. Our language model for
this domain is an RNN trained to predict the next token in a partial
sequence by minimizing the cross-entropy loss between the output
of the RNN and the next token. The model has 1 hidden layer with
32 output embeddings. This method of training a simple language
model is common in NLP tasks [21].

For empirical evaluation, we use the Nguyen symbolic regression
benchmark suite [33]. Nguyen is a set of commonly used bench-
mark expressions developed and vetted by the symbolic regression
community [36]. We evaluate two approaches on twelve Nguyen
benchmarks:
• Baseline: Regular DSO without use of language models; and
• Wikipedia: LA-DSOusing ourmodel trainedwithWikipedia
data.

Both approaches are evaluated with the same hyperparameters.
This experiment aims at revealing whether the language model is
helpful to the learning process.

3.1.1 Experimental Results. Table 1 depicts the experimental re-
sults for all evaluated Nguyen benchmarks. In symbolic regression,
finding the best expressions is the priority. When ties in expression
quality happen, the next priority is to minimize training time. Using
the Wikipedia language model significantly improved the learning
results in multiple benchmarks. For Nguyen 5 and 11, LA-DSO
found higher-quality expressions than vanilla DSO. For Nguyen 1,
3, 6, 8, 9, and 12, LA-DSO achieved reductions from 5% to 41% in
the number of iterations to learn the task, a very significant result
considering DSO already was the state-of-the-art in the task.

LA-DSO did show difficulty in solving some of the benchmarks.
The reason why LA-DSO resulted in lower quality sequences in
Nguyen 7 is understandable by inspecting the ground-truth expres-
sion. This benchmark is very unlike the real-world expressions
used to train the language model. For evaluation purposes, under-
performing in this particular benchmark is not a problem, since
in real-world situations the algorithm would be primarily looking
for equations compatible with the dataset. Similar reasons hold for
Nguyen 2 and 10, where the expressions were different from the
ones in the dataset and the increase of network size needed for

1https://www.wikipedia.org/
2https://dumps.wikimedia.org

adding the language model observations outweighed the potential
speedup that could be achieved for this particular task.

Overall, LA-DSO was better in 8 of 12 benchmarks, with one tie.
This corresponds to a significant improvement upon the algorithm
that already was the state-of-the-art in this domain.

Finally, Figures 2 and 3 provide a more detailed view of the algo-
rithm learning process. An interesting effect of using the language
model was that in most benchmarks, with very few exceptions,
the average reward of LA-DSO is higher near the beginning of the
training, as the pre-trained observation representations provided
by the language model help “kick-start” the learning process. This
also lead to finding the correct expression faster in most of cases.

3.2 In Silico Antibody Optimization Leveraging
BERT

The human immune system’s response to pathogens includes anti-
bodies, which are proteins that sensitively and specifically recog-
nize target molecules by the shape and chemistry of their so-called
“complementarity determining regions,” or CDRs [37]. CDRs and
the rest of the antibody protein are composed of chains of amino
acids. There are twenty common amino acids, each with distinct
sizes, shapes, chemistries, and other characteristics, and sequences
of amino acids are conventionally written as sequences of alpha-
bet letters. As in language, the tremendous breadth of antibodies’
recognized targets is a result of combinatorial use of this discrete
vocabulary.

Instead of relying on each individual’s immune system to gener-
ate effective antibodies on its own, it is possible to either identify
suitable antibodies from other sources or computationally engineer
the CDRs of a known, non-binding antibody toward high affinity
and high specificity, enabling the generation of countermeasures
to infectious diseases such as COVID-19 [6, 8, 24]. This latter ap-
proach, in silico antibody optimization, employs simulation and
optimization methods to identify promising antibody sequences
that bind strongly to a target antigen. However, these simulations
are computationally expensive and the design space is large and
discrete. We therefore treat the important sub-problem of finding
antibody sequences that bind strongly in simulation as symbolic
optimization task and evaluate LA-DSO on this task.

We demonstrate LA-DSO by starting with an anti-SARS-CoV-1
antibody, that we refer to as the base antibody, that is known to bind
and neutralize SARS-CoV-1 but not the related SARS-CoV-2. Our
symbolic optimization task is to modify the amino acids comprising
the CDR to bind SARS-CoV-2. Rosetta Flex [4, 16] is a widely used
computational tool in antibody optimization which we use as the
basis of a reward function. Rosetta Flex can be used to compute
the change in binding free energy between two proteins resulting
from mutations in one of them, here corresponding to the change
in binding strength between a base antibody-derived mutant and
SARS-CoV-2.

Each free energy calculation with Rosetta requires several CPU
hours to compute. To serve as a quickly-evaluated, surrogate reward
capturing binding strength of generated antibody sequences, we
use a Gaussian process (GP) model3. We start with a pre-computed

3A manuscript fully describing how the GP and the ProtBERT models are trained is in
preparation.
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Wikipedia Baseline
Benchmark Expression Best Time Best
Nguyen-1 𝑥3 + 𝑥2 + 𝑥 1.0 −32% 1.0
Nguyen-2 𝑥4 + 𝑥3 + 𝑥2 + 𝑥 1.0 +22% 1.0
Nguyen-3 𝑥5 + 𝑥4 + 𝑥3 + 𝑥2 + 𝑥 1.0 −41% 1.0
Nguyen-4 𝑥6 + 𝑥5 + 𝑥4 + 𝑥3 + 𝑥2 + 𝑥 1.0 0% 1.0
Nguyen-5 sin(𝑥2) cos(𝑥) − 1 0.999 −37% 0.998
Nguyen-6 sin(𝑥) + sin(𝑥 + 𝑥2) 1.0 −5% 1.0
Nguyen-7 log(𝑥 + 1) + log(𝑥2 + 1) 0.996 −38% 0.998
Nguyen-8

√
𝑥 1.0 −23% 1.0

Nguyen-9 sin(𝑥) + sin(𝑦2) 1.0 −38% 1.0
Nguyen-10 2 sin(𝑥) cos(𝑦) 0.998 +33% 1.0
Nguyen-11 𝑥𝑦 0.999 +26% 0.993
Nguyen-12 𝑥4 − 𝑥3 + 1

2𝑦
2 − 𝑦 0.812 −31% 0.804

Table 1: Experimental results from the Symbolic Regression domain over 150 repetitions. The numeric values mean the average
quality of the best equation found by the end of the training (Best, with 1.0meaning perfect match in all 150 repetitions) and
the percentage of change in learning time compared to the baseline (Time, less is better). The maximum number of iterations is
limited to 2000. Best results for each benchmark highlighted in bold in the Best column.

collection of 122,000 simulations, where each simulation evaluates
an estimated change in binding free energy of a base antibody mu-
tant and SARS-CoV-2. Due to the size of the dataset, we trained an
approximate sparse Gaussian Process [31] with scaled RBF kernel
and hyperparameters selected via marginal likelihood maximiza-
tion. This GP model is trained on the simulation results and can be
evaluated in seconds as opposed to hours.

In our experiments, we considered three distinct base antibodies
that are known to bind and neutralize SARS-CoV-1, namely: 80R
[32], s230 [34], and m396 [40]. The 80R sequence comprises 239
amino acids, from which 38 positions can be identified as either
within the CDRs or being otherwise directly relevant to binding.
We refer to these identified positions asmutable positions. Similarly,
s230 and m396 sequences are 239 and 458-amino acid long with
both having 23 mutable positions. Thus, LA-DSO must sample
alternate amino acids for a subset of mutable amino acid positions
(tokens), which as a sequence define a mutated version of the base
antibody. We limit the maximum number of amino acid mutations
in a single sequence to 5. The final training loop then becomes
sampling sequences of amino acids and using the GP surrogate
model to score them.

Given the sequence-based description of proteins as a string of
amino acids, using a language model to represent a given partial
protein might improve learning. For our LA-DSO language model,
we leverage the ProtBERT language model [10], which is a BERT
model trained on a large corpus of protein amino acid sequences.
Here we use a modified version of this model that was fine-tuned
specifically on human antibody sequences3. For each of the mutable
positions on the CDR, ProtBERT computes the probability of each
of the 20 possible amino acids given the context of the rest of the
antibody’s amino acid sequence. In LA-DSO, we provide the em-
beddings from the last hidden layer as additional state information
to the DSO RNN (i.e., a length-1024 embedding vector).

We evaluate the performance of two approaches in the antigen-
binding task:

• Baseline: DSO without using language models; and

• LA-DSO: LA-DSO using our version of the ProtBERT model.

3.2.1 Experimental Results. Figure 4 shows the observed experi-
mental results. In this domain, using the language model results in
a very clear empirical advantage. The average reward of sampled
sequences is significantly better throughput the training process.
Moreover, the best sequence found by the end of training results in
higher reward (i.e., stronger predicted binding). Both the achieved
speed up and the best final resulting antibody is consistent across all
three evaluated tasks, showing that LA-DSO indeed achieves more
efficient learning performance in this domain. Those empirical out-
comes show that the language model provided a useful abstraction
to learn how to manipulate the amino acid sequences, and represent
a very exciting prospect to any task in which the representation
provided by the protein language model could be used for.

4 RELATEDWORKS
Transfer Learning is pervasive in modern NLP applications [1]. The
very existence of embedding learning algorithms such as GloVe
[25] and Word2Vec [20] imply the use of knowledge reuse across
multiple tasks, as embeddings provide word representations to
be used in varied applications. Similarly, successful recent NLP
models such as BERT [9] and GPT-3 [5] are already developed
to be easily reusable. However, those publicly available general-
purpose models and embedding-learning algorithms are focused
on natural language specifically, which is not necessarily the case
for all symbolic optimization (or more generally decision-making)
applications.

Language models have already been used for supporting learning
in RL tasks in the literature. Reid et al.’s [30] work is perhaps
the most similar to ours, where they bootstrap offline RL tasks
reusing languagemodels. However, they start from general-purpose
models trained in different domains, while we leverage language
models based on datasets of well-formed token sequences. Chai et
al.’s [7] work, in which they use a BERT model to process natural
language observations for an RL agent, is also related to ours. Notice,



Figure 2: Learning curves for the symbolic regression domain
(Nguyen 1-6). Graphs in the left show the reward from the
best token sequence found so far and the ones in the right
show the average of rewards on sampled sequences in a par-
ticular iteration. Shaded area represents the 99% confidence
interval.

Figure 3: Learning curves for the symbolic regression domain
(Nguyen 7-12). Graphs in the left show the reward from the
best token sequence found so far and the ones in the right
show the average of rewards on sampled sequences in a par-
ticular iteration. Shaded area represents the 99% confidence
interval.



Figure 4: Experimental results in the antibody optimization domain for the three evaluated base antibodies. (left) is the best
sequence found so far in a particular iteration and (right) is the average quality of explored sequences at a particular iteration.
The results are averaged across 4 repetitions. The shaded area represents the 90% confidence interval.

however, that their approach is limited to applications in which
instructions of how to solve the task are given in natural language,
andwould not be applicable for symbolic optimization (or any of the
here-explored applications). Similarly, other works have combined
language models with RL, but focusing exclusively on NLP tasks
[3, 18].

Orthogonally to our main purpose of reusing knowledge and
learning more efficiently, language models have also been used as
a way to map similarities across multiple tasks [23] and as a way to
easily incorporate natural text data into decision making, either as
a way to identify goals [2] or to process text for RL agents [12, 38].
Kim et al. [13] leveraged a language model that predict the likeness

of each token to build a in situ prior for DSO to bias the search,
though the language model itself was not direct used by the DSO
RNN.

To the best of our knowledge, LA-DSO is the first approach using
language model embeddings to accelerate learning in symbolic
optimization tasks.

5 CONCLUSION AND FURTHERWORK
Symbolic Optimization can be used to solve various real-world prob-
lems ranging from symbolic regression to antibody optimization.
Inspired by the similarity between the token representation used
in symbolic optimization algorithms and the tokenized sequences



used for natural language processing, we propose Language Model-
Accelerated Deep Symbolic Optimization (LA-DSO).

LA-DSO leverages a pre-trained language model by directly ob-
serving a language model’s embedding when learning to solve
the symbolic optimization task. We empirically evaluate our pro-
posal in the two aforementioned domains, and show that LA-DSO
presents advantages in both domains, providing significant learning
speedups in most cases where the language model was pre-trained
with data that matches the real domain.

Our next step is to further improve our approach by consid-
ering ways of further refining the language model after LA-DSO
starts solving the symbolic optimization problem, which will cor-
respond to integrating the language model and DSO into a shared
network architecture.We also intend to explore alternative methods
of performing transfer learning to reuse knowledge across different
symbolic optimization tasks.
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