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ABSTRACT
Multi-objective games present a natural framework for studying

strategic interactions between rational individuals concerned with

more than one objective.We explore both the impact of commitment

on the equilibria as well as the learning behaviour of agents in such

games. It is well known that in single-objective normal-form games,

committing to a future strategy can never be worse than the utility

from a Nash equilibrium. We show that this property does not

hold in multi-objective games. On the other hand, we are able to

construct games in which commitment is beneficial for both players,

highlighting the nuances that commitment introduces. Furthermore,

we find that optimal commitment can induce the same joint-action

distribution as a cyclic Nash equilibrium and show that such cyclic

Nash equilibria may exist even when no Nash equilibrium exists.

We evaluate these characteristics in a learning setting, to explore

whether this behaviour can be expected in applications as well. We

find that all proposed theorems can empirically be observed from

the learning dynamics. In addition, we observe that commitment

can lead to the same joint-action distribution as in a cyclic Nash

equilibrium, but that it is not guaranteed when there are multiple

best-responses for the follower.
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1 INTRODUCTION
Leadership games, also referred to as Stackelberg games, feature

one or more leaders who are obligated to commit to a strategy

a priori and followers that react to this commitment. It is well

known that optimal commitment to mixed strategies in two-player

single-objective games can never hurt the leader [30] and efficient

computational methods exist for the calculation of strategies to

commit to [7, 11, 13]. We advance this line of research by consider-

ing the characteristics of commitment in games where players have

multiple (conflicting) objectives and possibly non-linear utility func-

tions. The relevance of such multi-objective games has been argued

many times throughout the history of game theory [24, 31, 32], but

they often remain under-explored [22]. As a motivating example,
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consider a natural extension to the well-known Bach or Stravin-

sky game. In this game, two friends are independently selecting

whether to go to a Bach concert or a Stravinsky concert. Just as

in the original game, both players favour one composer over the

others, but also place a value on spending time together. In addition,

they might care about the travel distance to the concert, entry price,

seating arrangements, etc. Which of these objectives are taken into

account, and how the players value the available trade-offs between

these objectives, will lead to different (equilibrium) strategies.

The main focus of this paper is to provide similar guarantees

as the ones available for single-objective games or show that such

guarantees do not hold. To that extent, we first show that the

guarantee that optimal commitment in two-player games is lower

bounded by the lowest Nash equilibrium [30], is not valid in multi-

objective games. On the positive side, we find that commitment

may however enable players to coordinate their actions and result

in a substantially higher utility for both players than when playing

the game simultaneously.

We further identify an important caveat in determining which

strategy to commit to in multi-objective games. When calculat-

ing or learning such strategies, it does not suffice to restrict play-

ers to stationary mixed strategies. Rather, committing to a non-

stationary strategy may be optimal for the leader. We find that this

non-stationary strategy can be part of a cyclic Nash equilibrium and

show that cyclic Nash equilibria may exist even when no stationary

Nash equilibrium exists. Complementary to our theoretical analysis

of commitment and cyclic equilibria, we report several experiments

to empirically support our theorems and show that learning optimal

commitment strategies is feasible in multi-objective games. While

we find that each property directly related to commitment is clearly

visible in the experiments, commitment alone is not sufficient to

ensure cyclic Nash equilibria distributions are played.

2 PRELIMINARIES
2.1 Multi-Objective Normal-Form Game
Multi-Objective Normal-Form Games (MONFGs) extend the canoni-

cal (single-objective) Normal-Form Game (NFG) with scalar payoffs

to vector-valued payoffs [2]. We formally define this below:

Definition 2.1 (Multi-objective normal-form game). A (finite, n-

player) multi-objective normal-form game is a tuple (𝑁,A,𝒑), with
𝑑 ≥ 2 objectives, where:
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• 𝑁 is a finite set of 𝑛 players, indexed by 𝑖;

• A = 𝐴1×· · ·×𝐴𝑛 , where𝐴𝑖 is a finite set of actions available

to player 𝑖 . Each vector 𝑎 = (𝑎1, . . . , 𝑎𝑛) ∈ A is called an

action profile;

• 𝒑 = (𝒑1, . . . ,𝒑𝑛) where 𝒑𝑖 : A → R𝑑 is the vectorial payoff

function for player 𝑖 , given an action profile.

In some cases, we restrict a player to only play pure strategies

from their set of actions𝑎𝑖 ∈ 𝐴𝑖 . In general however, players are free

to play any mixed strategy 𝑠𝑖 ∈ 𝑆𝑖 , with 𝑆𝑖 the set of all probability

distributions over 𝐴𝑖 .

2.2 Utility-Based Approach
To deal with the vectorial nature of payoffs, we employ a utility-

based approach [17, 18]. This approach assumes that each player

𝑖 has a utility function 𝑢𝑖 : R
𝑑 → R which maps vectors to scalar

utilities.

In most current work, no restrictions are placed on the types of

utility function that can be used. While imposing no restrictions on

utility functions allows for broad conclusions and generalisation, it

also introduces additional subtleties. Specifically, in the presence

of mixed strategies, it becomes critical to decide when to apply

the utility function. On the one hand, we might apply the utility

function before calculating the expectation of such a strategy. This

is known as the Expected Scalarised Returns (ESR) criterion [8, 16].

E [𝑢𝑖 (𝒑𝑖 (𝑠))] =
∑︁
𝑎∈A

𝑢𝑖 (𝒑𝑖 (𝑎))
𝑛∏
𝑗=1

𝑠 𝑗 (𝑎 𝑗 ) (1)

with 𝑢𝑖 and 𝒑𝑖 the utility function and payoff function for player

𝑖 and 𝑠 the joint strategy. On the other hand, a player may derive

their utility from the expected vectorial returns obtained from a

mixed strategy. This leads to the Scalarised Expected Returns (SER)

criterion [27, 33].

𝑢𝑖 (E [𝒑𝑖 (𝑠)]) = 𝑢𝑖
©«
∑︁
𝑎∈A

𝒑𝑖 (𝑎)
𝑛∏
𝑗=1

𝑠 𝑗 (𝑎 𝑗 )ª®¬ (2)

It has been shown that the selection of optimisation criterion in-

fluences the (learned) strategies in single-agent [28] as well as

multi-agent settings [23]. In addition, applying the ESR criterion to

an MONFG effectively reduces the game to an equivalent single-

objective trade-off game which can be solved using traditional

game-theoretical techniques. Therefore, in this work we focus our

attention on MONFGs under the SER criterion.

We note that the utility-based approach encompasses the older

axiomatic approaches (which we discuss in Section 5). Specifically,

by making assumptions about the utility functions different axioms

can be derived. For example, if the utility functions are unknown

but monotonically increasing, this leads to Pareto-optimality, and

more specifically Pareto-Nash equilibria as the desired solution

concept.

2.3 Equilibria
2.3.1 Nash equilibrium. Perhaps the most known and widely stud-

ied equilibrium concept is the Nash Equilibrium (NE) [14]. A joint

strategy is an NE if no agent can unilaterally deviate while still

improving their utility. Nash equilibria have also been studied in the

context of MONFGs with a utility-based approach. Notably, while

it has been shown that every single-objective finite NFG must have

a Nash equilibrium, this does not hold in MONFGs under SER [23]

and existence can only be guaranteed when imposing restrictions

on the utility functions used by players [21]. Below, we present a

formal definition of a Nash equilibrium in an MONFG under SER:

Definition 2.2 (Nash equilibrium for scalarised expected returns).
A joint strategy 𝑠𝑁𝐸

is a Nash equilibrium in an MONFG under the

scalarised expected returns criterion if for all players 𝑖 ∈ {1, · · · , 𝑛}
and all alternative strategies 𝑠𝑖 ∈ 𝑆𝑖 :

𝑢𝑖

(
E𝒑𝑖

(
𝑠𝑁𝐸
𝑖 , 𝑠𝑁𝐸

−𝑖
))

≥ 𝑢𝑖

(
E𝒑𝑖

(
𝑠𝑖 , 𝑠

𝑁𝐸
−𝑖

))
i.e. 𝑠𝑁𝐸

is a Nash equilibrium under SER if no player can increase

the utility of its expected payoffs by deviating unilaterally from 𝑠𝑁𝐸
.

2.3.2 Cyclic Nash equilibrium. Cyclic Nash equilibria (CNE) were

first introduced in the context of Markov games [34]. However,

recent work has shown that cycling amongst policies may arise in

MONFGs as well given a repeated setting and alternating commit-

ment [20]. Moreover, as we demonstrate in Sections 3 and 4, cyclic

equilibria might be preferred by both agents over a Nash equilib-

rium and can be efficiently learned in some cases. A cyclic strategy

𝑠𝑖 is a finite sequence of stationary strategies 𝑠𝑖 = {𝑠𝑖,1, · · · , 𝑠𝑖,𝑘 },
that is continuously cycled through [34]. If no agent can unilaterally

deviate from their cyclic strategy and improve on its utility, the

joint strategy is a CNE. The strategy is non-stationary as crucially

the actual strategy that is played at each time step depends on the

position in the cycle. We formally define CNE below:

Definition 2.3 (Cyclic Nash equilibrium for scalarised expected
returns). A joint cyclic strategy 𝑠𝑁𝐸

, with 𝑠𝑁𝐸
𝑖

= {𝑠𝑁𝐸
𝑖,1

, · · · , 𝑠𝑁𝐸
𝑖,𝑘

}
is a cyclic Nash equilibrium in an MONFG under the scalarised

expected returns criterion if for all players 𝑖 ∈ {1, · · · , 𝑛} and all

alternative cyclic strategies 𝑠𝑖 :

𝑢𝑖

(
E𝒑𝑖

(
𝑠𝑁𝐸
𝑖 , 𝑠𝑁𝐸

−𝑖
))

≥ 𝑢𝑖

(
E𝒑𝑖

(
𝑠𝑖 , 𝑠

𝑁𝐸
−𝑖

))
2.4 Commitment
We study the influence of commitment in multi-objective games

using the Stackelberg game model [29]. In a Stackelberg game, one

or more players are designated as leaders that commit to playing

a strategy. Other players are assumed to be followers and select a

strategy conditioned on the commitment in response. We refer to

the game that is played without commitment as the simultaneous

move game.

A leadership equilibrium, also referred to as a Stackelberg equi-

librium, in a multi-objective Stackelberg game is defined as follows

and contains the optimal commitment for the leader:

Definition 2.4 (Leadership equilibrium). A joint strategy 𝑠 is a

leadership equilibrium in a two-player MONFG if the leader’s mixed

strategy 𝑠1 ∈ 𝑆1 maximises their utility 𝑢1, given that for each

𝑠 ′
1
∈ 𝑆1 the follower plays a strategy 𝑠2 ∈ 𝑆2 maximising𝑢2 given 𝑠

′
1
.

Note that while Definition 2.4 does not specify an optimality

criterion as was done in Definitions 2.2 and 2.3, the interpretation of

the utility depends implicitly on the optimality criterion employed

by the players.



L R

L 1, 1 3, 0

R 0, 0 2, 1

(a) Better for the leader.

L R

L 1, 1 3, 0

R 0, 1 2, 2

(b) Better for both players.

Table 1: Example games for which commitment is better for
only the leader (1a) or both players (1b) relative to the highest
possible Nash payoff.

Extending the concept of a leadership equilibrium beyond two

players is non-trivial as different assumptions have to be made

regarding the leader coordination method [4], sequence of commit-

ment [7], etc. In the case of MONFGs, this is even further compli-

cated because of the fact that NE need not exist. As such, we only

consider two-player games in this work .

Similar to the single-objective case, it is possible for the set of

best responses in Definition 2.4 to contain more than one element.

In that case, the definition requires an additional assumption on

how the follower decides what strategy to play [4]. We sometimes

consider a pessimistic view of the follower in which they select

their best-response which is worst for the leader, known as a weak

Stackelberg equilibrium [3]. There also exist strong Stackelberg

equilibria which break ties in favour of the leader [3].

It has been shown that optimal commitment to a mixed-strategy

can never decrease a players payoff relative to a NE in two-player

single-objective games and can even be strictly better [30]. As an

example of this, consider the NFG from Table 1a [12]. The only

Nash equilibrium in this game is (L, L), with a payoff of 1 for both

players. However, if the row player would be able to commit to

playing R, the column player is forced to play R as well, leading

to a payoff of 2 for player 1. Table 1b shows a slight variation of

this game so that commitment is strictly better for both players.
The only Nash equilibrium is again (L, L) with a utility of 1, but

commitment by player 1 to R is now better for both players. In

fact, any mixed-strategy commitment from player 1 where their

probability of playing L is less than
1

2
, is met with a best response

of R by player 2 which is still strictly better for both players.

Commitment has been studied as a technique for learning agents

in the context of MONFGs as well [20]. It has been demonstrated

that alternating commitment in two-player games, i.e. players alter-

nate between being the leader and being the follower in repeated

plays of the game, can lead to faster learning. This work focused

more on the learning aspect and further showed that cyclic strate-

gies naturally arise in this setting. We extend on this notion and

provide a stronger theoretical understanding.

3 THEORETICAL CONSIDERATIONS
In this section, we consider various characteristics from commit-

ment in single-objective games and explore whether they also apply

in a multi-objective setting. For simplicity, we assume in each of

the following games that the row player is the leader, while the

column player is the follower.

In single-objective games it is known that the payoff from com-

mitting to an optimal strategy can never be worse for the leader

L R

L (−1,−1); (−1,−1) (−1, 1); (−1, 1)
R (1,−1); (1,−1) (1, 1); (1, 1)

Table 2: A two-player MONFG where committing can be
worse than playing a Nash equilibrium.

relative to the lowest Nash equilibrium [30]. We show that in MON-

FGs this does not hold and optimal commitment may in fact be

strictly worse than the utility from any Nash equilibrium. We for-

mally state this in Theorem 3.1.

Theorem 3.1. In a finite two-player multi-objective normal-form
game where players are optimising for the scalarised expected returns
criterion, the utility from optimal commitment may be worse for the
leader than the utility from any Nash equilibrium.

Proof. Consider the game in Table 2. The row player uses the

following utility function for their two objectives:

𝑢 (𝑝1, 𝑝2) = 𝑝1 · 𝑝2 − 𝑝2
2

and assume the column player has a utility function that is a con-

stant 𝑘 for every payoff vector, i.e.:

𝑢 (𝑝1, 𝑝2) = 𝑘

As the column player’s utility is a constant, every best-response

from the row player to a strategy of the column player is a Nash

equilibrium in the simultaneous move game. We shall now consider

the different utilities from Nash equilibria in this game.

The column player plays a strategy

(
1

2
− 𝜀, 1

2
+ 𝜀

)
with 𝜀 ∈ [− 1

2
, 1
2
].

This leads to the following expected payoff for the row player when

responding with the pure strategy 𝐿:

𝒑(𝐿) = ( 1
2

− 𝜀) · (−1,−1) + ( 1
2

+ 𝜀) · (−1, 1)

=

((
−( 1

2

− 𝜀) − ( 1
2

+ 𝜀)
)
,

(
−( 1

2

− 𝜀) + ( 1
2

+ 𝜀)
))

= (−1, 2𝜀)

Similarly for the pure strategy 𝑅:

𝒑(𝑅) = ( 1
2

− 𝜀) · (1,−1) + ( 1
2

+ 𝜀) · (1, 1)

=

((
( 1
2

− 𝜀) + ( 1
2

+ 𝜀)
)
,

(
−( 1

2

− 𝜀) + ( 1
2

+ 𝜀)
))

= (1, 2𝜀)

It is clear that for any 𝜀 there is a strategy for the row player

that leads to a payoff vector with the same signs, thus leading to

a utility greater than or equal to zero. Because the column player

never has an incentive to deviate, this joint strategy is a NE. As

such, each Nash equilibrium in the simultaneous move game has a

utility greater than or equal to zero.

When considering this as a Stackelberg game, we show that any

strategy commitment made by the row player can result in a utility

strictly less than zero.

The leader, i.e. the row player, commits to a strategy

(
1

2
− 𝛿, 1

2
+ 𝛿

)
with 𝛿 ∈ [− 1

2
, 1
2
]. We get the following payoff vector for the leader



when the follower plays the pure strategy 𝐿:

𝒑(𝐿) = ( 1
2

− 𝛿) · (−1,−1) + ( 1
2

+ 𝛿) · (1,−1)

=

((
−( 1

2

− 𝛿) + ( 1
2

+ 𝛿)
)
,

(
−( 1

2

− 𝛿) − ( 1
2

+ 𝛿)
))

= (2𝛿,−1)

and when the follower players the pure strategy 𝑅:

𝒑(𝑅) = ( 1
2

− 𝛿) · (−1, 1) + ( 1
2

+ 𝛿) · (1, 1)

=

((
−( 1

2

− 𝛿) + ( 1
2

+ 𝛿)
)
,

(
( 1
2

− 𝛿) + ( 1
2

+ 𝛿)
))

= (2𝛿, 1)

It is clear that whenever the leader commits to a strategy with

𝛿 ≠ 0, there is an action from the follower which leads to a payoff

vector where the payoff for one objective is positive and negative

for the other objective. If the follower selects this action, the util-

ity for the leader is strictly less than -1. In addition, if the leader

commits to a strategy with 𝛿 = 0, i.e., a uniform distribution over

their actions, both actions by the follower result in a utility of -1.

When considering weak Stackelberg equilibria [3], and thus tak-

ing a pessimistic view of the follower such that they select their

best-response which minimises the leader’s utility, these strategies

will always be played. As such, a uniformly mixed strategy is the

optimal commitment for the leader. This results in a utility of -1,

which is less than that of any Nash equilibrium. □

We note that the utility functions used in this proof are not mono-

tonically increasing, thus violating an assumption that is oftenmade

in multi-objective decision making [17, 18]. It is unclear whether

introducing the monotonically increasing assumption would shift

the result, making this an open question. The construction shown

here relies on a similar construction to the one used in [30] to

show that commitment can be worse in infinite (single-objective)

NFGs. This allows us to provide an alternative intuition for Theo-

rem 3.1. Namely, because we can reduce each finite MONFG to an

infinite pure strategy NFG [21], it is not surprising that two-player

MONFGs exist showing the adverse results of commitment.

We have shown, by means of a counterexample, that optimal

commitment need not be as good for the leader as playing the si-

multaneous move game in general. Of course, Theorem 3.1 does not

exclude the possibility of gameswhere commitment is still preferred.

Concretely, we demonstrate that even when employing non-linear

utility functions, commitment may ensure a higher utility for both

players than any NE in the simultaneous move game.

Theorem 3.2. In a finite two-player multi-objective normal-form
game where players are optimising for the scalarised expected returns
criterion, with possibly non-linear utility functions, the utility from
commitment may be better for both players than the utility from any
Nash equilibrium.

Proof. Consider the game in Table 3. Both players employ the

same utility function shown below.

𝑢 (𝑝1, 𝑝2) = 𝑝2
1
+ 𝑝2

2

L R

L (1, 0); (1, 0) (2, 1); (0, 0)
R (0, 0); (0, 1) (1, 1); (1, 1)

Table 3: A two-player MONFG where committing can be bet-
ter for both players than playing a Nash equilibrium.

L R

L (10, 2); (10, 2) (0, 0); (0, 0)
R (0, 0); (0, 0) (2, 10); (2, 10)

Table 4: A two-player MONFG where committing to a cyclic
strategy is optimal.

Following the algorithm from [21], we find the pure strategy NE

(L, L) with a utility of one for both players. This algorithm uses

the fact that when employing quasiconvex utility functions, pure

strategy NE can be calculated from a scalarisation of the game. We

now show that this is the only NE. Observe that the utility function

is a strictly convex function. This implies that mixed strategies will

never be a best-response to a fixed (possibly mixed) strategy of

the opponent, except when both actions return the same expected

payoff vector [21, Lemma 4]. Intuitively, this is because for strictly

convex functions, a mixture of different points is guaranteed to

be worse than any single point. As such, mixing over points can

only be optimal when the points themselves are equal. There is no

strategy from the column player that returns the same expected

payoff vector for both actions of the row player. Given that this is

also the case for the column player, no mixed-strategy NE exist.

Consider a commitment from the row player to action R. The

best-response from the column player would be to play R as well.

This leads to a utility of 2 for both players, which is strictly greater

than that of any Nash equilibrium. □

We now introduce an additional caveat in determining opti-

mal commitment for two-player MONFGs. Specifically, it does not

suffice to restrict attention to stationary strategies and equilibria.

Rather, it may be optimal for the leader to commit to a cyclic strategy.
Moreover, this may be preferred by both players.

Theorem 3.3. In a finite two-player multi-objective normal-form
game where players are optimising for the scalarised expected returns
criterion, commitment to a cyclic strategy may be optimal.

Proof. Consider the game in Table 4. Both players employ the

same utility function as shown below:

𝑢 (𝑝1, 𝑝2) = 𝑝1 · 𝑝2
There are two pure Nash equilibria, namely (L, L) and (R, R) both

amounting to a utility of 20. There are also mixed Nash equilibria,

however the drawback of those is that due to the independence of

strategy selection, players expect to select a joint-action that results

in a payoff vector of (0, 0) a certain amount of the time. Given the

utility functions, the optimal combination of payoffs would be (6, 6)
with a utility of 36. This expected payoff can only be attained by

playing both (L, L) and (R, R) with probability
1

2
. It is clear that this

joint-action distribution cannot be reached with stationary strate-

gies. However, committing to the cyclic strategy {𝐿, 𝑅}, induces the



L R

L (2, 0); (2, 0) (0, 1); (1, 1)
R (1, 0); (1, 1) (0, 2); (0, 2)

Table 5: An example game where no Nash equilibrium exists,
but a cyclic Nash equilibrium does exist.

opponent to respond with the same cyclic strategy. This leads to

the optimal expected return of (6, 6) and a utility of 36. □

Note that the above commitment is also a CNE of the game. As

a final theoretical contribution, Theorem 3.4 extends this further

by formalising that such CNE can exist even when no NE exists.

Theorem 3.4. In a finite n-player multi-objective normal-form
game where players are optimising for the scalarised expected returns
criterion, a cyclic Nash equilibriummay exist, evenwhen no stationary
Nash equilibrium exists.

Proof. We show a construction for Theorem 3.4 in Table 5. The

row player has the following utility function:

𝑢 (𝑝1, 𝑝2) = 𝑝2
1
+ 𝑝2

2

and the column player’s utility function is shown below:

𝑢 (𝑝1, 𝑝2) = 𝑝1 · 𝑝2
First observe that there is no Nash equilibrium. The row player

has a strictly convex utility function, implying that a mixed strategy

can never be a best-response, unless both actions return the same

payoff vector [21, Lemma 4]. There is no strategy from the column

player which induces the same payoff for both actions. As such, the

row player will always play a pure strategy. Observe next that the

column player has a unique best-response to a pure strategy from

the row player by playing the opposite pure strategy. Therefore,

we can restrict the set of possible NE to the pure strategies. Lastly,

any pure strategy by one player is best countered by the opposite

pure strategy from the other player. As such, no NE exists.

We now show that 𝑠1 = {𝐿, 𝑅} and 𝑠2 = {𝐿, 𝑅} is a cyclic Nash
equilibrium. First of all, it is clear that an expected payoff of (1, 1) is
a global maximum for the column player, given the payoffs of the

game. Moreover, the row player is incentivised to play L when their

opponent plays L as it dominates R. When their opponent plays R,

the row player wants to play R, as it now dominates L. As such, no

player can deviate from the joint cyclic strategy while improving

their utility and a cyclic Nash equilibrium is reached. □

We highlight that the above cyclic equilibrium results in a joint

state distribution where both (L, L) and (R, R) are played 50% of

the time. This distribution is equivalent to that of the (multi-signal)

correlated equilibrium as defined in [23]. Moreover, in Table 1b the

joint-state distribution from commitment is also equal to that of a

correlated equilibrium in the game. In that case, it appears as though

the commitment by the leader can serve as a correlation signal,

enabling agents to coordinate their strategies. As demonstrated by

these different games, there are a number of relations and nuances

between the different equilibrium concepts. We discuss studying

these aspects further as a direction for future work in Section 6.

4 LEARNING LEADERSHIP AND CYCLIC
EQUILIBRIA

We empirically investigate whether the theoretical contributions are

observable in learning settings. The motivation for this is twofold:

firstly, we now know theoretically that commitment and cyclic

policies may be preferred over simple stationary independent ac-

tion selection, but still lack empirical evidence. Secondly, merely

knowing that such characteristics exist, does not give an imme-

diate indication of how to actually learn or calculate the optimal

strategies. As such, it becomes pertinent to study under what cir-

cumstances and learning algorithms we might arrive at optimal

policies.

4.1 Learning Setup
We briefly present the learning setup used for our empirical evalua-

tion. We design two extensions on previous work [19, 20] to incor-

porate the novel theoretical insights directly in the reinforcement

learning algorithm. Both algorithms build on the multi-objective

actor-critic approach which has been succesfully applied before

because of its natural extension to multi-objective games [15, 33].

4.1.1 Pessimistic Follower. The first algorithm intends to simulate

a malicious follower aiming to minimise the leaders utility. Con-

cretely, the leader commits to a stationary mixed strategy. The

follower learns joint-action Q-values and calculates a strategy that

minimises the utility function of the leader. Note that this is only a

best-response for the follower in the case of a constant utility func-

tion, as is the case for the game in Table 2. To avoid getting stuck

in local optima due to insufficient exploration of the joint-action

space, we equip the follower with an exploration parameter that

forces them to make a random move with probability 𝜀. The initial

value for 𝜀 is 1, i.e. always explore, but is decayed over time with

factor 0.95 and clipped to a minimum of 0.01.

4.1.2 Non-stationary. The second algorithm is an adaptation of

the self-interested communication protocol from [20]. In short, this

algorithm enables the leader to learn a mixed strategy, but forces

them to commit to a pure strategy in each round by sampling from

this strategy. The follower in turn learns a best-response to each

individual pure strategy commitment using actor-critic as well. Our

extension ensures that this ensemble of policies is itself a best-

response as a whole against the entire commitment strategy from

the leader. The critical difference is that this enables players to learn

optimal non-stationary strategies, rather than strategies that are

only optimal for each specific commitment.

We stress that the learning algorithm does not directly learn

commitment to a cyclic strategy. Instead, the leader learns a mixed

strategy from which they sample a pure strategy to commit to. This

allows the players to learn the same joint-strategy distribution as

for a cyclic Nash equilibrium consisting of only pure strategies.

4.1.3 Code. The code is made publicly available at https://github.

com/wilrop/Cyclic-Equilibria-MONFG.

4.1.4 Parameters. We perform 100 runs of the same experiment

to report average behaviour. To measure the action probabilities

and utility in each episode, we run a Monte-Carlo simulation of

100 rollouts. This is necessary as we study the utility agents obtain

https://github.com/wilrop/Cyclic-Equilibria-MONFG
https://github.com/wilrop/Cyclic-Equilibria-MONFG


from the expected payoffs of their strategies. We use a learning rate

of 0.2 for the Q-values and 0.005 for the policy gradient parameters.

4.2 Commitment May Be Exploited
In the first experiment, we attempt to empirically validate the theo-

retical possibility of a malicious follower that selects their strategy

as a worst-response to the commitment. To that extent, we use the

pessimistic follower algorithm described above on the game given

in Table 2 with the same utility functions as used in the proof for

Theorem 3.1. The constant utility 𝑘 for the follower is set to 2 and

each experiment is executed for 1500 episodes.

In Figure 1, we show the commitment strategy learned by the

leader as well as the utility for both players. Note that we also add

the lowest NE to Figure 1b to visualise the difference between the

Stackelberg and simultaneous move game.
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Figure 1: Results for learning commitment in Table 2.

It is clear that the leader explores different commitment strategies

in the earlier episodes. However, as shown in their utility, this can

always be exploited by the follower. After exploring in the earlier

episodes, the leader converges on committing to a mixed-strategy

of ( 1
2
, 1
2
), which minimises the level of exploitation that is possible

by the follower. We also highlight that the final utility from this

leadership equilibrium is considerably less than the lower bound

from Nash equilibria. As such, when applying these techniques

in practical applications, it becomes extremely important to take

potentially malicious behaviour from followers into account.

4.3 Commitment May Be Better
In our second experiment, we verify whether commitment may in-

deed be better for both players relative to a NE and if such strategies

can be learned. For this experiment we use the game from Table 4

and the utility function 𝑢 (𝑝1, 𝑝2) = 𝑝1 · 𝑝2 for both players. Each

run is executed for 1500 episodes. Note that we omit experiments

for the game in Table 3 as the optimal pure strategy of (R, R) is

relatively simple to learn. Rather, we immediately consider the case

where non-stationary behaviour is optimal.

We show the joint-action distribution of the final 10% of episodes,

i.e. when players have converged on their strategy, and the utilities

for both players in Figure 2.
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Figure 2: Results for learning commitment in Table 4.

Observe that players have converged to the optimal joint-action

distribution through commitment which results in the maximum

utility of 36. One critique of this game is that its payoffs are sug-

gestive of an optimal strategy. Indeed, only the joint-actions (L,

L) and (R, R) have a utility greater than zero. In addition, because

agents start with an initial probability distribution of 50% for both

actions, learning might be relatively easy. For this reason, we repeat

the same experiment but introduce more complicated payoffs in

Table 6.

Note that mixing (L, L) and (R, R) still leads to the optimal util-

ity, this time of ≈ 20. This entails playing (𝐿, 𝐿) 3

4
th of the time

and (𝑅, 𝑅) for the remainder. Considering cyclic equilibria directly,

this could for example be reached by committing to the strategy

{𝐿, 𝐿, 𝐿, 𝑅}. We show the joint-action distribution and the utility

over time in Figure 3.



L R

L (10, 2); (10, 2) (2, 3); (2, 3)
R (4, 2); (4, 2) (6, 3); (6, 3)

Table 6: A similar payoff table to Table 3 which induces more
complicated learning dynamics.
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Figure 3: Results for learning commitment in Table 6.

As expected, the leader is again able to learn an optimal strategy

to commit to and coordinate an optimal joint-action distribution

with the follower. We note however that learning appears slightly

slower, which is to be expected given the noisier payoff structure.

This shows that learning optimal commitment strategies is possible

and can lead to substantially higher utilities for both players.

4.4 Cyclic Nash Equilibria
Recall from Theorem 3.4 that cyclic Nash equilibria may exist when

no Nash equilibrium exists. In addition, as demonstrated in Table 3,

it is possible that commitment results in the same joint-action

distribution as a cyclic Nash equilibrium. For this reason it begs

the question: is commitment enough to learn CNE distributions?

Note that there is already one caveat. The algorithm learns a mixed-

strategy, but only enables the leader to commit to a pure strategy.

As such, this restricts the number of CNE action distributions that

can be represented through commitment. However, as we will show

next, even when the cyclic Nash equilibrium comprises solely out

of pure strategies, commitment alone is not enough to guarantee

the same action distribution as the CNE.

For these experiments, we assume the game in Table 5 and the

same utility functions as used in the proof of Theorem 3.4. We first

execute the experiment with the row player as the leader, this time

for 100.000 episodes.
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Figure 4: Results for when the row player is the leader.

From Figure 4a, the leader’s utility varies substantially over

time and throughout different runs of the experiment. The leader

does not reach a utility of 2, corresponding to playing the CNE

distribution. Moreover, the leader’s utility drops below a utility of

1, which is possible when exclusively committing to L or R. We

hypothesise that this is due to the learning algorithm itself not

allowing the leader to escape local maxima. Because both players

need to learn policies, any change in commitment from the leader is

countered by the follower. This then leads to oscillating behaviour

where the leader increases their commitment to one action, only

to be punished by the follower and update their policy towards

the other action. This hypothesis is also supported by the (non-

stationary) commitment strategy of the leader shown in Figure 4b.

We note that it appears that the leader’s utility has a slight upwards

trend, implying that in the limit they can escape such local maxima.

However, given the relative simplicity of this game compared to

real-world situations, this approach does not appear to scale and

highlights a limitation of independent learners.

We repeat the same experiment, but this time with the column

player as the leader. Each run is executed for 10.000 episodes. We

show the results in Figure 5. This time players are able to reliably

converge on the action distribution of the CNE, guaranteeing them

their optimal utility. The difference between both experiments may
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Figure 5: The utility with the column player as leader.

be explained by the best-responses available to the follower. In

Figure 4, the follower has multiple strategies to reach their optimal

outcome. As such, there is no direct incentive to collaborate with the

leader on a strategy which also benefits the leader. Moreover, when

considering weak Stackelberg equilibria, exploitative behaviour is

to be expected. In Figure 5 however, the only commitment strategy

guaranteeing the leader their optimal utility of 1 is to play the

cyclic Nash equilibrium distribution, thereby inducing the follower

to coordinate on this strategy. As such, these experiments show

that while commitment may serve as a tool to coordinate players

and result in CNE, careful considerations should be taken due to

the many nuances in theoretical and empirical results.

5 RELATEDWORK
There are two main research areas that comprise the related work

of this paper. First, there are a number of studies discussing commit-

ment in single-objective games. The seminal paper by von Stengel

et al. [30] contributes several theoretical results on leadership equi-

libria and guarantees on their payoffs respective to Nash equilibria.

Important to note is that these contributions are not limited to finite

games, but extend, in some-cases, to continuous games. The work

by Letchford et al. [12] builds on previous work to study exactly

howmuch value there is in commitment. There have been a number

of works exploring algorithms for calculating optimal commitment

strategies. We highlight the works by Conitzer et al. [6, 7] introduc-

ing linear programming methods for this purpose. Computational

methods for commitment in more complicated games have also

been studied [11, 13]. Recent work also considers settings beyond

two-player games. Castiglioni et al. [4] consider Stackelberg games

with multiple leaders, while Coniglio et al. [5] consider games with

multiple followers. We note that Stackelberg games are a successful

contribution out of the game-theoretic community into practical

applications, being widely applied in security settings under the

name of Stackelberg security games [25].

The second line of research that is directly related is multi-

objective decision making [9, 18]. We employ a utility-based ap-

proach which makes the utility functions of the players explicit.

An older but related approach, sometimes called the axiomatic

approach [17], leaves the existence of the utility of the players im-

plicit by assuming the Pareto-front as its solution concept. This

corresponds to unknown utility functions that are nonetheless

monotonically increasing in all objectives. In the context of games,

taking such an approach often implies characterizing or calculat-

ing the Pareto-Nash equilibria of a multi-objective game [10, 26].

However, these approach can always be framed under the utility-

based framework. In the case of Pareto-Nash equilibria for example,

mixed strategies lead to expected payoff vectors. This is equiva-

lent to the SER criterion and a joint strategy is only a Pareto-Nash

equilibrium if it is a NE for all possible monotonically increasing

utility functions the agents might have. We refer to the survey of

Rădulescu et al. [22] for an in-depth overview of multi-objective

decision making in multi-agent settings.

6 CONCLUSION AND FUTUREWORK
We explored the value of commitment in multi-objective games

and the range of behaviours it might ensure. To that extent, we

first showed that while commitment in single-objective games is

guaranteed to be at least as good as the worst Nash equilibrium,

this guarantee does not hold for multi-objective games. Next, we

demonstrated that commitment may also have a positive effect

and result in a higher utility for both players relative to any Nash

equilibrium. We also noted that commitment to non-stationary

strategies may be preferred over stationary strategies and subse-

quently showed that even when no Nash equilibrium exists, such

cyclic Nash equilibria may exist.

Additionally, we empirically evaluated our example games to

study whether the theoretical contributions are also present in a

learning setting. We first demonstrated that a malicious follower

is able to accurately exploit commitment from a leader, thus moti-

vating caution in any practical setting. Next, we also demonstrated

that the positive side of commitment, increased utility for both play-

ers, is achievable even among more complicated payoff structures.

Lastly, we demonstrated that while cyclic Nash equilibria distribu-

tions can sometimes be reached through commitment, commitment

alone is not enough to guarantee this.

We have already mentioned several interesting directions for

future work. First, we aim to further study the relations between

different equilibrium concepts. Specifically, we have seen that there

is an intimate relation between cyclic Nash equilibria, leadership

equilibria and Nash equilibria. Additionally, we observe that in

several cases the final joint-action distribution resembles that of a

correlated equilibrium [1]. While correlated equilibria have been

the subject of extensive work in single-objective games, much less

is known about them in the context of multi-objective games [23].

Second, it has been established that there is a connection be-

tween finite multi-objective games and single-objective games with

infinite pure strategy sets [21]. We aim to explore whether the

contributions from multi-objective games could be extrapolated

to this setting. As an example, we previously stated that whether

commitment may be exploited when employing only monotonically

increasing utility functions is an open question. If this question

could be resolved positively, it would prove interesting to provide

such a guarantee in the context of single-objective games.
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