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ABSTRACT
Reward shaping is an important means of reducing the computa-
tional costs associated with deep reinforcement learning in envi-
ronments with sparse rewards. However, serious concerns exist
over the subjectivity and self-centred motivations introduced with
artificial reward design. This paper presents an objective approach
to reward shaping. Reward is generated from the maximisation
of visual complexity in the environment. The current approach
outlined in this paper relies on a measure of structural complexity.
Reward generated from the maximisation of structural complexity
demonstrates significant performance increases against the sparse
reward of survival in a base-building game testbed. Despite these
promising early results, the use of only structural complexity in
the measure limits generalisation. Future research will seek to in-
corporate behavioural complexity for a more complete measure.
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1 INTRODUCTION
Deep Reinforcement Learning (Deep RL) has seen an explosion
in interest over the last several years. Beginning with early work
on Atari games[22], followed by Google DeepMind’s mastery of
Go[28], the state-of-the-art has now achieved super-human perfor-
mance in complex games such as Starcraft 2[34] and Dota 2[2].

Following this string of achievements, Deep RL has been her-
alded as sufficient for Artificial General Intelligence (AGI). Deep-
Mind, the lab behind much of these ground-breaking achievements,
have recently claimed "Reward is Enough"[29]. They suggest the
maximisation of reward with Deep RL is all that is required to
achieve general human-like intelligence.

Criticism from the natural science community has already been
leveled at DeepMind. Criticism is particularly focused on the sug-
gestion that maximisation of an arbitrary reward function is suffi-
cient for human-like intelligence. In public interviews, neuroscien-
tist Churchland[7] criticises DeepMind for ignoring the social and
moral aspects of human intelligence. From her work on the biolog-
ical underpinnings of our moral intuitions, Churchland suggests
a reward function for human-like AGI needs to have other social
and moral considerations outside of individual self-interested max-
imisation of reward. We are not merely machiavellian maximisers,
motivated by pure self-interest, it is suggested. We do not aim to
maximise our own individual reward at all costs.
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The fear of such a machiavellian maximiser precedes this criti-
cism. The nightmare of an AI interested only in the selfish maximi-
sation of its own reward function was epitomised in the thought-
experiment of the Strawberry Picker[8]. Proposed by Elon Musk,
the Strawberry Picker seeks only to maximise a single reward func-
tion chosen by its self-interested creators. It levels whole cities
to create more farmland, all in the singular pursuit of increasing
strawberry production. Such a machiavellian maximiser success-
fully maximises its chosen reward function, but does so with such
single-minded self-centred purpose that it respects nothing of the
existing environment around it. Reward functions chosen by self-
interested creators may be "enough" to learn general intelligence,
but not enough to learn to respect anything else. Humanity, our
economy, and the wider ecology may suffer devastation as a result.

Arbitrary reward functions are not enough. Particularly those
subjectively shaped by human desires. A long history of problems
is associated with the introduction of artificial rewards designed by
human hand. A move to rewards that can be considered objective
is imperative. Particularly in the face of a machiavellian maximiser
emerging from an AGI with misguided reward design.

Unfortunately, existing rewards that can be objectively sourced
in an RL environment are typically sparse. Their sparsity can
worsen the already poor learning efficiency of RL, and necessi-
tate prohibitively expensive computing costs. Escalating comput-
ing costs puts an objective reward shaping out of reach. A means
of generating a frequent objective form of reward is required to
speed up learning so as to avoid an inevitable cost-cutting return
to subjective design in the future.

This paper presents the results obtained with a promising objec-
tive reward shaping candidate, the maximisation of visual environ-
mental complexity. Early results demonstrate it offers significant
performance increases over sparse rewards in certain scenarios.
However, the current measure of visual complexity relies solely on
structural complexity, limiting it to domains such as base-building
games where it correlates with success. Future research will seek a
more complete measure incorporating behavioural complexity.

In addition to the promise of faster RL, it is hoped visual complex-
ity will also provide a path to solving the problems associated with
subjective reward design and self-centred motivations. Incorporat-
ing a motivation that inherently respects the existing structural and
behavioural complexity of the environment is a promising direction
towards safe RL. It promises to motivate only further complexifi-
cation of the agent’s environment, avoiding losses to complexity
in economic assets and the surrounding ecology. It opens up a
novel approach for future research that seeks means of avoiding
dangers to the economy, human society, and life itself, posed by a
machiavellian maximiser with self-centred motivations.
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2 BACKGROUND
Reward shaping is not a new idea. But introducing artificial rewards
into an RL scenario typically involved a myriad of human design
choices. Historically, the subjectivity of human hand-crafting in-
troduced perverse incentives, producing suboptimal and absurd
results.

But reward signals considered objective are difficult to find in
many scenarios. Existing rewards in an RL environment can be infre-
quently encountered. Such sparse rewards are a serious problem for
viability as Deep RL enters into ever more complex environments
with longer episodes of learning. Indeed, in many environments the
sole reward encountered by an agent exists only upon successful
completion of the episode. Such a survival signal is a maximally
sparse reward. Given longer episodes of learning, large computing
costs are then required to learn. OpenAI has recently modeled this
trend of exploding computing requirements, and has predicted it
will double every 3.4 months[26]. This is in stark contrast to the
doubling of computing power every 18 months with Moore’s law,
a law which is predicted to end soon as well[31].

2.1 Subjective Reward Shaping
Reward shaping is the inclusion of artificial rewards in RL distinct
from those found in the Markov-Decision-Process (MDP) underly-
ing the environment. Reward shaping was conceived of as a means
of introducing expert knowledge into RL. RL is known to be data
sample inefficient, requiring many agent-environment interactions
to learn. Expertise used to craft rewards could speed up learning.
Subjective choices were then required to modify the original reward
structure of the MDP.

Such subjective reward shapingwas known to lead to sub-optimal
behaviour[27] and frequently produced absurd results. It can intro-
duce perverse incentives that lead away from the goal state, and
has no guarantees of policy invariance. It fails to guarantee policy
learnt with the modified reward structure will be optimal policy in
the original unmodified MDP.

Potential-Based Reward Shaping (PBRS)[5] is a proposed solu-
tion for the sub-optimal behaviour learned with subjective reward
shaping. Subjective design choices are limited to the design of po-
tential functions that describe an agent’s potential to reach the goal
state. Policy invariance is theoretically guaranteed when the state
described as having maximum reward by the potential function
coincides with the goal state of the original MDP[23].

Critically, PBRS requires that expert knowledge of goal states is
sufficient. Similarly, choices are left up to subjective design, such
as the choice of heuristic describing distance to the goal. Com-
plex MDPs may lack sufficient expert knowledge for the design
of heuristics that can describe distance to goal states. In addition,
simple distance-to-goal heuristics are known to lead to sub-optimal
behaviour[33].

Subjective reward shaping increasingly appears an ill-fit for the
ever more complex MDPs underlying state-of-the-art testbeds and
real-world applications.

2.2 Objective Reward Shaping
Reward signals sourced from objective information alone would
avoid all the issues associated with subjectivity in reward shaping.
Several main approaches exist that produce reward signals without
subjective design choices.

Learning-to-Learn methods would offer the ability to learn fre-
quent reward signals from the existing sparse rewards of an RL
environment. Evolutionary[24] methods and Meta-learning[36]
have both been proposed as means of learning frequent reward
signals to aid in RL. Dynamic PBRS[6] is the most promising, and
learns potential functions with policy invariance guarantees. How-
ever, due to the overhead of running a secondary learning method
on top of existing RL methods, it is uncertain whether these ap-
proaches can consistently offer the necessary speed-ups. This is
particularly of concern in complex MDPs possessing only a survival
signal.

Objective means of transferring expert knowledge have been pro-
posed. RL from demonstration[3], RL from advice[11], and Preference-
based RL[35] are examples of such attempts. Advice appears the
most promising and offers policy invariance guarantees. Unfortu-
nately, many complex real-world environments are open-ended and
lack experts with sufficient objective knowledge to guide optimally
without bias. Advice from subjective opinion may bias the agent
in unknown ways in complex environments with sparse rewards.
A sparsity or total absence of objective signals may leave other
considerations without representation and lead unpredictably to a
Strawberry Picker scenario.

Intrinsic motivation[1] provides rewards from objective model-
ing efforts. Curiosity[4] is one form, and provides a reward from
prediction of future states. Reward results from surprise at state
unpredictability and unfamiliarity. Curiosity is then only useful for
exploring unknown states.

Empowerment is another form of intrinsic motivation. The em-
powermentmethodDIAYN[9] is the culmination of recent information-
theoretic work on how the action-space of an RL agent can itself be
used to generate rewards. DIAYN motivates the agent to maximise
the diversity of empowering "skills" it can find in its action-space.
Consequently, it is inevitably centred around the agent’s own ac-
tion space. This constraint precludes consideration of the diversity
and complexity of structures and behaviour in the environment
outside of the agent. The complexity of vital interests, such as eco-
nomic capital and other agents, is unable to be captured by this
approach. DIAYN appears unable to mitigate the risk of a machi-
avellian maximiser concerned only for its own interests. Indeed, an
empowerment approach that fundamentally relies on the action-
space alone constrains an agent to learning from information that
is irrevocably self-centred.

The candidates above provide objective forms of reward useful
for other purposes, but leave us without what is desired, reward that
is frequent and fast, but also free from self-centred concerns and
subjective bias. A novel inductive bias for RL appears to be required
that would both speed up learning and eliminate subjectivity and
self-centred motivations.



3 VISUAL ENVIRONMENTAL REWARDS
An inductive bias that is objectively sourced would best come from
environmental information itself. Environmental information can
provide both objective information on success in the environment,
as well as provide frequent rewards, solving the issue of sparsity
foundwith existing environmental rewards. Visuals appear to be the
most reliable source of information on the environment. Rewards
generated from visual information would also add no further cost
to the existing fixed costs of image convolution in state-of-the-art
end-to-end neural network approaches to Deep RL.

Characteristics of the environment need to be found that provide
an inductive bias for learning optimal behaviour. The base-building
RTS genre is explored, and taken as an exemplar of complex RL
environments due to state-of-the-art use.

3.1 Thermodynamic Characteristics
Base-building RTS games focus on the need to acquire resources,
invest them wisely into assets, and use strategy to protect against
asset loss from adversity. Real-world scenarios also require living
systems to learn similar characteristic behaviours. Living systems
must also accumulate resources, invest them into assets, and pro-
tect against asset loss. These characteristic behaviours of living
systems exist due to thermodynamic constraints. It appears thermo-
dynamic constraints are implicitly shared between base-building
games and reality itself. Natural scientific principles describing
the means living systems thrive under thermodynamic constraints
may provide insight into an inductive bias for RL environments
implicitly constrained in this way.

In systems ecology the Maximum Power Principle[25] states that
the most successful living system in an environment will maximize
power, the dissipation of thermal energy over time. Thermodynam-
ically this dissipation of thermal energy is associated with an in-
crease in entropy. This increase in entropy through maximal power
output satisfies the second law of thermodynamics and allows life
to survive within thermodynamic constraints. The characteristic
behaviours of a living system appear to be a sign it is maximizing
power and increasing entropy. Working backwards, the increasing
entropy of visual environmental information may provide a sign
of optimal behaviour in an environment with thermodynamic con-
straints. One potential inductive bias for such environments may
then involve measuring visual environmental entropy.

Evolutionary biology offers another alternative. McShea[20] de-
scribes a tendency for living systems to increase in complexity
over time. As increases in complexity track with the successful
persistence of living systems, it suggests increasing complexity
will also track with the characteristic behaviours required to thrive
under thermodynamic constraints. This then provides another po-
tential inductive bias: measuring increases in visual environmental
complexity.

A measure of visual entropy is trivial. The entropy of image
pixel data can be used. A simple count of unique values suffices
for RTS base-building games with simpler graphics. A measure of
the diversity of pixel values would be needed for more advanced
graphics. A measure of visual complexity, though, proves more
ambiguous. Much ambiguity and debate already exists around how
to create a measure of complexity for real-world living systems. A

far more complicated measure than simply pixel value diversity
would be needed to measure visual environmental complexity in
an RTS base-building game.

3.2 Visual Complexity
Standard measures of complexity in information science prove
inappropriate for use in measuring the complexity of real-world liv-
ing systems. Measures of algorithmic complexity like kolmogorov
complexity[17] produce absurd results when applied to real-world
scenarios. Kolmogorov complexity is derived from the size of the
smallest program required to reconstruct a system’s output infor-
mation. It relies on the incompressibility of this information. When
applied to real-world systems it produces counter-intuitive results.
Such a measure would rank the visual environmental information
of a living system lower in complexity than random noise, due to
the compressibility of regularities found in living structures.

Complex systems science offers a solution with the concept of
effective complexity[10]. Gell-Mann’s work sought to solve the
counter-intuitive results found with kolmogorov complexity. The
focus was put on respecting the regularities found in real-world
systems that reduce measurements of their kolmogorov complexity
when compared to random noise. Such regularities can be used to
compress the program of reconstruction further than is possible for
the incompressible irregularities of noise. To solve this, effective
complexity sought to only measure the information content of
regularities in a system, avoiding the information of irregularities.

Unfortunately, effective complexity proves ambiguous in its im-
plementation. Criticism suggests the choice of implementation is
debatable and open-ended[18]. A proxy measure of effective com-
plexity is needed in lieu of a definitive measure. The means of
generating the smallest program of reconstruction for a system’s
visual information, respecting only its regularities, is left open to
interpretation.

Inspiration for the means of creating the program of reconstruc-
tion can be taken from scientific insights into the structure of real-
world systems, as well as from practical work on deep learning with
images. Evolutionary biologist McShea[19] notes that the increase
in biological complexity over time involves an increase in nested-
ness, or hierarchical structure. Economist Simon[30] also notes that
the complexity in real-world systems tends to be hierarchical. Their
perspectives provide insight into the best means of capturing the
feature regularities required for effective complexity. A means that
captures hierarchies of feature regularities appears to bemost suited
for a measure of effective complexity in environments containing
real-world systems.

Similarly, deep learning on images typically makes use of a hi-
erarchical architecture. A convolutional neural network learns to
produce a hierarchy of feature maps to best represent the construc-
tion of complex structures in the visual data.

Both the scientific insights of evolutionary biology and the best-
practices of image reconstruction techniques point to the same
general pattern of practically measuring complexity in real-world
visual environmental information. Complex systems in reality tend
to be hierarchically constructed, and a convolutional neural net-
work would best capture the hierarchical structure of complex
systems in realistic environments.



3.3 Visual Complexity Measure
A convolutional auto-encoder[13] was chosen to best measure the
effective complexity of visual environmental information. This
architecture learns to compress visual data through a bottleneck
layer, and then reconstruct the image from only the compressed
information out of the bottleneck. It trains on minimising image
reconstruction inaccuracy. The bottleneck layer makes use of the in-
formation bottleneck principle[32] to learn amaximally compressed
program of matrix multiplication that describes the construction
of the system found in the visual data. Finding a maximally com-
pressed program describing the construction of the visual data is
what is required for both kolmogorov complexity and effective
complexity.

This approach then is the best means of approximating the lower
bound of the kolmogorov complexity of visual environmental in-
formation. It can also then be thought of as the best approach in
measuring the effective complexity of the visual data. An auto-
encoder has a finite bottleneck of only a certain number of latent
dimensions. Random noise cannot be effectively reconstructed with-
out maximal reconstruction inaccuracy. The information required
to reconstruct random noise cannot pass through a bottleneck layer
smaller in size than the visual data itself. By taking into account
the reconstruction accuracy of the data, random incompressible
noise can be excluded. A convolutional auto-encoder approach can
then be assured to be measuring only regularities in the data, as
effective complexity demands, and to not generate a high score for
incompressible random noise, like kolmogorov complexity would
provide. An auto-encoder approach then provides a practical means
of measuring effective complexity in visual environmental infor-
mation.

A measure of visual complexity that captures the hierarchical
nature of effective complexity in natural systems was designed
with a convolutional auto-encoder. The state-of-the-art variational
auto-encoder (VAE)[14] was the specific implementation chosen.
A Residual convolutional neural network (ResNet)[12] approach
was chosen for the convolutional portion of the VAE. A ResNet
can scale to 150+ layers. Otherwise convolutional networks are
typically limited to only a few layers. A ResNet-VAE with surplus
layers was desired to best capture the full hierarchy of regularities
likely to exist in the visual information of structures in the RL
environments. It was hoped a ResNet in the VAE would capture as
many levels of feature regularities in the hierarchy as possible.

A hyper-parameter search was conducted and 256 latent dimen-
sions in the VAE bottleneck layer were found to be the best balance
between reconstruction accuracy and compression. The ResNet-
VAE was trained for 2000 epochs, training on 320 images per epoch,
and validating on 32 per epoch.

The feature maps produced by the convolutional filters of each
layer in the encoder are considered to be describing the minimal
information required for reconstruction of the visual data under
maximal compression. The total entropy of these feature maps
was then considered to be giving an approximate measure of the
kolmogorov complexity of the visual data. It was further considered
to be an approximate measure of the effective complexity of non-
random regularities found in the visual data.

Figure 1: ResNet-VAE Decoder

Figure 2: ResNet-VAE Decoder

Visual complexity was then taken as the effective complexity of
the image normalised between the minimum value encountered so
far and the max possible value.

3.4 Visual Complexity Equation
𝑛∑︁
𝑖=1

(
𝑚∑︁
𝑗=1

(
𝑙∑︁

𝑘=1
𝐻 (𝑖, 𝑗, 𝑘))) = 𝑟𝑒 𝑓 𝑓 𝑒𝑐𝑡𝑖𝑣𝑒_𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦

(𝑟𝑒 𝑓 𝑓 𝑒𝑐𝑡𝑖𝑣𝑒_𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 − 𝑟𝑚𝑖𝑛_𝑒𝑛𝑐𝑜𝑢𝑛𝑡𝑒𝑟𝑒𝑑 )
(𝑟𝑚𝑎𝑥_𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 − 𝑟𝑚𝑖𝑛_𝑒𝑛𝑐𝑜𝑢𝑛𝑡𝑒𝑟𝑒𝑑 )

= 𝑟𝑣𝑖𝑠𝑢𝑎𝑙_𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦

where 𝑛 is the number of 512 ∗ 512 sub-images in an image,
𝑚 is the number of convolutional layers in the ResNet-VAE en-
coder, 𝑙 is the number of filters in each layer, 𝐻 () is the entropy
of a feature map, 𝑟𝑚𝑖𝑛_𝑒𝑛𝑐𝑜𝑢𝑛𝑡𝑒𝑟𝑒𝑑 is the minimum effective com-
plexity encountered, and 𝑟𝑚𝑎𝑥_𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 is the theoretical maximum
effective complexity possible.

3.5 Visual Entropy
Measuring visual entropy by comparison was a far simpler calcula-
tion. Visual entropy was simply calculated as the number of unique
values in an image.



4 TESTBED
The Tiberian Sun Grid World testbed has been created from Com-
mand and Conquer Tiberian Sun graphical assets and game values.
Tiberian Sun is a base-building Real-Time-Strategy game similar
to the state-of-the-art testbed StarCraft 2, but is less visually com-
plicated. It shares with it similar real-world thermodynamic con-
straints. The testbed simulates resource acquisition, investment
of resources into assets that present as visual information, and a
visualised loss of these assets through destruction by an enemy
adversary.

The testbed features a Battle Simulator and Image Generator. The
Battle Simulator uses game values from an open-source version of
Tiberian Sun running on the OpenRA engine. The game state after
each battle is visually represented by the Image Generator. After
each successful battle the Image Generator visualises advancement
across the terrain, acquisition of a terrain grid, and the construction
of assets on this grid. Assets previously constructed on a grid are
visually destroyed after a failed battle, simulating destruction by
the adversary. Together the Battle Simulator and Image Generator
form the Tiberian Sun Grid World testbed.

4.1 Image Generator
The Tiberian Sun GridWorld Image Generator uses graphical assets
sourced from an online fan site for the game. These graphical assets
exist as simple sprites and represent all units and structures in the
game from all possible angles. The Image Generator overlays them
on background terrain to generate images.

Figure 3: Advancement across terrain in Tiberian Sun Grid
World

The Image Generator places the units and structures in a prede-
fined expansion across the terrain of the grid world. Starting at the

top left corner there is an expansion of structures and units left to
right, and then top to bottom, across the terrain grid. The Tiberian
Sun Grid World testbed uses this in conjunction with the Battle
Simulator to visualise the advancement of an RL agent’s structures
and units across the grid world’s terrain.

The Image Generator visually represents the acquisition of in-
creasing numbers of contiguous terrain grids from successive victo-
ries in the Battle Simulator, and the conversion of terrain resources
into either units or structures. This visualisation of an increasingly
large and diverse area of units and structures across a previously
undeveloped terrain creates a visual complexification of the econ-
omy, potentially discernible by measures of visual entropy or visual
complexity applied to each successive image.

Conversely, the Image Generator visualises the loss of terrain
corresponding to defeats in the Battle Simulator through the de-
struction of the units and structures previously built upon the
foremost terrain grid. These contiguously lost terrain grids return
to empty undeveloped terrain after defeat in the Battle Simulator,
with the destruction of their contents. The loss of size and diversity
of units and structures in the previously growing area of contiguous
terrain grids is hoped to present as a loss of complexity of the RL
agent’s assets and economy in the environment. This loss is simi-
larly hoped to be discernible to a measure of visual entropy or visual
complexity applied to successive images showing the worsening
game state.

4.2 Battle Simulator
The Tiberian Sun Grid World has at its core a Battle Simulator that
simulates battles between a chosen friendly unit and a random
enemy unit. The values for cost, hit-points, armour type, weapon
damage and weapon reload delay were sourced from the open-
source version of Tiberian Sun running on the OpenRA engine.

The Battle Simulator determines if the friendly unit chosen by
the RL agent to face off against the visible enemy unit will beat it
in terms of cost-effectiveness, cost per unit time taken to destroy it.
The RL agent will advance across the terrain and acquire the next
grid of terrain resource if it is victorious. It will then automatically
use this terrain resource to construct units and structures on it,
complexifying its in-game economy. Conversely, failure to deploy
a friendly unit with superior cost-effectiveness to the enemy will
result in loss of a terrain grid, destruction of its constructed contents,
and a loss of complexity for the RL agent’s in-game economy.

4.3 Battle Simulator Equation
𝑎𝑐𝑜𝑠𝑡_𝑒 𝑓 𝑓 = 𝑏𝑐/((𝑏ℎ/(𝑎𝑤𝑑 ∗ 𝑎𝑣𝑏𝑎)) ∗ 𝑎𝑤𝑟𝑑 )
𝑏𝑐𝑜𝑠𝑡_𝑒 𝑓 𝑓 = 𝑎𝑐/((𝑎ℎ/(𝑏𝑤𝑑 ∗ 𝑏𝑣𝑏𝑎)) ∗ 𝑏𝑤𝑟𝑑 )

𝑖 𝑓 : 𝑎𝑐𝑜𝑠𝑡_𝑒 𝑓 𝑓 > 𝑏𝑐𝑜𝑠𝑡_𝑒 𝑓 𝑓 = 𝑎𝑣𝑖𝑐𝑡𝑜𝑟𝑦

𝑒𝑙𝑖 𝑓 : 𝑏𝑐𝑜𝑠𝑡_𝑒 𝑓 𝑓 > 𝑎𝑐𝑜𝑠𝑡_𝑒 𝑓 𝑓 = 𝑏𝑣𝑖𝑐𝑡𝑜𝑟𝑦

where 𝑎𝑐𝑜𝑠𝑡_𝑒 𝑓 𝑓 is friendly cost-effectiveness, 𝑏𝑐 is enemy unit
cost, 𝑏ℎ is enemy unit health, 𝑎𝑤𝑑 is the damage the friendly unit’s
weapon inflicts, 𝑎𝑣𝑏𝑎 is the modifier for the friendly unit’s weapon
against the enemy unit’s armour, and 𝑎𝑤𝑟𝑑 is the friendly unit’s
weapon reload delay.



5 EVALUATION
Reward signals generated from measures of visual complexity and
visual entropy were evaluated in the Tiberian Sun Grid World
testbed. A second evaluation in a modified testbed was also per-
formed. The Battle Simulator underlying the Tiberian Sun Grid
World was replaced by the classic benchmark Cartpole-v0. A sec-
ond MDP was sought due to concerns that Tiberian Sun unit values,
and their resulting battle successes, may be overly correlated with
the visual complexity of the sprites representing them.

5.1 Tiberian Sun Grid World
Reward signals Visual Complexity and Visual Entropy were tri-
aled in the Tiberian Sun Grid World battle simulator. They were
compared against Survival Signal and a Perfect Potential Function.

Survival Signal solely relies on a reward signal that only exists at
the end of an episode of learning. It exists to demonstrate the issues
of maximally sparse rewards, like the signals of victory or survival,
that are only encountered at the ends of episodes of learning.

Perfect Potential Function is a reward signal that exists consis-
tently after each battle and gives a perfect reward of +1 when a
battle is won, and -1 when a battle is lost. It received the Survival
Signal reward at the end also.

Visual Complexity and Visual Entropy both had to rely on purely
visual rewards from an image generated after each battle, until they
arrived at the end and received the numeric Survival Signal reward
also. They were trialed in learning episodes of different lengths.
Differing numbers of battles were required to be won in an episode
before the Survival Signal reward was received. Episodes containing
10 battles, 20 battles and 40 battles were trialed.

The RL Agent used with each reward signal was the Advantage
Actor Critic (A2C), a single threaded version of the Asynchronous
Advantage Actor Critic (A3C)[21]. An epsilon-greedy approach to
exploration was used during training, with randommoves decaying
with each training episode. The epsilon-decay curve governing this
exploration behaviour is found in the following graphs.

Each reward signal was trialed in a training session with a max
number of environmental actions. Failure to reach the end after a
certain number of steps caused the environment to reset. Testing
took place in a separate environment after a certain amount of
training time. The proportion of battles won in each test episode
was recorded, and a moving average of the last 15 such test episodes
was generated per training session. 250 training sessions were
repeated for each reward signal. The following graphs represent
the mean-average of the test data from 250 training sessions.

5.1.1 Visual Complexity in Tiberian Sun Grid World. We see Visual
Complexity tracks consistently with the Perfect Potential Function.
Similar to the Perfect Potential Function, it displays the desired
characteristic of faster learning with increasing episode length com-
pared with the use of Survival Signal alone. This demonstrates that
visual information of environmental state can be used to generate a
reward signal that increasingly outperforms Survival Signal under
increasing episode length.

5.1.2 Visual Entropy in Tiberian Sun Grid World. Visual Entropy
as a reward signal underperforms against Visual Complexity in
the Tiberian Sun Grid World. This is particularly apparent at 40

Figure 4: 10, 20 and 40 battles per episode in Tiberian Sun
Grid World

battles per episode, where it is noticeably slower at learning than
Visual Complexity. In the longest episode of learning it is clearly
intermediate in learning speed between Survival Signal and Visual
Complexity, suggesting Visual Complexity is the superior one in
longer episodes of learning.



5.2 Cartpole-v0 with Sparse Rewards
Cartpole-v0 is a classic RL benchmark where an RL agent must keep
a pole on a cart upright for as long as possible, receiving a numeric
+1 reward signal for every step upright. Cartpole’s numeric rewards
were mapped to the Tiberian Sun Grid World. Continued success
in Cartpole had its numeric reward taken and visually converted to
an advancement across the terrain of the Tiberian Sun Grid World,
and the conversion of terrain resource into Tiberian Sun units and
structures. This provided visual information of success in Cartpole
for a visual measure such as Visual Entropy or Visual Complexity
to detect and convert to reward.

Cartpole was run under similar parameters with the same reward
signals of Survival Signal, Perfect Potential Function, Visual Com-
plexity and Visual Entropy. Cumulative reward from an episode
was held until the end for Survival Signal. A mean-average of 250
training sessions was graphed on the following graphs.

5.2.1 Visual Complexity in Cartpole-v0 with Sparse Rewards. A
comparison between Survival Signal and Visual Complexity shows
an even more pronounced performance difference when the under-
lying MDP is from Cartpole-v0. The difference from 50 to 200-step
learning episodes is noticeable. Visual Complexity tracks closely
with Perfect Potential Function, both achieving a similar lead in
learning speed over Survival Signal alone. The underlying MDP
appears to make no difference. Increases in the visual complexity
of environmental information provides a similar reward to an ideal
potential function across both testbeds.

5.2.2 Visual Entropy in Cartpole-v0 with Sparse Rewards. Visual
Entropy clearly outperformed Survival Signal. It demonstrates im-
provements in learning speed over sparse rewards as episode length
increases.

In terms of how Visual Entropy compares against Visual Com-
plexity, with Cartpole we see a paradoxical contradictory result.
We see Visual Entropy clearly outperform Visual Complexity. This
contrasts with its underperformance against Visual Complexity in
the Tiberian Sun Grid World. This performance gulf increases as
episode length increases.

5.3 Analysis
In terms of reliability Visual Complexity appears to be most robust,
with low variance that consistently tracks with the perfect potential
function in both RL environments. Visual Entropy on the other
hand appears very temperamental, varying widely depending on
the underlying MDP of the RL environment.

A clue for explaining Visual Entropy’s out-performance of Vi-
sual Complexity in Cartpole is found in how it also over-performed
against an ideal potential function. Success against even the Perfect
Potential Function suggests that it was an improvement in explo-
ration that was helping it learn faster. More successful exploration
may be being helped by noise inherent in the Visual Entropy reward
signal. It appears to only help in simple MDPs like Cartpole, but
fails to do so in more complex MDPs like the Tiberian Sun Grid
World Battle Simulator. Visual Complexity then appears superior if
the exploration advantage of Visual Entropy in simple MDPs is not
desired. However, further testing in other testbeds is required for a
conclusive comparison against Visual Entropy.

Figure 5: 50, 100 and 200 steps per episode in Cartpole-v0
with Sparse Rewards



6 DISCUSSION
6.1 Related uses of complexity
Complexity as a heuristic has already found use in evolutionary
computation in the form of novelty search[15]. Through biasing
solutions towards complexity, it demonstrated faster learning of
high-fitness agent behaviour. The vast numbers of simplistic solu-
tions in the search space tended to collapse into a smaller number of
low complexity behaviours in the behaviour space, that were then
avoided[16]. Unfortunately novelty search relied on subjectively
chosen behavioural characteristics to measure complexity.

DIAYN went on to solve this issue for RL by providing an in-
formation theoretic basis for the selection of complex behaviour.
Through the maximisation of empowerment, a diverse set of the
most useful skills is learned for agent behaviour.

DIAYN, though, is constrained to learning complex behaviour
from only the action-space. It lacks the ability for a more holistic as-
sessment of complexity from the environment. Behavioural activity
outside of the action-space of the agent is not considered by agent
empowerment. In situations where an agent’s action-space merely
represents signals that trigger behaviour in the wider environ-
ment, DIAYN would not take into account the behavioural activity
of economic capital, or other agents or processes, responding to
these signals. DIAYN is also unable to incorporate information on
structural complexity in the environment. Conversely, visual infor-
mation holds promise for objectively measuring both structural and
behavioural complexity in an environment wider than the agent.

Tentatively, the results achieved so far demonstrate the value
of maximising the visual complexity of static structure in certain
environments. Currently though, this is useful only in thermody-
namically constrained environments, such as RTS base-building
games; Environments where resource gathering and material asset
accumulation is required. In these environments, material asset
accumulation presents as increases in the structural complexity of
visual environmental information. Maximisation of Visual Com-
plexity then provides a useful form of reward. But outside of these
environments mere maximisation of structural complexity would
not correlate with success. Other than RTS base-building games
and city-building games, there exist few RL environments where
increases in structural complexity across space correlate with re-
ward. Most RL environments tend to focus on simple motion, such
as robotics or the classic cartpole.

The measure of Visual Complexity proposed so far is currently
not a competitive alternative to DIAYN for speeding up learning
in general RL environments. At the moment it lacks an ability to
measure the complexity of behavioural activity across the temporal
dimension. Without this ability it is not applicable to classic RL
benchmarks. Although, given the initial success of this approach
with structural complexity across space, it is hoped to further de-
velop it to take into account behavioural complexity across time.

With the addition of behavioural complexity, Visual Complex-
ity holds promise for applicability to RL environments involving
robotics or general motion. Future work will focus on developing
Visual Complexity into a competitive alternative for general RL
environments. If successful, Visual Complexity holds promise to
provide a richer and more holistic heuristic for RL, with objective
rewards generated from visual environmental information alone.

7 CONCLUSION
The maximisation of visual complexity has been proposed as an
objectively shaped reward for RL. The use of visual information
in the measure offers a reward that is frequently available to an
agent, promising to offset learning delays associated with existing
objective rewards that are encountered sparsely in the environment.
Visual complexity also promises to be objectively sourced from
visuals alone, avoiding the problems associated with subjective
decisions involved in manual design of rewards.

A measure of visual complexity has been outlined in this paper
that relies on the structural complexity of visual environmental
information. The maximisation of visual structural complexity has
demonstrated significant performance gains over existing sparse en-
vironmental rewards like survival in the chosen testbed scenarios.
Furthermore, its performance tracks well with a potential func-
tion describing optimal asset accumulation in the economy of the
base-building themed testbed. However, the sole use of structural
complexity in the measure currently limits its use to domains where
thermodynamic constraints necessitate diverse asset accumulation.

Given this limitation, the current implementation of the visual
complexity measure renders it only appropriate for use in domains
where thermodynamic constraints predominate. A measure that in-
cludes the complexity of behavioural activity would be required for
generalisation to classic RL domains based on motion and robotics.

Future work hopes to take into account visual behavioural com-
plexity. Visual observation promises to offer a measure of an agent’s
behavioural complexity that avoids the self-centred perspective of
individual agent empowerment. Sourcing all necessary information
for a complexity measure from the observation-space, and not the
agent’s own action-space, would allow a more holistic measure
of complexity that takes into account the whole environment. If
successful, simple visual observations would provide a measure
encompassing the behavioural complexity of other agents, and all
other economic and ecological processes within the environment.
In tandem with the existing consideration of the structural com-
plexity of economic assets, visual complexity could then offer a
safer alternative to agent empowerment measures.

Unlike a self-centred machiavellian maximiser, visual complexity
could offer ameans of fundamentally considering and respecting the
complexity of all other structure and behaviour in the surrounding
environment. An agent equippedwith visual complexity as a reward
would be motivated to only further increase the complexity of
its environment. Ultimately, an AGI equipped with this holistic
perspective could help us avoid the horrors of a machiavellian
maximiser. Elon Musk could then sleep soundly, with the nightmare
of the Strawberry Picker itself put to bed.

ACKNOWLEDGMENTS
This publication has emanated from research supported in part by
a grant from Science Foundation Ireland under Grant number 16/
SPP/3296. For the purpose of Open Access, the author has applied a
CC-BY-NC public copyright licence to any Author Accepted Manu-
script version arising from this submission. This work is co-funded
by Origin Enterprises Plc.



REFERENCES
[1] Arthur Aubret, Laetitia Matignon, and Salima Hassas. 2019. A survey on intrinsic

motivation in reinforcement learning. arXiv preprint arXiv:1908.06976 (2019).
[2] Christopher Berner, Greg Brockman, Brooke Chan, Vicki Cheung, Przemysław

Dębiak, Christy Dennison, David Farhi, Quirin Fischer, Shariq Hashme, Chris
Hesse, et al. 2019. Dota 2 with large scale deep reinforcement learning. arXiv
preprint arXiv:1912.06680 (2019).

[3] Tim Brys, Anna Harutyunyan, Halit Bener Suay, Sonia Chernova, Matthew E Tay-
lor, and Ann Nowé. 2015. Reinforcement learning from demonstration through
shaping. In Twenty-fourth international joint conference on artificial intelligence.

[4] Yuri Burda, Harri Edwards, Deepak Pathak, Amos Storkey, Trevor Darrell, and
Alexei A Efros. 2018. Large-scale study of curiosity-driven learning. arXiv
preprint arXiv:1808.04355 (2018).

[5] Sam Michael Devlin. 2013. Potential-based reward shaping for knowledge-based,
multi-agent reinforcement learning. Ph.D. Dissertation. University of York.

[6] Sam Michael Devlin and Daniel Kudenko. 2012. Dynamic potential-based reward
shaping. In Proceedings of the 11th International Conference on Autonomous Agents
and Multiagent Systems. IFAAMAS, 433–440.

[7] Ben Dickson. [n.d.]. DeepMind scientists: Reinforcement learning is enough for
general AI. https://bdtechtalks.com/2021/06/07/deepmind-artificial-intelligence-
reward-maximization/

[8] Maureen Dowd. 2017. Elon Musk’s billion-dollar crusade to stop the AI apoc-
alypse. https://www.vanityfair.com/news/2017/03/elon-musk-billion-dollar-
crusade-to-stop-ai-space-x

[9] Benjamin Eysenbach, Abhishek Gupta, Julian Ibarz, and Sergey Levine. 2018.
Diversity is all you need: Learning skills without a reward function. arXiv preprint
arXiv:1802.06070 (2018).

[10] Murray Gell-Mann and Seth Lloyd. 1996. Information measures, effective com-
plexity, and total information. Complexity 2, 1 (1996), 44–52.

[11] Anna Harutyunyan, Sam Devlin, Peter Vrancx, and Ann Nowé. 2015. Expressing
arbitrary reward functions as potential-based advice. In Proceedings of the AAAI
Conference on Artificial Intelligence, Vol. 29.

[12] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual
learning for image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition. 770–778.

[13] Geoffrey E Hinton and Ruslan R Salakhutdinov. 2006. Reducing the dimensional-
ity of data with neural networks. science 313, 5786 (2006), 504–507.

[14] Diederik P Kingma and Max Welling. 2013. Auto-encoding variational bayes.
arXiv preprint arXiv:1312.6114 (2013).

[15] Joel Lehman and Kenneth O. Stanley. 2011. Abandoning Objectives: Evolution
Through the Search for Novelty Alone. Evolutionary Computation 19, 2 (2011),
189–223. https://doi.org/10.1162/EVCO_a_00025

[16] Joel Lehman, Kenneth O Stanley, et al. 2008. Exploiting open-endedness to solve
problems through the search for novelty.. In ALIFE. Citeseer, 329–336.

[17] Ming Li, Paul Vitányi, et al. 1997. An introduction to Kolmogorov complexity and
its applications. Springer.

[18] James W McAllister. 2003. Effective complexity as a measure of information
content. Philosophy of Science 70, 2 (2003), 302–307.

[19] Daniel W McShea. 2001. The hierarchical structure of organisms: a scale and
documentation of a trend in the maximum. Paleobiology 27, 2 (2001), 405–423.

[20] Daniel W.. McShea and Robert N Brandon. 2010. Biology’s first law: The tendency
for diversity and complexity to increase in evolutionary systems. University of
Chicago Press.

[21] Volodymyr Mnih, Adrià Puigdomènech Badia, Mehdi Mirza, Alex Graves, Timo-
thy P. Lillicrap, Tim Harley, David Silver, and Koray Kavukcuoglu. 2016. Asyn-
chronousMethods for Deep Reinforcement Learning. CoRR abs/1602.01783 (2016).
arXiv:1602.01783

[22] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis
Antonoglou, Daan Wierstra, and Martin Riedmiller. 2013. Playing atari with deep
reinforcement learning. arXiv preprint arXiv:1312.5602 (2013).

[23] Andrew Y Ng, Daishi Harada, and Stuart Russell. 1999. Policy invariance under
reward transformations: Theory and application to reward shaping. In ICML,
Vol. 99. 278–287.

[24] Scott Niekum, Lee Spector, and Andrew Barto. 2011. Evolution of reward func-
tions for reinforcement learning. In Proceedings of the 13th annual conference
companion on Genetic and evolutionary computation. 177–178.

[25] Howard T Odum. 2007. Environment, power, and society for the twenty-first
century: the hierarchy of energy. Columbia University Press.

[26] AI Open. 2018. AI and Compute. https://openai.com/blog/ai-and-compute/
[27] Jette Randløv and Preben Alstrøm. 1998. Learning to Drive a Bicycle Using

Reinforcement Learning and Shaping.. In ICML, Vol. 98. 463–471.
[28] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja

Huang, Arthur Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton,
et al. 2017. Mastering the game of go without human knowledge. nature 550,
7676 (2017), 354–359.

[29] David Silver, Satinder Singh, Doina Precup, and Richard S Sutton. 2021. Reward
is enough. Artificial Intelligence (2021), 103535.

[30] Herbert A. Simon. 1962. The Architecture of Complexity. Proceedings of the
American Philosophical Society 106, 6 (1962), 467–482.

[31] Tom Simonite. 2016. Moore’s Law Is Dead. Now What? https://www.
technologyreview.com/s/601441/moores-law-is-dead-now-what/

[32] Naftali Tishby and Noga Zaslavsky. 2015. Deep learning and the information
bottleneck principle. In 2015 IEEE Information Theory Workshop (ITW). IEEE, 1–5.

[33] Alexander Trott, Stephan Zheng, Caiming Xiong, and Richard Socher. 2019.
Keeping your distance: Solving sparse reward tasks using self-balancing shaped
rewards. In Advances in Neural Information Processing Systems. 10376–10386.

[34] Oriol Vinyals, Igor Babuschkin, Wojciech M Czarnecki, Michaël Mathieu, An-
drew Dudzik, Junyoung Chung, David H Choi, Richard Powell, Timo Ewalds,
Petko Georgiev, et al. 2019. Grandmaster level in StarCraft II using multi-agent
reinforcement learning. Nature 575, 7782 (2019), 350–354.

[35] Christian Wirth, Riad Akrour, Gerhard Neumann, and Johannes Fürnkranz. 2017.
A survey of preference-based reinforcement learning methods. The Journal of
Machine Learning Research 18, 1 (2017), 4945–4990.

[36] Haosheng Zou, Tongzheng Ren, Dong Yan, Hang Su, and Jun Zhu. 2019. Reward
shaping via meta-learning. arXiv preprint arXiv:1901.09330 (2019).

https://bdtechtalks.com/2021/06/07/deepmind-artificial-intelligence-reward-maximization/
https://bdtechtalks.com/2021/06/07/deepmind-artificial-intelligence-reward-maximization/
https://www.vanityfair.com/news/2017/03/elon-musk-billion-dollar-crusade-to-stop-ai-space-x
https://www.vanityfair.com/news/2017/03/elon-musk-billion-dollar-crusade-to-stop-ai-space-x
https://doi.org/10.1162/EVCO_a_00025
https://arxiv.org/abs/1602.01783
https://openai.com/blog/ai-and-compute/
https://www.technologyreview.com/s/601441/moores-law-is-dead-now-what/
https://www.technologyreview.com/s/601441/moores-law-is-dead-now-what/

	Abstract
	1 Introduction
	2 Background
	2.1 Subjective Reward Shaping
	2.2 Objective Reward Shaping

	3 Visual Environmental Rewards
	3.1 Thermodynamic Characteristics
	3.2 Visual Complexity
	3.3 Visual Complexity Measure
	3.4 Visual Complexity Equation
	3.5 Visual Entropy

	4 Testbed
	4.1 Image Generator
	4.2 Battle Simulator
	4.3 Battle Simulator Equation

	5 Evaluation
	5.1 Tiberian Sun Grid World
	5.2 Cartpole-v0 with Sparse Rewards
	5.3 Analysis

	6 Discussion
	6.1 Related uses of complexity

	7 Conclusion
	Acknowledgments
	References

