
Robust Ensemble Adversarial Model-Based Reinforcement
Learning

Daniele Foffano
TU Delft

Delft, Netherlands
D.Foffano@student.tudelft.nl

Jinke He
TU Delft

Delft, Netherlands
J.He-4@tudelft.nl

Frans A. Oliehoek
TU Delft

Delft, Netherlands
F.A.Oliehoek@tudelft.nl

ABSTRACT
Model-Based Reinforcement Learning (MBRL) algorithms solve se-
quential decision-making problems, usually formalized as Markov
Decision Processes, using a model of the environment dynamics
to compute the optimal policy. When dealing with complex envi-
ronments, the environment dynamics are frequently approximated
with function approximators (such as Neural Networks) that are not
guaranteed to converge to an optimal solution. As a consequence,
the planning process using samples generated by an imperfect
model is also not guaranteed to converge to the optimal policy. In
fact, the mismatch between source and target dynamics distribution
can result in compounding errors, leading to poor algorithm per-
formance during testing. To mitigate this, we combine the Robust
Markov Decision Processes (RMDPs) framework and an ensemble
of models to take into account the uncertainty in the approxima-
tion of the dynamics. With RMDPs, we can study the uncertainty
problem as a two-player stochastic game where Player 1 aims to
maximize the expected return and Player 2 wants to minimize it.
Using an ensemble of models, Player 2 can choose the worst model
to carry out the transitions when performing rollout for the policy
improvement. We present Robust Ensemble AdversariaL (REAL)
MBRL, an ensemble-based algorithm leveraging the use of an Ad-
versarial agent to compute a policy more robust to model errors. We
propose two adversarial approaches: one with a greedy adversary
and one with an 𝜖-random adversary. We experimentally show that
finding a maximin strategy for this two-player game results in a
policy robust to model errors leading to better performance when
compared to assuming the learned dynamics to be correct.1

KEYWORDS
Reinforcement Learning, Robust MDPs, Adversarial attacks

1 INTRODUCTION
In recent years, Deep Reinforcement Learning algorithms have seen
notable growth in the literature. These methods have accomplished
remarkable results in several fields, ranging from games [26, 38–40]
to robotics [17, 22, 23]. In the literature, we can observe two classes
of Deep RL methods: Model-Free and Model-Based. Model-Free
Reinforcement Learning (MFRL) algorithms learn policies by in-
teracting directly with the real world. Model-Based Reinforcement
Learning (MBRL)methods build an approximatemodel of the source
MDP dynamics2, learning the optimal policy using simulated data.
1The code is available at: https://github.com/danielefoffano/REAL-MBRL
2We will often use the terms "source MDP", "environment" and "real-world"
interchangeably.

Proc. of the Adaptive and Learning Agents Workshop (ALA 2022), Cruz, Hayes, da Silva,
Santos (eds.), May 9-10, 2022, Online, https://ala2022.github.io/ . 2022.

A well-established approach in MBRL is to implement Dyna-like
architectures [43], where the agent iteratively cycles between im-
proving the policy with artificial data and fitting the model to sam-
ples collected with the improved policy. MFRL methods have long
learning times [16] and, thus, require more environment samples
than Model-Based algorithms to learn the optimal policy. However,
the environment approximation in MBRL methods carries along
several challenges. In tabular methods like R-MAX [4], where the
agent optimistically explores the environment and adjust the ex-
pected value for each transition, we can guarantee the convergence
of the algorithm. When dealing with complex environments, the
dynamics model is often implemented using powerful function ap-
proximators, such as Neural Networks, that are not guaranteed to
converge to the correct probability distribution and the RL agents
might not converge to an optimal policy. While in offline RL the
fixed dataset might limit the learning of the environment dynamics,
leading to an overestimate of the value function [5, 35], in online
RL the overestimation of the value function could be caused by the
uncertainty of the estimates learned by the agent. In fact, despite
being able to visit every state of the domain infinitely often (ideally,
in complex domains this is unfeasible), the function approximators
might not have enough capacity to learn the true dynamics. This is
especially true in MBRL, where we aim to approximate the envi-
ronment transition and reward functions. Therefore, an optimistic
approach might fail due to the approximation errors introduced by
the estimated functions and a pessimistic one might lead to a more
robust policy: by retaining multiple estimates, we can maximize
the expected reward according to the worst one.

The mismatch between the approximated and real-world dy-
namics distribution might also lead to diverging model dynamics
[46] due to errors in the model predictions being propagated and
compounding along a trajectory, ending up in a state that hardly
resembles any state from the environment. Also, the algorithm
could mislead these differences in the distribution to retrieve high
rewards [3, 46] when planning in poorly approximated areas of the
domain: the algorithm will get higher values only in the simulated
environment, while in the real world they will obtain poorer results.

The source-target distribution mismatch is a well-known issue
in the RL literature. Recently, ensembles of models have been em-
ployed to learn policies more robust to approximation errors. Lever-
aging the model uncertainty using an ensemble of models reduces
dynamics overfitting, leading to a more robust policy [6, 24]. In
[33], the agent learns a robust policy by training on the trajecto-
ries producing the worst 𝜖 percentile of returns, generated by an
ensemble of source MDPs3. Ensembles have been employed also
to steer the agent exploration towards more uncertain areas of the

3Note that, in this case, the ensemble is made of source (not target) MDPs.

https://github.com/danielefoffano/REAL-MBRL
https://ala2022.github.io/

domain. In [37], the agent leverages the models’ disagreement to
compute exploration policies that each round will prefer to visit
unknown areas of the environment, reducing the uncertainty.

Adversarial methods have been used in Deep Learning litera-
ture to train robust classifiers [11]. Both in control and RL theory,
the robustness of the learned policy can be improved against an
adversary. Robust MDPs are a generalisation of the exact MDP
framework to a setting where transition probabilities are uncertain.
The idea is rooted in stochastic zero-sum games, where a player fac-
ing an adversary can compute a maximin strategy to maximize the
minimum gain [10, 13]. Using this game-theoretic formulation, [30]
uses minimax dynamic programming to solve MDPs with adversar-
ially chosen transitions. Robust Reinforcement Learning (RRL) was
introduced in [27], where input disturbance and modelling errors
are considered as adversarial perturbation and captured through
a Model-Free Actor-Disturber-Critic architecture. This approach
has been later extended in [31], using Deep Neural Networks as
function approximators. [34] propose a game theoretical framework
for MBRL between a policy player and a model player: the former
wants to maximize the rewards collected with the learned model,
while the latter aims to minimize the prediction error of the model
under the improved policy.

Based on the Robust MDPs framework, we propose Robust En-
semble AdversariaL (REAL) MBRL. We map the model uncertainty
problem as a two-player game, using an ensemble of models. One
player wants to maximize the expected reward while the other
wants to minimize it by choosing the worst possible model in the
ensemble. This way, the player maximizing the expected reward
will have to take into account the adversary actions by solving a
maximin optimization problem. This leads to a more robust pol-
icy when compared to assuming all transitions of the model to be
correct. Additionally, we study the effect of different 𝜖-greedy ad-
versaries on the resulting policy. We focus on the following research
questions:
• Is the resulting policy more robust to model errors?
• Is the adversary learning meaningful information?
• Is the adversary helping the policy to be more robust to
model errors, or are there other factors influencing the final
result?

2 BACKGROUND
We represent the environment as a Markov Decision Process [1].

Definition 1. A Markov Decision Process (MDP) 𝑀 is a 5-tuple
⟨𝑆,𝐴, 𝑃, 𝑅,𝛾⟩where S is the state space our agent can be into, A is the
set of actions our agent can perform in every state, 𝑃 : 𝑆 ×𝐴 × 𝑆 →
[0, 1] is the transition probability function, 𝑅 : 𝑆 → R is the reward
function and 𝛾 is the discount rate.

When interacting with the environment, at each time step 𝑡 =
0 . . .𝑇 the agent will be in a certain state 𝑠𝑡 and it will perform an
action𝑎𝑡 : as a consequence, it will retrieve the reward 𝑟𝑡 and the new
state 𝑠𝑡+1. Therefore, we think about the experience of the agent as
a sequence of interactions {(𝑠0, 𝑎0, 𝑟0), (𝑠1, 𝑎1, 𝑟1), . . . , (𝑠𝑇 , 𝑎𝑇 , 𝑟𝑇)},
called trajectory. The agent acts according to a policy 𝜋 : 𝑆 → 𝐴

which, depending on the current state, will compute which action
to perform.

Definition 2. We define the discounted return of the agent as the
discounted sum of the rewards obtained in a trajectory
{(𝑠0, 𝑎0, 𝑟0), (𝑠1, 𝑎1, 𝑟1), . . . , (𝑠𝑇 , 𝑎𝑇 , 𝑟𝑇)} under a policy 𝜋

𝐺𝑡 =

∞∑︁
𝑖=0

𝛾𝑖𝑟𝑡+𝑖+1 . (1)

Definition 3. The state-action value function 𝑞𝜋 : 𝑆 × 𝐴 → R
under a policy 𝜋 is defined as the expected return starting from a
state 𝑠 and taking action 𝑎 while following the policy 𝜋

𝑞𝜋 (𝑠, 𝑎) = 𝐸𝜋 [𝐺𝑡 |𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎] . (2)

Definition 4. The state-value function 𝑣𝜋 : 𝑆 → R under a policy
𝜋 is defined as the expected return starting from a state 𝑠 and
following the policy 𝜋

𝑣𝜋 (𝑠) = 𝐸𝜋 [𝐺𝑡 |𝑠𝑡 = 𝑠] . (3)

RL techniques aim to maximize the expected reward retrieved
by the agent under a policy 𝜋 . This can be achieved by computing
the optimal policy: the policy under which our agent will obtain
the highest cumulative reward.

Definition 5. We define the optimal policy 𝜋∗ as the policy that
maximizes the expected return

𝜋∗ = arg max
𝜋

𝑞𝜋 (𝑠, 𝑎), (4)

for all 𝑠 ∈ 𝑆 and 𝑎 ∈ 𝐴.
Equivalently,

𝜋∗ = arg max
𝜋

𝑣𝜋 (𝑠), (5)

for all 𝑠 ∈ 𝑆 .

Model-Based Reinforcement Learning. Model-Based RL al-
gorithms build a parameterized model𝑀𝜃 approximating the dy-
namics of the real environment𝑀 : 𝑅𝜃 and 𝑃𝜃 will respectively be
the reward and transition probability functions of 𝑀𝜃 . The main
advantage of this approach is that the model can be used to plan,
without requiring more samples from the real environment (which
might be difficult or expensive to get in some-real world scenarios):

Definition 6. We define planning as the improvement of the agent
behaviour (policy) by using experience sampled from a model of
the real environment.

Through an iterative sequence of exploration of the environment
and planning with the model fitted to the real experience, MBRL
algorithms improve both their model and policy [43]. A general
template for a MBRL algorithm is described in Algorithm 1 [46]:
the procedure UPDATEMODEL fits the parameterized model to the
data retrieved exploring the environment, while UPDATEPOLICY
procedure solves the given MDP.

However, model learning is not straightforward: usually, a ground-
truth model will not be available to estimate the real dynamics.
Thus, the learning agent will have to rely only on samples from the
environment. The model-based approach brings new challenges
to RL researchers: the most important is the mismatch between
source and target dynamics distribution. The algorithms can exploit
model inaccuracies (a phenomenon known as model exploitation),

computing a policy that performs incredibly well on the target
domain but sub-optimally (or even terribly) in the source domain.

Algorithm 1Model-Based Reinforcement Learning
1: Input: state sample procedure 𝑑
2: Input: model𝑚
3: Input: policy 𝜋
4: Input: environment 𝜀
5: Get initial state 𝑠 ← 𝜀

6: for iteration ∈ {1,2,...,𝐾 } do
7: for interaction ∈ {1,2,...,𝑁 } do
8: Generate action: 𝑎 ← 𝜋 (𝑠)
9: Generate reward, next state: 𝑟, 𝑠 ′ ← 𝜀 (𝑎)
10: 𝑚,𝑑 ← UPDATEMODEL(𝑠, 𝑎, 𝑟, 𝑠 ′)
11: Update current state: 𝑠 ← 𝑠 ′

12: end for
13: for planning step ∈ {1,2,...,𝐿} do
14: Generate state, action 𝑠, 𝑎 ← 𝑑

15: Generate reward, next state 𝑟, 𝑠 ′ ←𝑚(𝑠, 𝑎)
16: 𝜋 ← UPDATEPOLICY(𝑠, 𝑎, 𝑟, 𝑠 ′)
17: end for
18: end for

Robust Markov Decision Processes. An MDP formulation of
a Sequential Decision Making problem is convenient for several
reasons. Most importantly, it allows a tractable model for very com-
plex applications. Several algorithms have been proposed to solve
an MDP and compute an optimal policy [2, 7, 21, 25, 32, 36, 42, 48].
However, the transition probability function 𝑃 is unknown in many
applications and the algorithms compute the optimal policy relying
on a function estimated from noisy samples of the environment
dynamics. When generating a trajectory, since the function approx-
imation is not exact, the model can generate transitions that do not
exist in the environment leading to hallucinated states [44, 46]. In
turn, these non-existing states will be used as a starting point to
generate the subsequent transitions, compounding and misguiding
the whole trajectory.

Robust Markov Decision Processes (RMDPs) address the dynam-
ics uncertainty by following a robust optimization approach. The
uncertainty in the model transition probability 𝑃 is considered as
an adversarial selection from a convex set P, called uncertainty set.
The agent aims to maximize the worst-case expected reward, based
on the adversarial choice of 𝑃 ∈ P. Following this game-theoretical
approach the optimization problem in (5) can be redefined as

𝜋∗ = arg max
𝜋 ∈Π

min
𝑃 ∈P

𝑣𝜋,𝑃 (𝑠), (6)

where 𝑣𝜋,𝑃 (𝑠) is the state-value function under policy 𝜋 and
following transitions as specified by 𝑃 . The set of stationary Mar-
kovian Policies Π contains an optimal policy 𝜋∗. Uncertainty can
be defined in different ways, two examples from the literature are
(s,a)-rectangular and s-rectangular uncertainty sets.

Definition 7. We define (s,a)-rectangular uncertainty set as the
Cartesian product of independent subsets P(𝑠,𝑎) ⊆ R

|𝑆 |
+ for each

(𝑠, 𝑎) ∈ 𝑆 ×𝐴
P = ×

(𝑠,𝑎) ∈𝑆×𝐴
P(𝑠,𝑎) , (7)

where 𝑃 (·|𝑠, 𝑎) ∈ P(𝑠,𝑎) .

For (s,a)-rectangular uncertainty sets, an optimal robust policy
can be computed with value iteration and it exists an optimal policy
that is Markovian, stationary and deterministic [13, 30].

(s,a)-rectangular sets can be generalized to s-rectangular uncer-
tainty sets [9, 49], where the adversarial agent is able to see only
the state.

Definition 8. We define s-rectangular uncertainty set as the Carte-
sian product of independent subsets P𝑠 ⊆ R |𝑆 |+ for each 𝑠 ∈ 𝑆

P = ×
𝑠∈𝑆
P𝑠 (8)

With s-rectangular uncertainty sets, a robust optimal policy can
be computed and it exists an optimal policy that is Markovian and
stationary, but that is not guaranteed to be deterministic [49].

3 RELATEDWORK
The prediction accuracy of the model is of critical importance in
MBRL algorithms since planning relies on it. Using a model to
generate new data, through which it will be possible to plan fur-
ther without interacting with the environment, can be critical for
applications where there is limited data availability [23].

In the literature, we can observe two kinds of models that will
approximate the environment dynamics: non-parametric and para-
metric. The non-parametric approach has seen successful applica-
tions in low-dimensional environments with Gaussian Processes
(GP) [8, 12, 18–20, 29]. However, these models make assumptions
on the underlying system distribution that will reduce the accuracy
in complex domains. On the other hand, the parametric approach
has seen a wild growth in popularity in recent years thanks to the
constant improvements of functions approximators, such as Neural
Networks (NN) [6, 14, 15, 28, 45]. Parametric models have more
flexibility, allowing them to represent more complex functions,
while non-parametric models are more efficient when few data
samples are available. When using powerful approximators like
Neural Networks, however, there is no guarantee that the learned
transition function will converge to an optimal solution. Often,
MBRL algorithms must settle for a sub-optimal representation of
the environment dynamics, but a poor model may lead to faults in
planning or an overestimate of the expected reward that will, in
turn, compromise the accuracy of the policy computed by the algo-
rithm [3, 14, 24]. Algorithms like R-MAX [4] overcome this problem
by leveraging a tabular representation of the environment transi-
tions and optimistically exploring the state-action space, estimating
the probabilities similarly to Monte-Carlo methods. However, tab-
ular representations do not scale well to complex domains and it
would be unfeasible to use them in most real-world applications.

A first approach to improve the model accuracy is to choose
the appropriate exploration strategy: if the model lacks data to
compute a reliable estimate of the real dynamics, the algorithm will
take advantage of it during planning, converging to a policy that
is optimal for the model but inadequate to act in the environment.
[37] introduce Model-Based Active eXploration (MAX), an active

exploration algorithm that leverages on the models’ ensemble dis-
agreement (i.e., uncertainty) to compute exploration policies that
each round will visit unknown areas of the environment, solving
the disagreement.

Ensembles of models have been widely used in the recent lit-
erature to improve the approximation of the dynamics in MBRL
methods. In [6], the authors propose PETS, a MBRL architecture
combining particle-based propagation and ensembles of parametric
models to take into account the aleatoric (the variance of the data it-
self) and epistemic uncertainty (uncertainty of the dynamics model)
of the learned dynamics. [24] use model ensembles to prevent over-
fitting the model during planning: during policy validation, the
algorithm leverages the different models to evaluate the outcome
of the policy on a diversified set of futures.

Other approaches, closer to ourmethod, develop a game-theoretical
framework to compute more robust policies. In [41], the authors
propose a pessimism principle for offline RL, to maximize the ex-
pected reward according to the worst estimate of the value func-
tion. In [33], the authors propose EPOpt-𝜖 , an algorithm combining
model ensembles and adversarial training to learn policies robust
to model errors. In EPOpt-𝜖 , the model approximates a distribution
over the true environment parameters (e.g., mass, ground friction,
joint damping). This distribution is then used to sample multiple
instances of the environment (i.e., the ensemble): the policy will
be improved over the worst 𝜖 percentile of the rollouts performed
using the ensemble. While in this work the EPOpt-𝜖 agent acts pes-
simistically w.r.t. the distribution on the parameters that regulate
the environment physics, our REAL agent acts pessimistically w.r.t.
the estimate of the transition probability function. In [34], the au-
thors propose a Model-Based RL formulation of a two-player game.
More specifically, they cast the problem as a Stackelberg game [47]:
an asymmetric game where a specific order of the players is im-
posed. In this approach, the policy player wants to maximize the
expected reward within the current approximated model, while
the model player wants to minimize the prediction error under the
state distribution induced by the policy. A Model-Free approach is
followed by [31], where policy learning is formulated as a zero-sum
game between a protagonist player and an adversary: the adver-
sary corrupts the transitions experienced by the protagonist, trying
to minimize the expected reward, while the protagonist aims to
maximize the expected reward (as usual in RL settings) by learning
a policy robust to the adversarial inputs. Compared to the previous
literature, we also cast the MBRL problem as a two-player game,
following the Robust Markov Decision Processes (RMDPs) Frame-
work. Unlike previous methods, we leverage an actual second player
that, through its policy, adversarially picks the transitions at each
timestep 𝑡 by choosing the model of the ensemble that will carry
out the transition.

4 METHOD
In this sectionwe outline ourmethod, Robust Ensemble AdversariaL
(REAL) MBRL.

We approximate the environment dynamics with an ensemble
𝑀𝜓 composed of 𝑁 models (deep neural networks), thus 𝑀𝜓 =

{𝑀𝜓1 , . . . , 𝑀𝜓𝑁
}, parameterized by𝜓 = {𝜓1, . . . ,𝜓𝑁 }. We define a

(s,a)-rectangular uncertainty setM on the ensemble models such

that
M = ×

(𝑠,𝑎) ∈𝑆×𝐴
M(𝑠,𝑎) ,

whereM(𝑠,𝑎) ⊆ R𝑁+ .
We then consider two players:
• Player 1, following a policy 𝜋 , whose objective is to maximize
the expected return of the actions taken when interacting
with the environment

max
𝜋

𝑣𝜋 (𝑠), ∀𝑠 ∈ 𝑆,

where 𝑣𝜋 (𝑠) is defined as in 4.
• Player 2, whose objective is to minimize the expected return
for Player 1 by choosing the worst model to perform each
transition

min
𝑀 ∈M

𝑣𝜋,𝑀 (𝑠), ∀𝑠 ∈ 𝑆,

where 𝑣𝜋,𝑀 (𝑠) is equivalent to 𝑣𝜋 (𝑠) but the transitions are
carried out following the dynamics of model𝑀 . By defining
the policy for Player 2 as 𝜉 : 𝑆 × 𝐴 → M, we obtain the
equivalent formulation

min
𝜉𝜔

𝑣𝜋,𝜉 (𝑠), ∀𝑠 ∈ 𝑆,

where

𝑣𝜋,𝜉 (𝑠) = 𝑅(𝑠) + 𝛾
∑︁
𝑠′∈𝑆

𝑃𝜋,𝜉 (𝑠 ′ |𝑠)𝑉𝜋,𝜉 (𝑠 ′)

and

𝑃𝜋,𝜉 (𝑠 ′ |𝑠) =
∑︁
𝑎,𝑀

𝑃𝑎,𝑀 (𝑠 ′ |𝑠, 𝑎)𝑝𝜋,𝑠 (𝑎)𝑝𝜉,(𝑠,𝑎) (𝑀) .

𝑝𝜋,𝑠 (𝑎) and 𝑝𝜉,(𝑠,𝑎) (𝑀) are the probabilities of taking actions
𝑎 and𝑀 under policies 𝜋 and 𝜉 .

This leads to a two-player zero-sum game, where the adversary
(Player 2) selects the worst possible model in the ensemble. Player
1 can find an optimal policy by solving the following maximin
problem:

𝜋∗ (𝑠) = arg max
𝜋

min
𝜉
𝑣𝜋,𝜉 (𝑠) ∀𝑠 ∈ 𝑆. (9)

In practice, to solve the maximin problem, we implemented the
policies of both players as Deep Neural Networks 𝜋𝜃 : 𝑆 → 𝐴 and
𝜉𝜔 : 𝑆 ×𝐴→ {1, . . . , 𝑁 } parameterized by 𝜃 and 𝜔 . Our algorithm
iteratively repeats two steps in a Dyna-style fashion:

(1) Fitting the models in the ensemble to the samples collected
from the environment using policy 𝜋𝜃 , using the MSE loss
function.

(2) Improving the policies of Player 1 and 2.
The pseudocode is provided in Algorithm 2. The algorithm can

easily be adapted to work with s-rectangular uncertainty sets by
making the adversarial policy dependent only on the state 𝑠 (i.e.,
𝜉 : 𝑆 → M).

We also study the effects of an 𝜖-greedy adversary on the optimal
policy 𝜋∗

𝜃
, to encourage the exploration of more adversarial actions.

The 𝜖-greedy adversary will select a random action (i.e., a random
model index) to carry out the transition with probability 𝜖 . With
probability (1− 𝜖) the action will be chosen according to the adver-
sarial policy 𝜉𝜔 . The pseudocode for the 𝜖-greedy adversarial policy

Algorithm 2 Robust Ensemble AdversariaL (REAL) MBRL - Gen-
eral sketch
1: Input: Empty dataset buffer 𝐵
2: Input: Random policy 𝜋𝜃
3: Input: Initialized model parameters𝜓𝑖
4: for ensemble𝑀𝜓={𝑀𝜓1 , . . . , 𝑀𝜓𝑁

}
5: Input: Initialized adversary parameters 𝜔 for adversary 𝜉𝜔
6: Input: number of iterations 𝐾
7:
8: for k ∈ {0, ...,𝐾 } do
9: ⋄ Collect new observations from the environment
10: 𝐵 ← COLLECT(𝜋𝜃)
11: ⋄ Update models using the gathered samples
12: 𝜓𝑖 ← TRAIN_MODEL(𝑀𝜓𝑖

, 𝐵)
13: ⋄ Update the main and adversarial policies
14: 𝜋𝜃 , 𝜉𝜔 ← IMPROVE(𝜋𝜃 , 𝜉𝜔 , 𝑀𝜓)
15: end for

is given in Algorithm 3. Both the REAL and the vanilla (without
adversary) ensemble MBRL algorithm are specific instances of the
𝜖-greedy REAL, respectively with 𝜖 = 0 and 𝜖 = 1.

Algorithm 3 𝜖-greedy Adversarial policy 𝜉𝜖,𝜔
1: Input: 𝜖 s.t.: 0 ≤ 𝜖 ≤ 1
2: Input: Adversary policy 𝜉𝜔
3: Input: Current state 𝑠
4: Input: Action 𝑎 taken by Player 1
5: Input: Size of ensemble 𝑁
6:
7: Function 𝜉𝜖,𝜔 :
8: ⋄ Sample from uniform distribution
9: 𝑝 ← Unif(0, 1)
10: ⋄ Apply 𝜖-greedy policy
11: if 𝑝 < 𝜖 :
12: return Random(0, 𝑁 − 1)
13: else:
14: return 𝜉𝜔 (𝑠, 𝑎)

5 EXPERIMENTS AND RESULTS
In this section we empirically evaluate our method and discuss
the obtained results. Through our experiments, we want to show
that, by playing against an adversary choosing adversarial transi-
tions, the main player can compute a policy that is more robust
to model errors. We evaluate the behaviour of our agent on three
environments of the OpenAI Gym suite: Frozen Lake, Cartpole
and Pendulum. Frozen Lake is a grid-world environment where
the agent has to reach the goal tile from a starting point without
falling in holes spread across the field. In Cartpole, a pole is at-
tached to a joint on a cart: the agent must prevent the pole from
falling down by moving the cart along the track. Finally, in the
Pendulum environment the goal of the agent is to learn how to
keep a pendulum upright by applying the right amount of force on
the joint. As a baseline, we use the "vanilla Model-Based" version
of our algorithm (i.e., without the adversary). For the Frozen Lake

environment we used a probabilistic model, while for the Cartpole
and Pendulum environments the model was deterministic. As a
baseline we used a version of Algorithm 2 without the adversary,
where the model transitions are carried out using the average of
the ensemble outputs (i.e., 𝑠 ′ = 1

𝑁

∑𝑁
𝑖=1 𝑀𝜓𝑖

(𝑠, 𝑎)).

5.1 Frozen Lake
The Frozen Lake environment has discrete state and action spaces:
we chose to work on a 4x4 grid world, and the actions are Up, Down,
Right and Left. An illustration of the environment is provided in
Figure 1. The low dimensionality of the state-action space allows
us to examine more in detail the behaviour of our agent and to
zoom-in on the actual contribution of the adversary. This is why
we employ Q-Learning to improve the policies of the main player
and of the adversary: a tabular method gives us the chance to
easily visualise the values of each state-action pair and interpret
the decisions taken by the two players. First, we focus on what the
model and the adversary are learning. Figures 3a, 3b and 3c show
the transition probabilities predicted by the ensemble models when
the agent is in state 7 and takes action "Down", after gathering 900
samples from the environment. By comparing them with the true
probability, represented in Figure 3d, we can see that they are far
from correctly representing the correct transition. When examining
the Q-values learning from the adversary (Figure 3e), we observe
that at this stage it has learned that choosing model 0 leads to the
worst outcome for the main player. This choice can be intuitively
explained by looking at the single transition probabilities: model 0
is the one with the highest probability to send the agent into one
of the failure terminal states (hole on the ground on cell 6).

When examining the average return, we can see that all the
instances of REAL behave quite similarly. This is expected, since
the environment dynamics can be easily learned, with the mod-
els of the ensemble quickly converging to a good approximation.
The results are reported in Figure 2. A summary of the algorithm
hyperparameters is provided in Appendix A, in Table 1.

Figure 1: An illustration of the 4x4 map used in our experi-
ments with the Frozen Lake environment. The S represents
the starting point, while the G is the goal state. The black
tiles represent holes in the gridworld which will determine
the failure of the task for the agent. Tiles that are not black
are "frozen" tiles, on which the agent can safely step.

0 10 20 30 40 50 60 70 80 90
of samples (×10)

0.0

0.2

0.4

0.6

0.8

Av
er

ag
e

Re
tu

rn

MB Ensemble
MB Ensemble + Adversary (= 0)
MB Ensemble + Adversary (= 0.3)
MB Ensemble + Adversary (= 0.6)
MB Ensemble + Adversary (= 0.9)

Figure 2: Frozen Lake environment. Comparison of REAL
instances with 𝜖 ∈ {0, 0.3, 0.6, 0.9}. Bold lines represent the
average return over 10 runs, shaded areas evidence the per-
formance for one standard error over and below the average.

5.2 Cartpole
With the Cartpole environment, we want to test how our agent
performs with continuous observations. The action space is still dis-
crete, the agent can move the cart in the left or right direction. Since
the state space is continuous, we cannot rely on tabular planning
methods: we improve the two players’ policies through Proximal
Policy Optimization (PPO), a state-of-the-art policy gradient algo-
rithm. The algorithm is based on an actor-critic architecture to
compute an optimal policy: the critic (i.e., the value function) evalu-
ates the decisions made by the actor (i.e., the policy), which in turn
leverages this feedback to improve its behaviour. The adversary
agent is also trained using a policy gradient method called REIN-
FORCE, which computes Monte-Carlo estimates of the expected
return to update the policy parameters.While state-of-the-art imple-
mentations of PPO rely on multiple actors, collecting independent
samples from multiple instances of the environment, we imple-
mented a simpler version of PPO, using just one actor. This way,
we reduced the number of hyperparameters to fine-tune while still
being able to achieve an optimal behaviour. When performing roll-
outs with the ensemble of models, we use a fixed horizon length 𝐿.
This way, we reduce the impact of the compounding errors when
planning, but we also decrease the amount of states visited by the
actor. To overcome this limitation, with probability 𝛿 the rollout
will start from a state sampled from the buffer, and with probability
1 − 𝛿 from the environment starting state. This way, we can gather
samples from different areas of the domain, converging faster to
the optimal policy.

Results are presented in Figure 4a and a detailed illustration of
the algorithm hyperparameters is available in Appendix A, in Table
2. In figure 4b we compare REAL with 𝜖 = 0 to the Model-Based
baseline since it outperforms the other instances in the first few
iterations (and then converges to more or less the same value). We
can see that the adversarially trained agent heavily outperform the
ensemble-based algorithm, which results to be more vulnerable to
the models approximation mistakes.

0 10 20 30 40 50 60 70 80 90 100
of samples (×103)

0

100

200

300

400

Av
er

ag
e

Re
tu

rn

Model-Based + Adversary (= 0)
Model-Based + Adversary (= 0.3)
Model-Based + Adversary (= 0.6)
Model-Based + Adversary (= 0.9)

(a)

0 10 20 30 40 50 60 70 80 90 100
of samples (×103)

0

100

200

300

400

Av
er

ag
e

Re
tu

rn
Model-Based (Average)
Model-Based + Adversary (= 0)

(b)

Figure 4: Cartpole environment. Comparison of REAL in-
stances with 𝜖 ∈ {0, 0.3, 0.6, 0.9} (figure a) and comparison
between REAL with 𝜖 = 0 and the Model-Based baseline (fig-
ure b).

5.3 Pendulum
With the Pendulum environment, we extend REAL to environments
with continuous action spaces. As we did for the Cartpole envi-
ronment, we use PPO to improve the policies since it would be
unfeasible to use tabular planning methods. To evaluate the robust-
ness to model errors of our algorithm, we analyse the performance
of different instances of our agent and compare it with the plain
Model-Based approach, where the output of the model ensemble
𝑀𝜓 is the average of the outputs of each component𝑀𝜓𝑛

. We con-
sider instances of the REAL agent with an 𝜖 random adversary
where 𝜖 ∈ {0.3, 0.6, 0.9}. In figure 5a, we can see the average per-
formance of each agent over 10 different runs. Despite behaving
all very similarly, we observe that the agent playing against an
adversary with 𝜖 = 0 has an improved performance in the early
stages of the training process, later converging to the same per-
formance as the other agents. In figure 5b we compare the 𝜖 = 0
REAL agent with the Model-Based baseline. We can see that the
adversarial choice of the model enables for slightly more efficient
early planning. A summary of the algorithm hyperparameters is
provided in Appendix A, in Table 2.

0.000 0.000 0.000 0.001

0.000 0.006 0.977 0.002

0.001 0.001 0.000 0.009

0.004 0.000 0.001 0.000

0.0

0.2

0.4

0.6

0.8

(a) Output of model 0 (chosen by adversary)

0.000 0.000 0.000 0.011

0.000 0.000 0.967 0.022

0.000 0.000 0.000 0.000

0.000 0.000 0.000 0.000

0.0

0.2

0.4

0.6

0.8

(b) Output of model 1

0.000 0.000 0.000 0.019

0.000 0.000 0.910 0.001

0.001 0.000 0.000 0.069

0.000 0.000 0.000 0.000
0.2

0.4

0.6

0.8

(c) Output of model 2

0.000 0.000 0.000 0.000

0.000 0.000 0.200 0.200

0.000 0.000 0.000 0.600

0.000 0.000 0.000 0.000

0.0

0.1

0.2

0.3

0.4

0.5

0.6

(d) True transition probabilities

0.0200.98(s=7,a=Down)

Model 0 Model 1 Model 2

(e) Adversary (normalized) Q-values

Figure 3: True and predicted distributions 𝑝 (𝑠 ′ |𝑠 = 7, 𝑎 = ”Down”) according to each model in the ensemble and Q-values for the
adversarial agent, after collecting 900 samples from the environment. Note that environment state enumeration starts from 0.

0 10 20 30 40 50 60 70 80 90 100
of samples (×103)

1200

1000

800

600

400

200

Av
er

ag
e

Re
tu

rn

Model-Based + Adversary (= 0)
Model-Based + Adversary (= 0.3)
Model-Based + Adversary (= 0.6)
Model-Based + Adversary (= 0.9)

(a)

0 10 20 30 40 50 60 70 80 90 100
of samples (×103)

1200

1000

800

600

400

200

Av
er

ag
e

Re
tu

rn

Model-Based (Average)
Model-Based + Adversary (= 0)

(b)

Figure 5: Comparison of the instances of REAL with 𝜖 ∈
{0.3, 0.6, 0.9} in the Pendulum environment (figure a). We can
observe that for 𝜖 = 0, the agent learns more efficiently at
first and we compare it to the Model-Based baseline in figure
b.

6 CONCLUSIONS AND FUTUREWORK
With our work we present Robust Ensemble AdversariaL (REAL)
MBRL, an ensemble-based algorithm leveraging the use of an Ad-
versarial agent to compute a policy more robust to model errors. We
propose two adversarial approaches: one with a greedy adversary,
always exploiting what it has learned, and one with an 𝜖-random
adversary, exploring other actions with probability 𝜖 .

When using powerful function approximators to estimate the
environment dynamics, we are not guaranteed that the learned
transition probabilities will converge to the correct distribution and
therefore we cannot guarantee that the policy improvement will
converge to an optimal solution either. Through the Robust Markov
Decision Processes (RMDPs) framework, we cast the Model-Based
Reinforcement Learning problem as a two-player game where the
adversary can pick which model in the ensemble will carry out the
transition at time 𝑡 . The optimal policy will be the solution to the
resulting maximin optimization problem.

With our experiments, we empirically show that:
• The policy learned by the agent is more robust to the model
errors and can achieve a better return than the "single-player"
ensemble-based MBRL approach,
• The adversary is learning meaningful information about
which model can better interfere with the main player ob-
jective,
• The improvement over the single-player baseline depends
only on the presence of the adversary,
• Our approach can scale to continuous state-action spaces.

For future work, it would be interesting to study the performance
of our algorithm on more complex environments that can increase

the challenges for both the main and adversary player. Another
research direction would be studying ways to ensure that the net-
works in the ensemble of models have meaningful differences in
what they learn, to grant the adversarial agent more opportunities
to interfere with the learning process of the main player. Finally,
since we used deterministic models for the Cartpole and Pendulum
environments, future work could involve extending the algorithm
with probabilistic models (such as Gaussian MLPs).

REFERENCES
[1] John Hugh Andreae. 1966. Learning machines: a unified view. Standard Telecom-

munications Laboratories.
[2] D Berteskas. 1987. Dynamic programming: deterministic and stochastic models.
[3] Rinu Boney, Norman Di Palo, Mathias Berglund, Alexander Ilin, Juho Kannala,

Antti Rasmus, and Harri Valpola. 2019. Regularizing trajectory optimization with
denoising autoencoders. In Advances in Neural Information Processing Systems.
2859–2869.

[4] Ronen I Brafman and Moshe Tennenholtz. 2002. R-max-a general polynomial
time algorithm for near-optimal reinforcement learning. Journal of Machine
Learning Research 3, Oct (2002), 213–231.

[5] Jacob Buckman, Carles Gelada, and Marc G Bellemare. 2020. The importance of
pessimism in fixed-dataset policy optimization. arXiv preprint arXiv:2009.06799
(2020).

[6] Kurtland Chua, Roberto Calandra, Rowan McAllister, and Sergey Levine. 2018.
Deep reinforcement learning in a handful of trials using probabilistic dynamics
models. In Advances in Neural Information Processing Systems. 4754–4765.

[7] Rémi Coulom. 2006. Efficient selectivity and backup operators in Monte-Carlo
tree search. In International conference on computers and games. Springer, 72–83.

[8] Marc Peter Deisenroth, Dieter Fox, and Carl Edward Rasmussen. 2013. Gaussian
processes for data-efficient learning in robotics and control. IEEE transactions on
pattern analysis and machine intelligence 37, 2 (2013), 408–423.

[9] Larry G Epstein and Martin Schneider. 2003. Recursive multiple-priors. Journal
of Economic Theory 113, 1 (2003), 1–31.

[10] Robert Givan, Sonia Leach, and Thomas Dean. 2000. Bounded-parameter Markov
decision processes. Artificial Intelligence 122, 1-2 (2000), 71–109.

[11] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. 2014. Explaining and
harnessing adversarial examples. arXiv preprint arXiv:1412.6572 (2014).

[12] Alexandra Grancharova, Juš Kocijan, and Tor A Johansen. 2008. Explicit stochas-
tic predictive control of combustion plants based on Gaussian process models.
Automatica 44, 6 (2008), 1621–1631.

[13] Garud N Iyengar. 2005. Robust dynamic programming. Mathematics of Operations
Research 30, 2 (2005), 257–280.

[14] Taher Jafferjee, Ehsan Imani, Erin Talvitie, Martha White, and Micheal Bowling.
2020. Hallucinating Value: A Pitfall of Dyna-style Planning with Imperfect
Environment Models. arXiv preprint arXiv:2006.04363 (2020).

[15] Lukasz Kaiser, Mohammad Babaeizadeh, Piotr Milos, Blazej Osinski, Roy H
Campbell, Konrad Czechowski, Dumitru Erhan, Chelsea Finn, Piotr Kozakowski,
Sergey Levine, et al. 2019. Model-based reinforcement learning for Atari. arXiv
preprint arXiv:1903.00374 (2019).

[16] Sham Machandranath Kakade. 2003. On the sample complexity of reinforcement
learning. University of London, University College London (United Kingdom).

[17] Dmitry Kalashnikov, Alex Irpan, Peter Pastor, Julian Ibarz, Alexander Herzog, Eric
Jang, Deirdre Quillen, EthanHolly, Mrinal Kalakrishnan, Vincent Vanhoucke, et al.
2018. Scalable deep reinforcement learning for vision-based robotic manipulation.
In Conference on Robot Learning. PMLR, 651–673.

[18] Sanket Kamthe and Marc Deisenroth. 2018. Data-efficient reinforcement learn-
ing with probabilistic model predictive control. In International Conference on
Artificial Intelligence and Statistics. PMLR, 1701–1710.

[19] Jonathan Ko, Daniel J Klein, Dieter Fox, and Dirk Haehnel. 2007. Gaussian
processes and reinforcement learning for identification and control of an au-
tonomous blimp. In Proceedings 2007 ieee international conference on robotics and
automation. IEEE, 742–747.

[20] Juš Kocijan, Roderick Murray-Smith, Carl Edward Rasmussen, and Agathe Girard.
2004. Gaussian process model based predictive control. In Proceedings of the 2004
American control conference, Vol. 3. IEEE, 2214–2219.

[21] Levente Kocsis, Csaba Szepesvári, and Jan Willemson. 2006. Improved Monte-
Carlo search. Univ. Tartu, Estonia, Tech. Rep 1 (2006).

[22] Dmytro Korenkevych, A Rupam Mahmood, Gautham Vasan, and James Bergstra.
2019. Autoregressive policies for continuous control deep reinforcement learning.
arXiv preprint arXiv:1903.11524 (2019).

[23] Vikash Kumar, Emanuel Todorov, and Sergey Levine. 2016. Optimal control
with learned local models: Application to dexterous manipulation. In 2016 IEEE
International Conference on Robotics and Automation (ICRA). IEEE, 378–383.

[24] Thanard Kurutach, Ignasi Clavera, Yan Duan, Aviv Tamar, and Pieter Abbeel. 2018.
Model-ensemble trust-region policy optimization. arXiv preprint arXiv:1802.10592
(2018).

[25] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis
Antonoglou, Daan Wierstra, and Martin Riedmiller. 2013. Playing Atari with
deep reinforcement learning. arXiv preprint arXiv:1312.5602 (2013).

[26] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness,
Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg
Ostrovski, et al. 2015. Human-level control through deep reinforcement learning.
nature 518, 7540 (2015), 529–533.

[27] Jun Morimoto and Kenji Doya. 2005. Robust reinforcement learning. Neural
computation 17, 2 (2005), 335–359.

[28] Anusha Nagabandi, Gregory Kahn, Ronald S Fearing, and Sergey Levine. 2018.
Neural network dynamics for model-based deep reinforcement learning with
model-free fine-tuning. In 2018 IEEE International Conference on Robotics and
Automation (ICRA). IEEE, 7559–7566.

[29] Duy Nguyen-Tuong, Jan Peters, and Matthias Seeger. 2008. Local Gaussian
process regression for real time online model learning. Advances in neural
information processing systems 21 (2008), 1193–1200.

[30] Arnab Nilim and Laurent El Ghaoui. 2005. Robust control of Markov decision
processes with uncertain transition matrices. Operations Research 53, 5 (2005),
780–798.

[31] Lerrel Pinto, James Davidson, Rahul Sukthankar, and Abhinav Gupta. 2017. Ro-
bust adversarial reinforcement learning. In International Conference on Machine
Learning. PMLR, 2817–2826.

[32] Martin L Puterman and Moon Chirl Shin. 1978. Modified policy iteration algo-
rithms for discounted Markov decision problems. Management Science 24, 11
(1978), 1127–1137.

[33] Aravind Rajeswaran, Sarvjeet Ghotra, Balaraman Ravindran, and Sergey Levine.
2016. Epopt: Learning robust neural network policies using model ensembles.
arXiv preprint arXiv:1610.01283 (2016).

[34] Aravind Rajeswaran, Igor Mordatch, and Vikash Kumar. 2020. A game theoretic
framework for model based reinforcement learning. In International Conference
on Machine Learning. PMLR, 7953–7963.

[35] Paria Rashidinejad, Banghua Zhu, Cong Ma, Jiantao Jiao, and Stuart Russell.
2021. Bridging offline reinforcement learning and imitation learning: A tale of
pessimism. arXiv preprint arXiv:2103.12021 (2021).

[36] Gavin A Rummery and Mahesan Niranjan. 1994. On-line Q-learning using con-
nectionist systems. Vol. 37. University of Cambridge, Department of Engineering
Cambridge, UK.

[37] Pranav Shyam, Wojciech Jaśkowski, and Faustino Gomez. 2019. Model-based
active exploration. In International Conference on Machine Learning. PMLR, 5779–
5788.

[38] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George
Van Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershel-
vam, Marc Lanctot, et al. 2016. Mastering the game of Go with deep neural
networks and tree search. nature 529, 7587 (2016), 484–489.

[39] David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew
Lai, Arthur Guez, Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel,
et al. 2017. Mastering chess and shogi by self-play with a general reinforcement
learning algorithm. arXiv preprint arXiv:1712.01815 (2017).

[40] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja
Huang, Arthur Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton,
et al. 2017. Mastering the game of go without human knowledge. nature 550,
7676 (2017), 354–359.

[41] Jordi Smit, Canmanie T Ponnambalam, Matthijs TJ Spaan, and Frans A Oliehoek.
2021. PEBL: Pessimistic Ensembles for Offline Deep Reinforcement Learning.
In Robust and Reliable Autonomy in the Wild Workshop at the 30th International
Joint Conference of Artificial Intelligence.

[42] Richard S Sutton. 1988. Learning to predict by themethods of temporal differences.
Machine learning 3, 1 (1988), 9–44.

[43] Richard S Sutton. 1990. Integrated architectures for learning, planning, and
reacting based on approximating dynamic programming. In Machine learning
proceedings 1990. Elsevier, 216–224.

[44] Erik Talvitie. 2014. Model Regularization for Stable Sample Rollouts.. In UAI.
780–789.

[45] Elise van der Pol, Thomas Kipf, Frans A Oliehoek, and Max Welling. 2020.
Plannable approximations to MDP homomorphisms: Equivariance under actions.
arXiv preprint arXiv:2002.11963 (2020).

[46] Hado P Van Hasselt, Matteo Hessel, and John Aslanides. 2019. When to use
parametric models in reinforcement learning?. In Advances in Neural Information
Processing Systems. 14322–14333.

[47] Heinrich Von Stackelberg. 2010. Market structure and equilibrium. Springer
Science & Business Media.

[48] Christopher JCH Watkins and Peter Dayan. 1992. Q-learning. Machine learning
8, 3-4 (1992), 279–292.

[49] Wolfram Wiesemann, Daniel Kuhn, and Berç Rustem. 2013. Robust Markov
decision processes. Mathematics of Operations Research 38, 1 (2013), 153–183.

Appendix A
A.1 Algorithm hyperparameters
For completeness, we include the hyperparameters used in the experiments presented in section 5.

Parameter Value
Buffer size |𝐵 | 1000
environment samples per iteration 100
model samples per iteration 5000
Model rollout length 𝐿 min(100,TF)
Discount factor 𝛾 0.99
Ensemble size 𝑁 3
Learning rate 𝛼 0.1
Exploration probability 𝜖𝜋 0.1
Models layers 1x16
Starting state probability 𝛿 0.5

Table 1: Algorithm hyperparameters for the Frozen Lake environment. TF stands for Termination Function.

Parameter Value
Cartpole Pendulum

Buffer size |𝐵 | 1500
environment samples per iteration 1000

model samples per iteration 20000
Model rollout length 𝐿 min(300,TF) min(200,TF)

Discount factor 𝛾 0.99
Ensemble size 𝑁 3
Policy layers 3x32
Models layers 3x256

Reward net. layers 1x64
Critic layers 2x128

Adversary layers 2x32
Starting state probability 𝛿 0.5

Table 2: Algorithm hyperparameters for the Cartpole and Pendulum environments. TF stands for Termination Function.

	Abstract
	1 Introduction
	2 Background
	3 Related Work
	4 Method
	5 Experiments and Results
	5.1 Frozen Lake
	5.2 Cartpole
	5.3 Pendulum

	6 Conclusions and Future Work
	References
	Appendix A
	A.1 Algorithm hyperparameters

