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ABSTRACT

In sequential multi-objective decision making (MODeM) settings,
when the utility of a user is derived from a single execution of a
policy, policies for the expected scalarised returns (ESR) criterion
should be computed. In multi-objective settings, a user’s prefer-
ences over objectives, or utility function, may be unknown at the
time of planning. When the utility function of a user is unknown,
multi-policy methods are deployed to compute a set of optimal poli-
cies. However, the state-of-the-art sequential MODeM multi-policy
algorithms compute a set of optimal policies for the scalarised ex-
pected returns (SER) criterion. Algorithms that compute a set of
optimal policies for the SER criterion utilise expected value vectors
which cannot be used when optimising for the ESR criterion. We
propose a novel multi-policy multi-objective distributional value
iteration (MODVI) algorithm that replaces value vectors with dis-
tributions over the returns and computes a set of optimal policies
for the ESR criterion. MODVI is evaluated using several sequential
multi-objective problem domains, where, for each problem, a set of
optimal policies for the ESR criterion is computed.
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1 INTRODUCTION

When making decisions in the real world, trade-offs between mul-
tiple, often conflicting, objectives must be made [44]. In many real-
world decision making settings, a policy is only executed once. For
example, consider a government body planning to implement a tax
incentive on imported electric vehicles. The tax incentive would
increase sales of electric vehicles, reducing CO; emissions, how-
ever, it may cause the sales of domestically produced petrol/diesel
vehicles to plummet, resulting in local unemployment. The tax
incentive will only be implemented once and, therefore, the gov-
ernment body must carefully consider the effects and likelihood of
all potential outcomes. The current state-of-the-art multi-objective
decision making (MODeM) literature focuses almost exclusively on
computing polices that are optimal over multiple executions. There-
fore, to fully utilise MODeM in the real world, we must develop
algorithms to compute a policy, or set of policies, that are optimal
given the single-execution nature of the problem.

In MODeM, a policy, or set of policies, is computed to maximise
the user’s preferences over objectives, or utility function. However,
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the user’s utility function is often unknown at the time of planning
[37]. Therefore, we are deemed to be in the unknown utility function
scenario [22], where a set of optimal policies must be computed
and returned to the user. Once the user’s utility function becomes
known, the user can select a policy from the computed set of optimal
policies that best reflects their preferences [37].

MODeM distinguishes between two optimality criteria. In scenar-
ios where the utility of a user is derived from multiple executions
of a policy, the scalarised expected returns (SER) criterion should
be optimised [22]. In scenarios where the utility of a user is derived
from a single execution of a policy, the expected scalarised returns
(ESR) criterion should be optimised [19, 20]. The SER criterion is
the most commonly used optimality criterion in the sequential
multi-objective planning literature [38]. In contrast to the SER cri-
terion, the ESR criterion has been understudied by the single agent
MODeM community, with some exceptions [19, 20, 33, 36, 43].

The majority of multi-policy MODeM algorithms are designed to
compute a set of optimal policies for the SER criterion [11, 17, 49].
However, if the utility function of a user is non-linear, the policies
computed under the SER criterion and ESR criterion can be different,
given the SER criterion and ESR criterion utilise the utility function
differently [39]. Moreover, sub-optimal policies can be computed if
the choice of optimality criterion is not taken into consideration
when planning [24]. Therefore, new methods that can compute
policies for the ESR criterion must be developed.

The current state-of-the-art SER methods [30, 48] are fundamen-
tally incompatible with the ESR criterion. When the utility function
of a user is unknown, SER methods use expected value vectors to
compute a set of optimal policies [48, 49]. However, expected value
vectors cannot be used to compute policies under the ESR criterion
[33]. Instead, a distribution over the returns, or return distribution,
must be maintained to compute policies for the ESR criterion [23].

Given, in the real world, policies are often only executed once, a
user must have sufficient information about the potential positive
or negative outcomes a policy may have. Maintaining a distribution
over the returns for each computed policy ensures a user has suffi-
cient information to take the potential outcomes into consideration
at decision time [19, 20]. Utilising a distribution over the returns
ensures the ESR criterion can be considered in real-world decision
making scenarios.

In Section 3, we highlight why multi-policy methods for the SER
criterion cannot be used for the ESR criterion and show why main-
taining a distribution over the returns is necessary to compute a set
of optimal policies under the ESR criterion. In Section 4, we present
a novel multi-objective distributional value iteration (MODVI) algo-
rithm that computes a set of optimal policies for the ESR criterion
in scenarios when the utility function of a user is unknown at the
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Figure 1: The unknown utility function scenario [22].

time of planning. In Section 5, we show MODVI can compute a
set of optimal policies for the ESR criterion using two sequential
multi-objective benchmark problems, and show how these could be
visualised for a user. Finally, we show that MODVI can compute a
set of optimal policies for the ESR criterion in a practical real-world
problem domain.

2 BACKGROUND

In Section 2, we formally define multi-objective Markov decision
processes, the unknown utility function scenario, and commonly
studied optimality criteria in multi-objective decision making.

2.1 Multi-Objective Markov Decision Processes

A multi-objective Markov decision process (MOMDP) is a tuple,
M = (8, A,T,y,R), where S is the state space, A is the set of
actions, 7: S X A xS — [0,1] is the probabilistic transition
function, y is the discount factor, and R: & X A xS — R" is the
probabilistic vectorial reward function for each of the n objectives.
An agent acts according to a policy 7 : SXA — [0, 1]. Given a state,
actions are selected according to a certain probability distribution.

2.2 The Unknown Utility Function Scenario

In MODeM, a user’s preferences over objectives can be modelled
as a utility function [37]. However, a user’s utility function is often
unknown at the time of planning. In the taxonomy of MODeM, this
is known as the unknown utility function scenario, where a set of
optimal policies must be computed and returned to the user [37].
Figure 1 outlines the three phases in the unknown utility function
scenario: the planning phase, the selection phase, and the execution
phase [22]. During the planning phase a multi-policy algorithm
[41] is deployed to compute a set of policies that are optimal for all
possible utility functions [50]. The set of optimal policies is then
returned to the user. During the selection phase, the user selects a
policy from the computed set of optimal policies according to their
preferences. Finally, during the execution phase, the selected policy
is executed.

2.3 Optimality Criteria in Multi-Objective
Decision Making

When applying a user’s utility function, the MODeM literature
distinguishes between two optimality criteria. Calculating the ex-
pected value of the return of a policy before applying the utility
function leads to the scalarised expected returns (SER) optimisation

criterion:
>y n,uo]) : (1)
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In scenarios where the utility of a user is derived from the expected
outcome over multiple executions of a policy, the SER criterion
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should be optimised [22]. SER is the most commonly used criterion
in the multi-objective (single agent) planning literature [48, 49].
For SER, a set of non-dominated policies that are optimal for all
possible utility functions is known as a coverage set. Applying the
utility function to the returns and then calculating the expected
value leads to the ESR optimisation criterion:

u (Z y’rt) |, uo] : )

t=0
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u

In scenarios where the utility function of a user is derived from
single executions of a policy, the ESR criterion should be optimised
[22]. The ESR criterion is the most commonly used criterion in the
game theory literature on multi-objective games [32].

The current state-of-the-art multi-policy MODeM methods fo-
cus almost exclusively on the SER criterion [48, 49], leaving the
ESR criterion largely understudied [19, 20, 26]. Given that the SER
criterion and the ESR criterion utilise the utility function differently,
SER methods cannot be used to compute a set of optimal policies
for the ESR criterion. Additionally, a set of optimal policies under
the SER criterion can exclude policies that are optimal under the
ESR criterion [24]. In all decision-making problems where a policy
is only executed once, the ESR criterion must be utilised. As such
problems are salient [22], new methods to compute a set of optimal
policies for the ESR criterion must be developed to ensure optimal
decision making in the real world.

3 EXPECTED SCALARISED RETURNS WITH
UNKNOWN UTILITY FUNCTIONS

The choice of optimality criterion in MODeM has implications
for the policies computed. Recently, it has been shown if a user’s
utility function is non-linear, the policies computed under the SER
criterion and the ESR criterion can be different [39]!. Moreover, sets
of policies that are optimal under the SER criterion can potentially
exclude policies that are optimal under the ESR criterion [24]. If the
optimality criterion is not carefully chosen, one could potentially
exclude policies that could lead to a higher utility.

SER methods cannot be used to compute policies for the ESR
criterion. This is because SER methods determine optimality on
the basis of expected value vectors [53]; these are insufficient to
determine optimality in ESR settings as we demonstrate with the
example below. To highlight why different methods must be used,
consider the lotteries, L1 and Ly in Table 1. In this example the
utility function, u, is unknown. To determine which lottery to play
in Table 1 when optimising for the SER criterion, the expected value
vector for L1 and L must be computed first (see Equation 1):

E(L1) = 0.6((8,2)) +0.4((6,1)) = (4.8,1.2) + (2.4,0.4) = (7.2, 1.6)
u(E(L1)) = u((7.2,1.6))
E(Ly) = 0.9((5,1)) + 0.1((8,0)) = (4.5,0.9) + (0.8,0) = (5.3,0.9)
u(E(Lz)) =u((5.2,0.9))
Given that the utility function is unknown, Pareto dominance [31]

can be used to define a partial ordering over expected value vectors

Nt is important to note, if the utility function is linear, the distinction between SER
and ESR does not exist [23, 39]. Additionally, multi-policy approaches that compute a
set of optimal policies using linear scalarisation weights [5, 47], fail to locate policies
in non-convex regions of the Pareto front [45].
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Ly L,
P-R) | R P(I;=R) | R
0.6 (8, 2) 09 | (1)
0.4 6, 1) 01 | (0

Table 1: Lottery L; has two possible returns, (8, 2) with prob-
ability 0.6 and (6, 1) with probability 0.4. Lottery Ly has two
possible returns (5, 1) with probability 0.9 and (8, 0) with
probability 0.1.

for all monotonically increasing utility functions. For example,
methods like [48-50] compute a set of policies known as the Pareto
front, which are optimal under the SER criterion.

To determine which lottery to play while optimising for the
ESR criterion, the utility function must first be applied, then the
expected utility can be computed (see Equation 2):

u(Ly) = u((8,2)) +u((6,1))
E(u(L1)) = 0.6(u((8,2))) +0.4(u((6,1)))
u(Lz) = u((5,1)) +u((8,0))
E(u(Lz)) = 0.9(u((5,1))) +0.1(((8,0)))
Given the utility function is unknown, it impossible to compute the
expected utility. Moreover, a distribution over the returns received
from a policy execution must be maintained in order to optimise
for the ESR criterion. Maintaining a distribution over the returns
ensures the expected utility can be computed once the user’s utility
function becomes known during the selection phase. Therefore,
while computing a set of optimal policies under the ESR criterion,
a distribution over the returns must be maintained to determine
optimality.

Prior to this work, no algorithm existed to compute sets of opti-
mal policies in sequential settings for the ESR criterion when the
utility function is unknown. Therefore, new methods must be for-
mulated that compute a set of optimal policies for the ESR criterion
in sequential MODeM settings in the unknown utility function
scenario.

Recently, a new solution concept for ESR with unknown utility
functions, called the ESR set, was proposed by Hayes et al. [23, 24].
However, their work did not propose any algorithms to compute
ESR sets for sequential decision making problems. Hayes et al.
[23, 24] define a multi-objective return distribution, z”, which rep-
resents the distribution over returns for a policy, 7, such that,

o

t
2,V
t=0

A return distribution? is a distribution over the returns of a random
vector when a policy, 7, is executed [23].

Hayes et al. [23, 24] define ESR dominance, which gives a partial
ordering over return distributions, where each return distribution
is associated with a policy that could be executed. ESR dominance
builds on the principles of first-order stochastic dominance [6, 18]
in multivariate settings [4, 40]. Stochastic dominance gives a partial

Ez" =E

”,ﬂo} . 3)

2The term value distribution is used in [8, 23, 33]. However, a value distribution is a
distribution over the returns, not over values. Therefore, we prefer the term return
distribution.
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ordering over random variables and random vectors. Stochastic
dominance has been used in economics [12], finance [3, 7] and
game theory [15] to make decisions under uncertainty.

To calculate ESR dominance, the cumulative distribution func-
tion (CDF) of the given return distributions must be calculated.
For a return distribution z”, the CDF of z” is denoted by F,=. A
return distribution z” ESR dominates a return distribution z” if
the following is true:

z" >ESR JAR=N

Vv i Fpr (V) < F o (V) A3V 2 Fpr (V) < Fpr (v). @

Hayes et al. [23] prove if a return distribution z”” ESR dominates
a return distribution z” , z” has a higher expected utility than z"
for all strictly monotonically increasing utility functions, u.

7" >psp 2" = E(u(z")) > E(u(z")) (5)

Finally, Hayes et al. [23, 24] define a set of non-dominated return
distributions known as the ESR set, which is defined as follows:

ESR(IT) = {r € 11 | Ain’ € 11 : 2" >psg 2"} (6)

4 MULTI-OBJECTIVE DISTRIBUTIONAL
VALUE ITERATION

To compute a set of optimal policies for the ESR criterion when the
utility function of a user is unknown, we propose a novel multi-
objective distributional value iteration (MODVI) algorithm. MODVI
maintains sets of return distributions for each state and uses ESR
dominance [23] to compute a set of non-dominated return distribu-
tions, known as the ESR set.

The state-of-the-art multi-objective decision making (MODeM)
algorithms use expected value vectors to compute sets of optimal
policies [48-50]. However, expected value vectors can only be used
when optimising for the SER criterion. As previously highlighted,
to compute a set of optimal polices for the ESR criterion, expected
value vectors must be replaced with return distributions. Generally,
expected value MODeM algorithms utilise the Bellman operator
[9] to compute the expected value vectors for each state. Given
our approach is distributional, we adopt the distributional Bellman
operator [8], TD” , to update the return distribution for each state-
action pair:

T 2(s, a) D rsq+yz(s’,a’). (7)
To represent a return distribution in multi-objective settings, we
use a multivariate categorical distribution similar to the distribu-
tions used by Reymond et al. [33] and Bellemare et al. [8]. The
categorical distribution is paramaterised by a number of atoms,
N € N, where the distribution has a dimension per objective, n.
The atoms outline the width of each category and are bounded
by the minimum returns, R,in, and maximum returns, Ry,qx. The
multivariate categorical distribution has a set of atoms defined as
follows [33]:

{Zi...k = (Rming +ilzy,..., Rminn + kAZn) :

0<i<N,...,0<k <N}, ®)
where each objective, n, has a separate Ryin,» Rmax, for 0 <b < n

and Az = W The distribution is a set of discrete cate-
gories, N, where each category, p;, represents the probability of
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receiving a return [33]. To ensure the distribution is an accurate
representation of the returns of the execution of a policy, it is cru-
cial a number of atoms are selected to sufficiently cover the range
of values from Ryi, and Rpax. For example, if y = 1 and reward
values are expected to be integers in the range Ry, = [0,0] to
Rpmax = [1,10], N = 11 is the required value to ensure that the dis-
tribution is represented without aliasing between different reward
levels.

To update the multivariate categorical distribution, we utilise
the state space, action space and reward function of the model.
During an update of the multivariate categorical distribution, we
iterate over each atom, j, for each objective. To update the return
distribution, zg, for state s, we compute the distributional Bellman
update ‘7A'zs, j = Isay +YZy, j for each atom j, for a given reward
I'sq¢ and return distribution, zy, for state s’. We then distribute
the probability, p, for the atom, j, of the return distribution, p;(zs),
in state s’, to the corresponding atom of the updated return dis-
tribution, zs, for state s. Therefore, the return distribution, zs, for
state s is equivalent to the return distribution, zy, in state s’, shifted
relative to the reward, rg 4 ¢

At each iteration, k, of MODVI, for each state, s, and action, a, a
set of optimal return distributions is backed up once. In Equation
9, the Bellman operator has been replaced with the distributional
Bellman operator [8],

Qps1(5,0) = P T(s'1s, @) X505 +yZie ()] ©

where Qy, (s, a) and Zy (s”) represent sets of return distributions,
@ denotes the cross-sum between sets of return distributions, and
T(s’|s, a) represents the probability of transitioning to state s” from
state s after taking action a.

During a distributional Bellman backup, each return distribution,
Zy, in the set Zi (s”), is updated with the reward, rs 4 ¢, for action,
a, in state, s, as follows: {rsq¢ + yzy : Vzg € Zi(s")}. Each
updated return distribution in the set for state s” is then multiplied
by the transition probability, T(s’|s, a). The cross sum for each
resulting set of updated return distributions is computed for each
next possible next state, s”. The cross sum between two sets of return
distributions, X EB Y, is defined as follows: {x+y : x € XAy € Y},
where x and y are return distributions. For a detailed overview on
how a set of return distributions for an action in a MOMDP can be
computed, please consider the example outlined in Figure 2.

To compute a set of ESR non-dominated policies for each state,
we define an algorithm known as ESRPrune (Algorithm 1) which
computes a set of ESR non-dominated policies by removing ESR
dominated return distributions from a given set.

Zi,1(s) — ESRPrune (U Qpuy (s, a)) (10)

Equation 10 calculates the set of return distributions for a given
state, s, by taking the union of each set of return distributions
over each action, a. The resulting set of return distributions is then
passed to the ESRPrune algorithm as input.

ESRPrune utilises ESR dominance defined by Hayes et al. [23, 24]
(see Equation 4). Like Pareto dominance, ESR dominance is transi-
tive [52], therefore we can apply ESRPrune in sequence. To compute
ESR dominance, the cumulative distribution function (CDF) of each

Conor F. Hayes, Diederik M. Roijers, Enda Howley, and Patrick Mannion

X={x1,x2} Y={y;y,}
(a) An action, a, in a MOMDP with
stochastic state transitions. States s;
and s, have sets of non-dominated
return distributions X and Y. For ac-
tion g, transitioning from s, to s; oc-
curs with a probability of 0.9 and a
reward of [1, 0] is received. For action
a, transitioning from s, to s, occurs
with a probability of 0.1 and a reward
of [0,0] is received.

7w | ri|r2| P(ri,ra)
11 0.7
X1 M3 0.3
R ERE 0.5

3] 2 0.5
1o o7
Yi o2 o025
o1 0.9
Y2 30 0.1

(c) The reward, r, «, is used to
update each return distribution
for states s; and s;. For example,
X1 =14 +yXi. For this example
y=1

Z:{21 =)}1+§71,Z2 =)A(1+§72,
Z3=f(2 +§'1,Z4=f(2 +§'2}

(e) In Figure 2(e), a set of return distri-
butions, Z, is computed for state sy. The
cross sum, @, is utilised to sum all com-
binations of return distributions for the
previously updated sets. The set of re-
turn distributions at state sy, Z, is defined
as follows: Z = XPY = {k+y : % €
X Ay €Y}, where x and y are return dis-
tributions. Figure 2(e) describes the re-
sulting set of return distributions which
contains z1, zy, z3 and z4.

P(ry,r2)
0.7
0.3
0.5
0.5

0.75
0.25
0.9
Y2 0 0.1

(b) The return distributions
X1,Xp,y; and y, in the sets of
policies for s; and s;. To compute
a set of policies for state s), the
distributional Bellman operator
is utilised (Equation 9).

N
-
o,
-
[\

X1

X2

Y1

RN O|IN =

W o|o|m NN N O

7w | r|ra| P(ri,r)
o L[ 1] 06

3]0 027
o |2 1] o085

3] 2| 045
10 0075
Yi mo 2 0025
o 1] 009
Y2370 oo01

(d) Each return distribution for s;
and s; is then multiplied by the
transition probabilities, T (s’ |s, a).
For example, X1 = x; X T(s'|s, a).

P(r1,r2)
0.63
0.27
0.075
0.025
0.63
0.28
0.09
0.45
0.45
0.075
0.025
0.45
0.45
0.09

3 0 0.01
(f) Figure 2(f) outlines the set of
return distributions, Z at state s.
Z will be passed to the ESRPrune
algorithm.

N
~
.
~
[ V)

Z

Z2

z3

Z4

S| W WO R[W WO W= O] W=
RN R NN RRO=RNO| O -

Figure 2: A worked example outlining the necessary steps
to compute a set of return distributions for a MOMDP with

stochastic state transitions.
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return distribution in the given set must be calculated. ESRPrune
iterates over the given set of return distributions and compares the
CDFs of the return distributions to determine which are ESR non-
dominated. The return distributions that are ESR dominated are
removed from the set. A set of non-dominated return distributions
is known as the ESR set [23].

Algorithm 1: ESRPrune

1 Input: Z « A set of return distributions

2 Z¥ «— 0

3 while Z # 0 do

4 z < the first element of Z

5 forz’ € Z do

6 if z’ >ggg z then

7 ‘ z—17

8 end

9 end
10 Remove z and all return distributions
1 ESR-dominated by z from Z
12 Add z to Z*

13 end
14 Return Z*

To highlight how ESRPrune determines which return distribu-
tions are ESR non-dominated, consider the example outlined in
Figure 3(a), Figure 3(b) and Figure 4. To determine ESR dominance,
ESRPrune compares a return distribution X with a return distribu-
tion Y. The CDF for X is denoted by Fx (Figure 3(a)) and the CDF
for Y is denoted by Fy (Figure 3(b)). In order for X >gsr Y the
following condition must be true [23]:

Vv : Fx(v) < Fy(v) A 3v: Fx(v) < Fy(v).

Additionally, if X >gsg Y the following condition also must be
true:

Vv: Fx(v) = Fy(v) <0A3v: Fx(v) — Fy(v) <0.

probability
probability

(a) The CDF, Fx, of a return distri- (b) The CDF, Fy, of a return distribu-
tion Y. Y is a multivariate normal prob-
probability distribution, with a mean, ability distribution, with a mean, g,

bution X. X is a multivariate normal

4, and co-variance matrix, . For X, and co-variance matrix, =. For Y, u =

5 0.2 .15 0.
p=(12]andz= (o5 G5 ) [11]and %= ({02 0:02)-

Figure 3: The CDFs, Fx and Fy, of two return distributions, X
and Y.
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Fx - Fy

01

Figure 4: The difference in probability mass for Fx —Fy, which
is used to visualise the requirements for ESR dominance. A
dotted line (a) is drawn to highlight that Fx — Fy > 0 for least
at one point. Therefore, X does not ESR dominate Y.

Figure 4 highlights the difference in probability for Fx — Fy. The
dotted line in Figure 4, labelled (a), highlights that, for at least one
point, Fx — Fy > 0. Therefore, the return distribution X cannot ESR
dominate the return distribution Y.

Algorithm 2: MODVI

1 Initialise all return distributions and sets
2 while not converged do
3 fors € Sdo

4 fora e Ado
5 Qir1(s.a) «
Dy T(s'ls, @) [R(s,a,5") + yZi(s")]
6 end
7 Zy11(s) «— ESRPrune (Ug Qiyq(s.a))
8 end
9 end

Algorithm 2 describes the MODVI algorithm?. On initialisation
of MODV], a set of return distributions is generated for each state-
action pair. For infinite horizon settings, each set contains a single
return distribution that is randomly initialised, where an atom is
selected at random and a probability mass of 1.0 is assigned to
that atom. In finite horizon settings each return distribution is
initialised by assigning a probability mass of 1.0 to the atom which
corresponds to the return [0, 0]. During each iteration of MODVI,
a set of return distributions is computed (Algorithm 2, Line 5) for
each state, s and action, a. The union of the resulting sets of return
distributions is then passed to the ESRPrune algorithm to remove
the dominated return distributions. Once ESRPrune (Algorithm 2,
Line 7) has been executed for the given iteration of MODVI, a set
of non-dominated return distributions is backed up for the state s.
Once MODVI has converged, a set of ESR non-dominated policies,
or the ESR set, is available at the start state, sg.

3 Algorithm 2 describes MODVI for infinite horizon settings. However, it is trivial to
alter MODVI for finite horizon settings.
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5 EXPERIMENTS

In this section we show that MODVI can compute a set of optimal
policies for the ESR criterion for two multi-objective benchmark
problems and a practical multi-objective real-world problem.

5.1 Space Traders

First, we evaluate MODVI on a multi-objective benchmark problem
known as Space Traders [43]. Space Traders is a problem with
nine policies and a small number of returns per policy. Therefore,
it is possible to visualise each policy in the ESR set, illustrating
how policies can be returned to a user during the selection phase
in practice. Of course, for larger problems, the user could select
subsets of the policies to visualise and compare.

Space Traders has two timesteps, two non-terminal states and
three available actions per state. In Space Traders an agent must
deliver cargo from its home planet (planet A) to some destination
planet (planet B) and then return home to planet A. While deliv-
ering the cargo, the agent must avoid being intercepted by space
pirates. An agent acting in the Space Traders environment aims
to complete the mission and minimise time. An agent receives a
reward of 1 for returning home to planet A and completing the
mission, and at all other states the agent receives a reward of 0 for
mission success. After each action, the agent receives a negative
reward corresponding to the time taken to reach the next planet.
Finally, after taking each action there is a probability the agent will
be intercepted by space pirates. If the agent is intercepted by space
pirates, the agent will receive a reward of 0 for mission success, a
negative time penalty and the episode will terminate. All remain-
ing implementation details for the Space Traders environment are
available in the works of Vamplew et al. [42, 43].

MODVT has the following parameters: y = 1, N = 23, Ryin =
[0,-22] and Ryax = [1,0]. Figure 7(a) outlines the six return
distributions in the computed ESR set. Figure 5 plots the expected
value vectors of each return distribution in the ESR set and also plots
the expected value vectors for the Pareto front [43]. It is important
to note, the ESR set for Space Traders contains a policy that is not
present on the Pareto front. The Pareto front is a set of optimal
policies for the SER criterion. Therefore, certain policies that are
optimal under the ESR criterion are not optimal under the SER
criterion. In real-world decision making, incorrectly selecting an
optimality criterion can lead to sub-optimal performance, given
some optimal policies may not be returned to the user.

During the selection phase, visualisations, like Figure 5, are re-
turned to the user to aid in their decision making. However, in
Figure 5, the details of the return distributions for each policy in
the ESR set are lost. Computing expected value vectors for each
return distribution reduces the information available about a policy,
given the information about each individual return of a policy is no
longer available. As already highlighted, under the ESR criterion
the utility of a user is derived from a single execution of a policy.
Therefore, it is crucial a user has sufficient information available at
decision time, given a policy may only be executed once. Figure 6
visualises each potential return and the corresponding probability
of the return distributions in the ESR set. In Figure 6, each return
distribution has a shape, where the position of each shape corre-
sponds to a return and the colour of each shape corresponds to the
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Figure 5: The expected value vectors of the return distribu-
tions in the ESR set (red) are plotted against the expected
value vectors of the Pareto front (blue).
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Figure 6: The return distributions in the ESR set computed
by MODVI. Each shape corresponds to a computed policy in
the ESR set, where the location of the shape corresponds to a
return in the policy. Colours correspond to the probability
of receiving the specific return when executing the policy.

probability of receiving the return. In practice, a user would be able
to choose which return distributions in the ESR set to display at a
given moment, allowing the user to compare and contrast different
policies individually. Figure 6 provides an intuitive aid which can be
returned to a user when making decisions under the ESR criterion.

5.2 Resource Gathering

Next, we evaluate MODVI on the Resource Gathering benchmark
[5]. Resource Gathering is a multi-objective benchmark problem
with intuitive trade-offs between objectives, motivating the need to
consider the ESR criterion in real-world decision making. MOD VT is
evaluated on a four-objective version of Resource Gathering, where
time is added as an objective. The Resource Gathering environment
is shown in Figure 7(b). The agent starts in a home state and nav-
igates the grid environment to collect the available resources (R;
and Rp) while avoiding the enemy states (1 and t2) before return-
ing home again. At each timestep, the agent receives a reward of
[-1,0,0,0]. If the agent returns to the home state having gathered
the available resources, the agent receives one of the following
rewards: [—1, 0, 10, 0] for collecting Ry, [—1,0,0, 10] for collecting
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Figure 7: Figure 7(a), Figure 7(c) and Figure 7(d) show the
return distributions in the ESR set computed by the MODVI
algorithm for the Space Traders, Resource Gathering and
Control Problem. Figure 7(b) shows the grid layout for the
Resource Gathering environment.

Ry, and [—1, 0, 10, 10] for collecting Ry and Ry. The agent must avoid
the enemy states. If the agent enters an enemy state, there is a 0.1
chance the agent will be attacked. If the agent is attacked in an
enemy state, the agent receives a reward of [—10, —10, 0, 0]. In this
case, the agent also receives a time penalty for being attacked and
the episode terminates.

For Resource Gathering, the following parameters were set for
MODVIL: y = 1, N = 25, Ryin = [—24, —24, —14, —14] and Ryax =
[0,0, 10, 10]. Figure 7(c) outlines the return distribution in the ESR
set for Resource Gathering. The ESR set contains eight policies,
where each policy gathers one or both resources before returning
home. An important aspect of the distributional approach applied
by MODVT is that a user will have sufficient information about the
trade-offs between each objective for each policy in the ESR set. For
example, there is a clear trade-off between objectives in 73 and 76
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in Figure 7(c). When considering 3, fourteen timesteps are taken
to gather both resources and the agent enters one enemy state
with a 0.1 chance of being attacked. When considering g, twelve
timesteps are taken to gather both resources, but the agent must
enter both enemy states, which poses 0.09 chance and 0.1 chance
of being attacked. Using a distributional approach ensures a user
has sufficient information to understand the trade-offs between
objectives across different policies. In Resource Gathering a user
looking to minimise time, while also being indifferent about being
attacked, may select 7g having fully understood the probabilities
of being attacked. Therefore, having sufficient critical information
available at decision time enables the user to make more informed
decisions that could potentially better reflect their preferences over
objectives, when compared to expected value vector based methods.

5.3 Feedtank Control Problem

Finally, we evaluate MODVI on the risk-based Feedtank Control
Problem (FCP) proposed by Geibel and Wysotski [16], which is a
practical real-world problem domain that highlights how MODVI
and the ESR criterion can be applied. In FCP, the agent must control
the outflow of a tank that lies upstream of a distillation column,
while minimising the risk of the tank overflowing. The purpose
of the distillation column is to separate two substances. There are
a finite number of timesteps 0, ..., T, where ¢ denotes the current
timestep. The feed-stream of the distillation column, or outflow of
the tank, is denoted by F(t) and is controlled by the agent. The
tank level y(t) depends on the two stochastic inflow streams char-
acterized by the flow rates F (¢) and F2(t). The dynamics of the
tank level are outlined in the following equation:

y(t+1) =y(t)+A_l5(t)(Z Fj(t) = F(1)). (11)

j=1.2

The tank level must not violate the following constraint:

Ymin < y(t) < Ymax- (12)

The inflows F;(t) are random and controlled by probability dis-
tributions (Table 2). Therefore, the inflows may also cause the tank
level to violate the constraint in Equation 12. At each timestep
there is also a chance, p, that the inflows may randomly violate the
constraint in Equation 12. To take a random constraint violation
into consideration, the probabilities for each inflow in Table 2 must
be multiplied by 1 — p. If the tank level violates the constraint in
Equation 12, the system shuts down, the agent enters a terminal
state, and receives a reward of [-1, 0]. The agent takes an action,
a, to control the outflow of the tank. If the action does not cause
a violation of Equation 12, the agent receives a reward defined as
follows:

Tsqs = [0,—|F(t) - Fspec”, (13)
where F(t) is the discretised action value for the selected action
that adheres to Finin < F(t) < Fpax where Fpip and Fp,gy are
intervals for actions, and Fspec is the optimal action value. The
state parameters for the FCP are defined as follows:

s(t) = [£,y(0)]. (14)

Finally, the initial state, s¢, is defined as follows: [0, yo]. For the
version of FCP used in this paper there are 11 actions available to
the agent, with 8 timesteps.
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F P(Fy) F P(F)
1.70843345 | 0.78341724 || 1.85062176 | 0.21658276
1.40843345 | 0.40060469 || 1.55062176 | 0.59939531
0.56537807 | 0.83222158 0.70876186 | 0.16777842
0.37336325 | 0.81546855 0.50537012 | 0.18453145
0.11927879 | 0.41123876 0.31832656 | 0.58876124
0.02762233 | 0.7665067 0.20677226 | 0.2334933
0.45139631 | 0.62905513 || 0.59104772 | 0.37094487
1.10806585 | 0.04634063 1.20835887 | 0.95365937

Table 2: The inflows (Fy, F2) for the feedtank with the corre-
sponding probabilities (P(F;), P(F;)) for each timestep, ¢.

[N IR N RS BTN RIS I I

The following parameters were set for FCP: [Fin, Fmax] = [0.55,
1.05], Fspec = 0.8, 40 = 0.4, [Ymin, Ymax] = [0.25,0.75], A718(t) = 0.1
and p = 0.1. MODVI has the following parameters: y =1, N = 101,
Ruin = [-1,-3] and Ryax = [0, 0]. Figure 7(d) outlines the three
return distributions computed by MODVTI in the ESR set for FCP.
To provide an intuitive aid for decision making during the selection
phase, the policies in the ESR set can be visualised, like in Figure
6, and returned to the user. It is important to note that 1 and m
in the ESR set contain the same returns, although with different
probabilities. If the expected value vectors for 771 and 73 are returned
to a user, the user will lose all knowledge of how similar the returns
for 7y and my are. Therefore, taking a distributional approach can
aid in decision making, given a user has more information about the
individual returns of a policy. It is important to note, each return
distribution in Figure 7(d) could easily be interpreted by a domain
expert.

FCP is motivated by minimising risk as an important objective,
given violating certain constraints can shut down the distillation
process. Therefore, FCP should be optimised under the ESR crite-
rion, given a single execution of a policy is used to derive utility.
If the SER criterion is used as an optimality criterion, the average
risk over multiple policy executions would be computed. However,
making decisions based on average risk is not sufficient for FCP
given a single violation of the constraints could lead to a system
shutdown, resulting in loss of productivity and profits. Using a
distributional approach for FCP under the ESR criterion ensures
that a user has sufficient information about the probability of a
constraint violation to make decisions that mitigate such risks.

6 RELATED WORK

In recent years, using distributions in decision making has become
an active area of research for both single and multi-objective prob-
lem domains. For example, Martin et al. [28] use a single-objective
distributional C51 algorithm with stochastic dominance to make
risk-aware decisions. Abbas et al. [1] take a distributional approach
to multi-objective decision making to compute a set of optimal
policies for the SER criterion. It is important to note, taking a distri-
butional approach to decision making is not new and methods like
conditional value-at-risk (CVAR) [35] and value-at-risk (VAR) [14]
have been used extensively in finance [27, 34] to make decisions
under uncertainty. Beyond a distributional approach, many algo-
rithms can compute a set of optimal policies for the SER criterion.
For example, multi-objective Monte Carlo tree search [48], Pareto
value iteration [49], convex hull value iteration [5] and CON-MODP
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[50, 51]. In contrast to the SER criterion, the ESR criterion has been
largely understudied with some exceptions. Several single-policy
algorithms have been developed which can compute a single opti-
mal policy for the ESR criterion. However, the single-policy ESR
algorithms cannot compute sets of optimal policies for the ESR
criterion, which heavily restricts their use in real-world decision
making scenarios. Reymond et al. [33] define a multi-objective dis-
tributional actor critic algorithm that can compute optimal policies
for the ESR criterion. Roijers et al. [36] define a multi-objective
policy gradient that can compute a single optimal policy for the
ESR criterion. Hayes et al. [19, 20] outline a distributional Monte
Carlo tree search (DMCTS) algorithm to compute policies for the
ESR criterion. However, all of the highlighted methods require the
utility function of a user to be known a priori. For scenarios where
the utility function is unknown, Hayes et al. [23] outline a distribu-
tional algorithm that computes a set of policies for the ESR criterion
in a multi-objective multi-armed bandit [13] setting. However, the
work of Hayes et al. [23] is limited to bandit settings and cannot be
used for sequential decision making,.

7 CONCLUSION & FUTURE WORK

In this paper we propose a multi-objective distributional value iter-
ation (MODVI) algorithm that can compute a set of optimal policies
for the ESR criterion. MODVT utilises return distributions which
replace expected value vectors in multi-objective decision making.
MODVI is the first algorithm that can compute a set of optimal
policies under the ESR criterion in sequential multi-objective deci-
sion making settings. We show that MODVI can compute a set of
optimal policies for several multi-objective benchmark problems
and a practical real-world decision making problem. Because it is
the first of its kind, MODVI opens up decision-theoretic planning
for a key range of real-world problems.

We plan to use return distributions in multi-objective reinforce-
ment learning (RL) settings. Model-based RL algorithms, like R-max
[10], and model-free RL algorithms, like multi-objective Q-learning
[46], could form the basis for new multi-objective distributional al-
gorithms that can compute sets of policies for the ESR criterion. For
MODVI, when the range of potential returns increases, maintaining
a sufficient number of atoms for the return distribution requires
a large amount of memory. It is expected that in larger scenarios,
like [2], the range of possible potential returns would be difficult
to maintain using a categorical distribution. A potential solution
would be to use Dirichlet distributions [29] to represent return dis-
tributions. Finally, ESR dominance is a strict dominance criterion.
In many settings, ESR dominance may produce very large sets of
policies that would be optimal for all decision makers. It would be
possible to relax the ESR dominance requirements by using almost
stochastic dominance to generate smaller solution sets, where each
policy in the set is optimal for most decision makers [25].
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