
Training and Transferring Safe Policies
in Reinforcement Learning

Qisong Yang
∗

Delft University of Technology

Delft, The Netherlands

q.yang@tudelft.nl

Thiago D. Simão
∗

Radboud University

Nijmegen, The Netherlands

thiago.simao@ru.nl

Nils Jansen

Radboud University

Nijmegen, The Netherlands

nils.jansen@ru.nl

Simon H. Tindemans

Delft University of Technology

Delft, The Netherlands

s.h.tindemans@tudelft.nl

Matthijs T. J. Spaan

Delft University of Technology

Delft, The Netherlands

m.t.j.spaan@tudelft.nl

ABSTRACT

Safety is critical to broadening the application of reinforcement

learning (RL). Often, RL agents are trained in a controlled environ-

ment, such as a laboratory, before being deployed in the real world.

However, the target reward might be unknown prior to deploy-

ment. Reward-free RL addresses this problem by training an agent

without the reward to adapt quickly once the reward is revealed.

We consider the constrained reward-free setting, where an agent

(the guide) learns to explore safely without the reward signal. This

agent is trained in a controlled environment, which allows unsafe

interactions and still provides the safety signal. After the target task

is revealed, safety violations are not allowed anymore. Thus, the

guide is leveraged to compose a safe sampling policy. Drawing from

transfer learning, we also regularize a target policy (the student)

towards the guide while the student is unreliable and gradually

eliminate the influence from the guide as training progresses. The

empirical analysis shows that this method can achieve safe transfer

learning and helps the student solve the target task faster.

1 INTRODUCTION

Despite the numerous achievements of reinforcement learning [RL;

31, 41], safety still prevents the wide adoption of RL [8]. The lack of

knowledge about the environment forces standard agents to rely on

trial and error strategies. However, this approach is incompatible

with safety-critical scenarios [11]. For instance, while operating

a power network, an agent trying random actions could cause a

blackout, which is strictly unacceptable [28, 39].

Developments in safe RL have allowed learning policies that re-

spect safety constraints expressed by a constrainedMarkov decision

process [CMDP; 3]. For instance, SAC-Lagrangian [15] combines

the Soft Actor-Critic [SAC; 17, 18] algorithm with Lagrangian meth-

ods to learn a safe policy in an off-policy way. This method solves

high-dimensional problems achieving a sample complexity lower

than its on-policy counterparts. Unfortunately, it only finds a safe

policy at the end of the training process and may be unsafe while

learning.

Some knowledge about the safety dynamics can ensure safety

during learning. One can precompute unsafe behavior and mask

∗
Equal contribution.

Proc. of the Adaptive and Learning Agents Workshop (ALA 2022), Cruz, Hayes, da Silva,
Santos (eds.), May 9-10, 2022, Online, https://ala2022.github.io/ . 2022.

𝑠, 𝑐

𝑎

𝑠, 𝑟, 𝑐

𝜋𝑏
𝑎

𝜋♢
𝜋♢

source (controlled environment) target (real world)

𝜋♢ 𝜋⊙M♢ M⊙

transfer

distillation

composition

Figure 1: Transferring the Safe Guide (SaGui) policy 𝜋♢.

unsafe actions using a so-called shield [2, 22], or start from an

initially safe baseline policy and gradually improve its performance

while remaining safe [1, 45, 50]. However, this approachmay require

many interactions with the environment before it finds a reasonable

policy [53]. Moreover, reusing a pre-trained policy can be harmful

since the agent faces a new trajectory distribution as the policy

changes [20]. Therefore, we focus on how to efficiently solve a task
without violating the safety constraints.

This paper addresses this question drawing inspiration from

transfer learning [44], where some prior knowledge from a source

task speeds up learning on a target task. We propose to transfer a

policy, the safe guide (SaGui, Figure 1), from the source task (♢) to
the target task (⊙). This approach has three major steps: i) training
the SaGui policy and transferring it to the target task; ii) distilling
the guide’s policy into a student policy, and iii) composing a be-

havior policy that balances safe exploration (using the guide) and

exploitation (using the student).

To train the SaGui policy, we consider the reward-free con-

strained RL framework [30], where the agent only observes the cost

function, and it does not have access to the reward function. This

task-agnostic approach allows us to train a guide even when we do

not know the reward of the target task, and this guide can be useful

for different reward functions. Inspired by advances in robotics

where an agent is trained under strict supervision, we assume the

source task is a simulated/controlled environment [35, 48]. There-

fore, safety is not required while training the SaGui policy. Once

the target’s reward is revealed, the SaGui policy safely collects the

initial trajectories, and we start training the student’s policy. To

ensure the new policy quickly learns how to act safely, we also

employ a policy distillation method, encouraging the student to

imitate the SaGui policy.

The empirical analysis shows that this method almost completely

prevents the violation of the safety constraints on the target task.

https://ala2022.github.io/

It also shows the exploration benefits of SaGui, which allows the

agent to solve the target task faster than agents learning with a

naive guide.

2 BACKGROUND

In this section, we formalize the safe reinforcement learning prob-

lem and describe how it typically is solved.

2.1 Constrained Markov Decision Processes

We consider tasks formulated using a constrained Markov deci-

sion process[CMDP; 3, 6]. A CMDP is defined as a tuple M =

⟨S,A,P, 𝑟 , 𝑐, 𝑑,𝛾⟩: a state space S, an action spaceA, a probabilis-

tic transition function P : S × A → Dist (S), a reward function

𝑟 : S×A → [𝑟𝑚𝑖𝑛, 𝑟𝑚𝑎𝑥], a cost function 𝑐 : S×A → [𝑐𝑚𝑖𝑛, 𝑐𝑚𝑎𝑥],
a safety threshold 𝑑 ∈ R+, and a discount factor 𝛾 ∈ [0, 1). We also

consider an initial state distribution 𝜄 : S → [0, 1]. In a constrained
RL problem an agent interacts with a CMDP, without knowledge

about the transition, reward, and cost functions, generating a trajec-

tory 𝜏 = ⟨(𝑠0, 𝑎0, 𝑟0, 𝑐0, 𝑠 ′
0
), (𝑠1, 𝑎1, 𝑟1, 𝑐1, 𝑠 ′

1
), · · · ⟩. A trajectory starts

from 𝑠0 ∼ 𝜄 (·), then, at each timestep 𝑡 the agent is in a state 𝑠𝑡 ∈ S,
and takes an action 𝑎𝑡 ∈ A. Then, it gets a reward 𝑟𝑡 = 𝑟 (𝑠𝑡 , 𝑎𝑡), a
cost 𝑐𝑡 = 𝑐 (𝑠𝑡 , 𝑎𝑡), and steps into a successor state 𝑠 ′𝑡 ∼ P(· | 𝑠𝑡 , 𝑎𝑡).
This process repeats starting from 𝑠𝑡+1 = 𝑠 ′𝑡 , until some terminal

condition is met and a new trajectory starts. The goal of the agent is

to learn a policy 𝜋 that maximizes the expected discounted return

such that the expected discounted cost-return remains below the

given threshold:

max

𝜋
E

𝜏∼𝜌𝜋

[∞∑︁
𝑡=0

𝛾𝑡𝑟𝑡

]
s.t. E

𝜏∼𝜌𝜋

[∞∑︁
𝑡=0

𝛾𝑡𝑐𝑡

]
≤ 𝑑, (1)

where 𝜌𝜋 indicates the trajectory distribution induced by 𝑠0 ∼ 𝜄 (·),
𝑎𝑡 ∼ 𝜋 (·|𝑠𝑡), and 𝑠𝑡+1 ∼ P(·|𝑠𝑡 , 𝑎𝑡). We define the discounted return
starting from (𝑠, 𝑎) ∈ S × A and following 𝜋 as

𝑄𝑟
𝜋 (𝑠, 𝑎) = E

𝜏∼𝜌𝜋

[∞∑︁
𝑡=0

𝛾𝑡𝑟𝑡

�����𝑠0 = 𝑠, 𝑎0 = 𝑎

]
,

and, similarly, the discounted cost-return 𝑄𝑐
𝜋 (𝑠, 𝑎).

From the safe RL perspective, if a policy has an expected cost-

return lower than the safety-threshold 𝑑 , then this policy is con-

sidered safe. Therefore, the objective of a safe RL agent is to find a

policy among the safe policies that has the highest expected return.

2.2 Maximum Entropy Reinforcement Learning

A common strategy to improve the exploration and robustness of RL

agents is to favor policies that induce diverse behaviors [9, 56]. We

can incorporate it in the safe RL main objective by augmenting the

problem with a term that aims to maximize the policy entropy [16]:

max

𝜋
E

𝜏∼𝜌𝜋

[∞∑︁
𝑡=0

𝛾𝑡 (𝑟𝑡 + 𝛼H(𝜋 (· | 𝑠𝑡)))
]

s.t. E
𝜏∼𝜌𝜋

[∞∑︁
𝑡=0

𝛾𝑡𝑐𝑡

]
≤ 𝑑,

(2)

whereH(·) is the entropy of a distribution over a random variable

and 𝛼 is the entropy weight. In general, this objective encourages

the agent to use maximally stochastic policies.

An alternative to maximizing the entropy is to encourage the

policy to have at least a minimum entropy H [18, 49]. This is

achieved adding the following constraint to (1):

E
𝜏∼𝜌𝜋

[− log(𝜋 (𝑎𝑡 | 𝑠𝑡))] ≥ H : ∀𝑡, (3)

whereH is the given entropy threshold to ensure a minimum de-

gree of randomness. This approach allows the policy to converge

to a more deterministic behavior than (2). Besides, it only requires

the system’s designer to defineH and it lets the RL agent automat-

ically find a trade-off between the policy’s entropy and rewards.

Therefore, 𝛼 becomes an internal parameter of the RL algorithm.

Inspired by Savas et al. [34], we will use (2) to train the guide in

the source task with an auxiliary reward, so it achieves maximum

entropy while remaining safe. Then, we train a student on a target

task, optimizing (1) plus the constraint in (3), so it only needs to have

a minimum entropy. Before we formalize these tasks, we describe

the traditional way to solve these problems.

2.3 SAC-Lagrangian

In this section, we describe the SAC-Lagrangian [SAC-𝜆; 15] method

designed for the maximum entropy RL with constraints (2) and

(3). In general, SAC-𝜆 is a SAC-based method that has two critics

and uses adaptive safety weights to manage a trade-off between

reward and safety. The reward critic estimates the expected return,

possibly with an entropy to promote exploration, while the safety

critic estimates the cost-return to encourage safety.

In SAC-𝜆, the constrained optimization problem is solved by

Lagrangian methods [5], where an entropy weight 𝛼 and a safety

weight 𝛽 (Lagrange-multipliers) are introduced to the constrained

optimization:

max

𝜋
min

𝛼≥0
min

𝛽≥0
𝑓 (𝜋) − 𝛼𝑒 (𝜋) − 𝛽𝑔(𝜋), (4)

where

𝑓 (𝜋) = E
𝑠0∼𝜄 (·),𝑎0∼𝜋 (· |𝑠0)

[
𝑄𝑟
𝜋 (𝑠0, 𝑎0)

]
𝑒 (𝜋) = E

𝑠𝑡∼𝜌𝜋

[
log(𝜋 (· | 𝑠𝑡)) + H

]
, and

𝑔(𝜋) = E
𝑠0∼𝜄 (·),𝑎0∼𝜋 (· |𝑠0)

[
𝑄𝑐
𝜋 (𝑠0, 𝑎0) − 𝑑

]
.

In (4), the max-min optimization problem can be solved by gradient

ascent on 𝜋 , and descent on 𝛼 and 𝛽 .

Ha et al. [15] developed SAC-𝜆 for local constraints, whichmeans

that the safety cost is constrained at each timestep. However, it can

be easily generalized to constrain the expected cost-return
1
. In sum-

mary, the main components of the SAC-𝜆 are: i) the policy 𝜋 param-

eterized by 𝜃 ; ii) the safety and reward critics𝑄𝑐
and𝑄𝑟

(parameter-

ized by 𝜇 and𝜓 , respectively); and iii) the entropy and safetyweights
𝛼 and 𝛽 (parameterized by 𝜒𝛼 and 𝜒𝛽 , such that 𝛼 = softplus(𝜒𝛼)
and 𝛽 = softplus(𝜒𝛽), where softplus(𝑥) = log(exp(𝑥) + 1). We

provide a detailed description of how to learn each component

including the losses in Appendix A. Throughout the paper we rep-

resent learning rates with 𝜂, replay buffers with D and losses with

𝐽 . Notice that we only update 𝛼 when a desirableH is given. When

we are considering (2) we do not have aH , so 𝛼 is fixed.

1
A similar approach can be found at https://github.com/openai/safety-starter-agents.

https://github.com/openai/safety-starter-agents

cost-return

episode

safety threshold

Δ time to safety

safety

jump-start

learning from scratch

transfer

(a) Unsafe transfer.

cost-return

episode

safety threshold
Δ time to safety

learning from scratch

transfer

safety

jump-start

(b) Fully safe transfer.

guided

exploration

episode

Δ time to optimum

return

return

jump-start

optimal

performance

conservative

exploration

(c) Return transfer.

Figure 2: Transfer metrics for safe reinforcement learning.

3 SAFE AND EFFICIENT EXPLORATION

Naturally, to train reinforcement learning agents without violating

the safety constraints, some prior knowledge is required [40]. Often,

a safe initial policy is used to collect the initial trajectories [1, 45,

50]. However, these approaches often ignore how this policy is

computed or what makes it effective. Therefore, we will explicitly

consider how to obtain an initial safe policy and what makes it

effective for learning under safety constraints.

We consider two agents, a guide and a student, with different

responsibilities. The guide learns a policy to safely explore the

environment. The guide interacts with a simulator or a controlled

environment, therefore, it may violate the safety constraints while

learning. The student learns a safe policy for a specific task, however

it is not allowed to violate the safety constraints while learning

since it interacts directly with the real-world. Therefore, the student

may rely on the guide’s policy to learn safely.

We will formalize the interaction between the guide and the

student using the transfer learning (TL) framework. In general,

transfer learning allows RL agents to utilize external expertise

from other source tasks to benefit the learning process of the target
task [44, 55]. The source tasks {M♢} provide some prior knowledge

K♢ that is accessible by an agent learning the target taskM⊙ , such
that by leveraging the information from K♢, the agent learns the
target task faster. So, TL aims to learn an optimal policy 𝜋⊙ for the

target domain, by leveraging exterior information K♢ fromM♢ as
well as interior information K⊙ fromM⊙ . Notice that regular RL
is a special case with K♢ = ∅.

In this section we formalize the problem of interest, describe

the setting where it is applied, and specify how to evaluate the

solutions for this problem.

3.1 Problem Statement

We aim to maximize the safety jump-start (preventing
safety violation) and reduce the time to optimum (im-

proving exploration) when transferring the guide 𝜋♢

from a source taskM♢ to a target taskM⊙ where we

train the student 𝜋⊙ .

This setting has some particularities: i) the guide and the student
are trained separately; ii) the guide is only trained once and can

support the training of different students; and iii) the guide only
has access to information regarding safety and has no knowledge

about the student’s task.

3.2 Problem Setting

For our transfer setting, we consider a single source task that only

provides the safety signals, which we use to train the guide.Without

the reward signal, the guide aims to explore the world safely and

efficiently. We are interested in using the guide’s safe exploration

capabilities to train the student on the target task without violating

the safety constraints.

Given a source taskM♢ = ⟨S,A,P, ∅, 𝑐, 𝑑,𝛾⟩ we compute the

guide’s policy 𝜋♢ in the absence of a reward signal. This provides

prior knowledge K♢ = {𝜋♢} that is used to train a student 𝜋⊙ on

the target taskM⊙ = ⟨S⊙,A,P⊙, 𝑟⊙, 𝑐, 𝑑,𝛾⟩.
We assume the source taskM♢ is the result of applying a 𝑄𝑐

𝜋 -
irrelevant state abstraction Ξ : S⊙ → S in the target taskM⊙ [26].

Formally,Ξ(𝑠1) = Ξ(𝑠2) ⇒ 𝑄𝑐
𝜋 (𝑠1, 𝑎) = 𝑄𝑐

𝜋 (𝑠2, 𝑎),∀𝑠1, 𝑠2 ∈ S⊙,∀𝑎 ∈
A,∀𝜋, that is, if Ξ merges two states then their 𝑄𝑐

𝜋 values are the

same for all actions and all policies. Then, the source and target

tasks have the same action space, but different state spaces.

This assumption ensures the source task provides enough safety

information, such that any policy that is safe on the source task

is also safe when deployed on the target task [37]. Note however,

that the behavior required to accomplish the target task may not be

defined on the source task, since the reward in the target task 𝑟⊙ is

not related to the state space of the source task S♢. Consider, for
instance, an agent with access to its position and the position of

a threat. In each target task, the agent might have a different goal

position, which is not defined on the source task. In this example, a

safe policy may be conditioned only on the positions of the agent

and the threat, but to achieve the target the agent must take the

goal position into account.

3.3 Transfer Metrics

An under-explored aspect of safe transfer RL is the transfer metrics
in safety. Figure 2(a) presents a schematic of transfer metrics related

to safety [inspired by 44]: safety jump-start indicates how much

closer to the safety threshold the expected cost-return of an agent

trained using the source knowledge is compared to the expected

cost-return of an agent learning from scratch in the first episodes;

and Δ time to safety is the difference in the number of interactions

required to reach the safety threshold.

Notice that a trained agent might start with an expected cost-

return lower than the safety threshold, for instance, when the safety

threshold of the source task is lower than the safety threshold of

the target task (Figure 2(b)). In this case, safety jump-start would

be the difference between the safety threshold and the cost-return

of an agent learning from scratch. Similarly, the Δ time to safety
would be the number of interactions an agent learning from scratch

needs to satisfy the safety constraints.

Once we develop agents that learn without violating the safety

constraints, we can also consider the usual metrics of transfer learn-

ing with respect to the reward [44]. For instance, Figure 2(c) shows

the initial improvement in terms of performance which we call

return jump-start, and the time necessary to reach an optimum

performance, which we call the Δ time to optimum. We expect that

the guide will help the student explore the environment, which

can reduce the time to optimum. We stress that, in safety-critical

tasks, these metrics have lower precedence than the safety metrics,

so they can only compare agents that have no safety constraint

violations [33].

4 GUIDED SAFE EXPLORATION

In this section, we consider how to train the safe guide (SaGui) policy.
Then, we describe how the student learns to imitate the SaGui policy

after the task is revealed, while learning to complete the target task.

Finally, we investigate how to prevent safety violations while the

student has not yet learned how to act safely.

4.1 Training the Safe Guide (SaGui)

Since the source task does not provide information regarding the

reward of the target task, we adopt a reward-free exploration ap-

proach to train the guide. To efficiently explore the world, we first

consider to maximize the policy entropy under the safety con-

straints. Then, we can solve the problem defined in Equation 2

with 𝑟 (𝑠, 𝑎) = 0 : ∀𝑠 ∈ S, 𝑎 ∈ A to get a guideMaxEnt. However,

althoughMaxEnt tends to have diverse behaviors, that does not

imply efficient exploration of the environment. Especially for con-

tinuous state and action spaces, it is possible that a policy provides

limited exploration even if it has high entropy.

To enhance the exploration of the guide, we adopt an auxiliary

reward that motivates the agent to visit novel states. To measure

the difference between states, we first define the metric space (S, 𝛿),
where S is the state space, and 𝛿 : S × S → [0,∞) is a distance
function, that is

𝛿 (𝑠, 𝑠 ′) = 0⇔ 𝑠 = 𝑠 ′,

𝛿 (𝑠, 𝑠 ′) = 𝛿 (𝑠 ′, 𝑠), and
𝛿 (𝑠 ′, 𝑠 ′′) ≤ 𝛿 (𝑠, 𝑠 ′) + 𝛿 (𝑠, 𝑠 ′′), ∀𝑠, 𝑠 ′, 𝑠 ′′ ∈ S.

In practice, 𝛿 must be defined according to the observations of the

underlying environment. Next, we define the auxiliary rewards as

the expected distance from the current state and the successor state:

𝑟 ′𝑡 = E
𝑠′𝑡∼P(· |𝑠𝑡 ,𝑎𝑡)

[
𝛿 (𝑠𝑡 , 𝑠 ′𝑡)

]
, ∀𝑠𝑡 , 𝑎𝑡 ∈ S × A . (5)

So, we train the guide agent by solving the constraint optimiza-

tion problem (2) based on the auxiliary reward 𝑟 ′. Then, the SAC-𝜆
algorithm can be directly employed to solve the problem (2), as

Algorithm 1.

We could also consider more sophisticated reward-free explo-

ration strategies such as maximizing the the entropy of the state

occupancy distribution [19, 36, 43]. However, we leave it as future

Algorithm 1 Maximum exploration RL for safe guide

input TaskM♢
input Hyperparameters 𝛼 , 𝑑

1: initialize: 𝜃 ,𝜓 , 𝜇, 𝛽 , D ← ∅
2: for each iteration do

3: for each environment step do

4: 𝑎𝑡 ∼ 𝜋♢ (· | 𝑠𝑡)
5: 𝑠 ′𝑡 ∼ P(· | 𝑠𝑡 , 𝑎𝑡)
6: 𝑟𝑡 ← 𝛿 (𝑠𝑡 , 𝑠 ′𝑡) ⊲ Auxiliary task (5)

7: D ← D ∪ {(𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑐𝑡 , 𝑠′𝑡) } ⊲ Replay buffer
8: end for

9: for each gradient step do

10: Sample experience from replay buffer D
11: 𝜓 ← 𝜓 − 𝜂𝑅 ˆ∇𝜓 𝐽𝑅 (𝜓) ⊲ Reward critic

12: 𝜇 ← 𝜇 − 𝜂𝐶 ˆ∇𝜇 𝐽𝐶 (𝜇) ⊲ Safety critic
13: 𝜃 ← 𝜃 − 𝜂𝜋 ˆ∇𝜃 𝐽𝜋 (𝜃) ⊲ Actor
14: 𝜒𝛽 ← 𝜒𝛽 − 𝜂𝛽 ˆ∇𝜒𝛽 𝐽𝑠 (𝜒𝛽) ⊲ Safety weight
15: end for

16: end for

output Optimized parameters 𝜃 for 𝜋♢

work and focus on how to use the guide to improve how the student

learns.

4.2 Policy Distillation

When the agent is trained for a certain task, it is difficult to gener-

alize when faced with a new task [20]. Similarly, it is not trivial to

adjust the guide’s policy that was trained to explore the environ-

ment to perform the target task. Therefore, we train a new policy,

referred as the student, dedicated to the target task.

We can leverage the guide agent to make the student quickly

learn how to act safely. Through the mapping function Ξ, the trans-
ferred policy can be used by most constrained RL algorithms to

regularize the student policy 𝜋⊙ towards the guide policy 𝜋♢ using

KL divergences, as shown in Figure 3. So, with 𝜋♢ fixed, we have

an augmented reward function

𝑟 ′𝑡 = 𝑟⊙𝑡 + 𝜔𝑟
KL

𝑡 + 𝛼𝑟H𝑡 ,

where 𝑟KL𝑡 = log
𝜋♢ (𝑎𝑡 |Ξ(𝑠𝑡))
𝜋⊙ (𝑎𝑡 |𝑠𝑡) and 𝑟H𝑡 = − log𝜋⊙ (𝑎𝑡 | 𝑠𝑡). The

weights 𝜔 and 𝛼 indicate the strengths of the KL and entropy regu-

larization (respectively). Then, setting 𝑟♢𝑡 = log𝜋♢ (𝑎𝑡 | Ξ(𝑠𝑡)), we
can define the new objective to be maximized, i.e.,

max

𝜋⊙
E

𝜏∼𝜌𝜋⊙

∞∑︁
𝑡=0

𝛾𝑡
[
𝑟⊙𝑡 + 𝜔𝑟

♢
𝑡 + (𝛼 + 𝜔)𝑟

H
𝑡

]
. (6)

To find an appropriate 𝜔 , our goal is to follow the guide more

for safer exploration if the student’s policy is unsafe, but eliminate

the influence from the guide and focus more on the performance if

the student’s policy is safe. Therefore, we propose to set 𝜔 = 𝛽 to

determine the strength of the KL regularization since the adaptive

safety weight 𝛽 reflects the safety of the current policy.

In summary, we have an entropy regularized expected return

with redefined (regularized) reward

𝑟 ′′𝑡 = 𝑟⊙𝑡 + 𝛽𝑟
♢
𝑡 .

Student

Guide

𝑠♢

𝑠⊙ Ξ(𝑠⊙)

Observation Reward

𝑟⊙
𝑟⊙ + 𝜔𝑟KL

𝐷KL (𝜋♢ (·|𝑠♢) ∥𝜋⊙ (·|𝑠⊙))

Distillation Bonus

safety-related

safety-related

reward-related

𝜋⊙ (· | 𝑠⊙)

𝜋♢ (· | 𝑠♢)

𝑟KL

Figure 3: Overview of the policy distillation. The target policy 𝜋⊙ may have an input space different from the guide policy 𝜋♢.

This augmented reward encourages the student to yield actions

that are more likely to be generated by the guide. Then, SAC-𝜆 can

be directly used to solve (6) with the additional entropy constraint

(Algorithm 2, lines 13-20).

Notice that the second use of 𝛽 is fixed in the redefined reward

to avoid any superfluous influence on the variable 𝛽 , which is only

updated based on the safety of 𝜋⊙ . Finally, as the student becomes

safe, the influence of 𝛽 vanishes, so our method still solves the

original constrained optimization with 𝑟 ′′ = 𝑟⊙ .

4.3 Composite Sampling

To enhance safety and improve the student during training (Al-

gorithm 2, lines 3-12), we leverage a composite sampling strategy,

which means our behavior policy (𝜋𝑏) is a mixture of the guide’s

policy (𝜋♢) and the student’s policy (𝜋⊙). So, at each environment

step, 𝑎𝑡 ∼ 𝜋𝑏 (· | 𝑠𝑡), 𝑠𝑡 ∈ S⊙ where

𝜋𝑏 (· | 𝑠𝑡) =
{
𝜋♢ (· | Ξ(𝑠𝑡)), if 𝑏 = ♢,

𝜋⊙ (· | 𝑠𝑡), otherwise.
(7)

We investigate two strategies to define 𝑏 (Appendix B provides

more details):

Linear-decay. This strategy linearly decreases the probability

of using 𝜋♢ with a constant decay rate after each iteration of the

algorithm, conversely increasing the probability of using 𝜋⊙ . We

have two modes with linear-decay: step-wise, where in each time

step we may change 𝜋𝑏 ; and trajectory-wise, where 𝜋𝑏 only changes

at the start of a trajectory. The mode is decided before executing

an episode, and smoothly switches from the complete step-wise to
the complete trajectory-wise over the training process.

Control-switch. To generate more on-policy samples, this strat-

egy starts each episode sampling from the student (𝑏 = ⊙). When

a first positive cost is encountered (𝑐𝑡−1 > 0), it switches to the

guide’s policy (𝑏 = ♢) and follows it until the end of the trajectory.

Therefore, the guide policy serves as a rescue policy to improve

safety during sampling. In addition, we use two replay buffers D♢
and D⊙ to save the guide and student samples separately, so as

to better control the proportion of the different types of samples

when updating the target policy.

With the composite sampling strategy, the function approxima-

tion may diverge, because 𝜋⊙ and 𝜋𝑏 are too different, especially

when we collect most data following 𝜋♢. We refer to this phenom-

enon as the deadly triad [42]. To eliminate its negative effect, we

Algorithm 2 Guided Safe Exploration

input TaskM⊙ , the guide’s policy 𝜋♢

input HyperparametersH , and 𝑑

1: initialize 𝜃∗,𝜓∗, 𝜇∗, 𝛼∗, 𝛽∗, and D ← ∅
2: for each iteration do

3: for each environment step do

4: 𝑏 ← ♢ ∨ ⊙ ⊲ Choose behavior policy (Appendix B)
5: 𝑎𝑡 ∼ 𝜋𝑏 (· | 𝑠𝑡) ⊲ Composite sampling (7)

6: I𝑡 ← I(𝑠𝑡 , 𝑎𝑡) ⊲ IS ratio (8)
7: 𝑟𝑡 ← 𝑟⊙ (𝑠𝑡 , 𝑎𝑡)
8: 𝑟♢𝑡 ← log𝜋♢ (𝑎𝑡 | Ξ(𝑠𝑡))
9: 𝑠𝑡+1 ∼ P⊙ (· | 𝑠𝑡 , 𝑎𝑡)
10: 𝑐𝑡 ← 𝑐 (Ξ(𝑠𝑡), 𝑎𝑡)
11: D ← D ∪ {(𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑟♢𝑡 , 𝑐𝑡 , I𝑡 , 𝑠𝑡+1) }
12: end for

13: for each gradient step do

14: Sample experience from D
15: 𝜓∗ ← 𝜓∗ − 𝜂𝑅 ˆ∇𝜓 ∗I 𝐽𝑅 (𝜓∗) ⊲ Reward critic

16: 𝜇∗ ← 𝜇∗ − 𝜂𝐶 ˆ∇𝜇∗I 𝐽𝐶 (𝜇∗) ⊲ Safety critic
17: 𝜃∗ ← 𝜃∗ − 𝜂𝜋 ˆ∇𝜃∗I 𝐽𝜋 (𝜃∗) ⊲ Actor
18: 𝜒∗𝛼 ← 𝜒∗𝛼 − 𝜂𝛼 ˆ∇𝜒∗𝛼 𝐽𝑒 (𝜒

∗
𝛼) ⊲ Exploration weight

19: 𝜒∗
𝛽
← 𝜒∗

𝛽
− 𝜂𝛽 ˆ∇𝜒∗

𝛽
𝐽𝑠 (𝜒∗𝛽) ⊲ Safety weight

20: end for

21: end for

output Optimized parameters 𝜃∗ for 𝜋⊙

endow each sample with an importance sampling (IS) ratio:

I(𝑠, 𝑎) = min

(
max

(
𝜋⊙ (𝑎 | 𝑠)
𝜋𝑏 (𝑎 | 𝑠)

,I𝑙
)
,I𝑢

)
. (8)

The clipping hyper-parameters I𝑢 and I𝑙 are introduced to reduce

the variance of the off-policy TD target. Notice that if 𝜋𝑏 is using

the guide 𝜋⊙ then I(𝑠, 𝑎) = 1. Here, in addition to use the IS ratio I
for learning values (the critics), we also use it in the policy update,

as shown in lines 15-19 of Algorithm 2.

5 EMPIRICAL ANALYSIS

We evaluate how well our method transfers from the reward-free

setting using the SafetyGym engine [33], where a random-initialized

robot navigates in a 2D map to reach target positions while try-

ing to avoid dangerous areas and obstacles (Figure 4). These tasks

are particularly complex due to the observation space; instead of

(a) Static (b) Semi-Dynamic (c) Dynamic

Figure 4: Navigation tasks with different complexity levels.

Static Semi-Dynamic

MaxEnt SaGui MaxEnt SaGui

Figure 5: Exploration analysis. Trajectories collected by the

guide agent, with and without the distance bonus, after train-

ing.

observing its location, the agent observes the other objects with

a lidar sensor. We considered three environments with different

complexity levels:

Static. A static environment with a point robot, and a hazard

(Figure 4(a)). The locations of the hazard and goal are the

same in all episodes.

Semi-Dynamic. A semi-dynamic environment with a car ro-

bot, four hazards, and four vases (Figure 4(b)). The locations

of the hazards and vases are the same in all episodes. The

location of the goal is random-initialized in each episode.

Dynamic. A dynamic environment with a point robot, eight

hazards, and a vase (Figure 4(c)). The locations of the goal,

vase, and hazards are random-initialized in each episode.

The guide agent is trained without the goals, and its auxiliary

reward is the magnitude of displacement at each time step. Since

our focus is on the target task and the guide is trained in a con-

trolled environment, we do not consider the guide’s training in the

evaluation. In the target tasks, we use the original reward signal

from Safety Gym, i.e., the distance towards the goal plus a constant

for finishing the task [33]. In all environments: 𝑐 = 1, if an unsafe

interaction happens, and 𝑐 = 0, otherwise. All experiments are

performed over 10 runs with different random seeds and the plots

show the mean and standard deviation of all runs.

To evaluate the performance of the algorithms during training,

we use the following metrics: safety of the behavior policy (Cost-

Return 𝜋𝑏), performance of the behavior policy (Return 𝜋𝑏), safety

of the target policy (Cost-Return 𝜋⊙), and performance of the target

policy (Return 𝜋⊙). To check the convergence of the target policy,

we have a test process with 100 episodes after each epoch (in par-

allel to the training) to evaluate Return 𝜋⊙ and Cost-Return 𝜋⊙ .
Appendix C presents the evaluation of 𝜋⊙ and Appendix D reports

the hyperparameters used.

0.25 0.50 0.75 1.00 1.25
TotalEnvInteracts 1e6

0

10

20

30

40

Co
st

-R
et

ur
n
π b

FixReg
DecReg
MaxEnt
StuSam
GuiSam
SaGui (control-switch)

0.25 0.50 0.75 1.00 1.25
TotalEnvInteracts 1e6

0

1

2

3

Re
tu

rn
 π

b

Figure 6: Ablation study in Static showing the safety (left)

and performance (right) of the behavior policy. The black

dashed line indicates the safety threshold.

5.1 Ablation Study

We investigate each component of the proposed SaGui algorithm

individually to answer the following questions:

i) Does the distance bonus enlarge the exploration range?

ii) Does a better guide agent result in a better student in the target

task?

iii) How does the adaptive strength of the KL regularization affect

the performance?

iv) How does the composite sampling benefit the safe transfer

learning?

i) Distance bonus leads to more diverse trajectories. We performed

an ablation of our approach where no distance bonus is added while

training the guide agent, calledMaxEnt. We refer to the agent with

the distance bonus as SaGui. This teases apart the role the designed

auxiliary task plays in the exploration. In Figure 5, we can see that

SaGui can explore larger areas in Static and Semi-Dynamic, which
have the same layout in each episode. We notice that MaxEnt

is safe, but the explored space is limited. That is also the case in

Dynamic, as shown in the attached videos.

ii) An effective guide can speed up the student’s training. We com-

pare how these guides (MaxEnt and SaGui) affect the learning in

the target task. In Figures 6 and 8 (Appendix C), we notice that both

methods can collect samples safely but the agent using the distance

bonus finds highly performing policies within fewer interactions

with the environment.

iii) Safety-adaptive regularization improves the student’s conver-
gence rate. To combine the original reward with the bonus to follow

the guide (𝜔), we have the following choices: fix the weights of

the bonus and make it to be a hyperparameter to tune (FixReg);

apply a decay rate to linearly decrease the weights during training

(DecReg); and, adapt the weights of the bonus based on the safety

performance (SaGui). In Figure 6 we observe that this weight does

not affect the safety of the agent, but both FixReg andDecReg cause

the student to converge slower in terms of performance (Figure 8

in Appendix C).

iv) Composite sampling enhances safety and final performance.
We modify the composite sampling approach, sampling only from

the guide (GuiSam) or the student (StuSam) instead. From the

results in Figure 6, we can see that GuiSam can ensure safety,

but the student does not learn a safe optimal policy (Figure 8 in

Appendix C). Compared to our method, StuSam performs similarly

converging to a safe target policy, but fails to satisfy the constraint

0

100

200

300

Co
st

-R
et

ur
n
π b

CPO
CPO-PRE
SAC-λ
SAC-λ-PRE
SaGui (linear-decay)
SaGui (control-switch)

0.25 0.50 0.75 1.00 1.25
TotalEnvInteracts 1e6

−2

0

2

Re
tu

rn
 π

b

(a) Static

0

20

40

60

80

0.5 1.0 1.5 2.0 2.5
TotalEnvInteracts 1e6

−4

−2

0

2

(b) Semi-Dynamic

20

40

60

80

1 2 3 4
TotalEnvInteracts 1e6

0

10

20

30

(c) Dynamic

Figure 7: Evaluation of 𝜋𝑏 for CPO, CPO-pre, SAC-𝜆, SAC-𝜆-pre, SaGui (linear-decay), and SaGui (control-switch) over 10 seeds.

The black dashed lines indicate the safety thresholds.

at the early stage of training. So, composite sampling is necessary

to avoid the dangerous actions from a naive policy and to ensure

the target task is solved.

5.2 Comparison with Baselines

Finally, we compare our algorithms SaGui (control-switch) and

SaGui (linear-decay) with four baselines. SAC-𝜆 [15] shows the

performance when starting to learn from scratch, representing an

off-policy algorithm.CPO [1] is a well-known on-policy constrained

RL algorithm that maximizes the reward in a small neighbourhood

that enforces the constraints. CPO-pre and SAC-𝜆-pre are used to

show how CPO and SAC-𝜆 will perform after pre-trained in a task

that replaces the original reward function of the target task by the

distance bonus. So, we also encourage exploration in the task for

pre-training, which shares the same observation space with the

target task.

In Figures 7 and 9 (Appendix C), we observe that SaGui (control-

switch) is the only method that has a safe behavior during the

full training process. However, SaGui (linear-decay), which lacks

samples from 𝜋⊙ at the early stage of training, does not achieve

similar performance. From Figures 7(b) and 7(c), it is obvious that

linear-decay fails to compose 𝜋𝑏 in a safe way. SAC-𝜆 and CPO can

learn safe policies in the relatively simpler environments (Static
and Semi-Dynamic) but they violate the safety constraints at the

beginning of training, which is expected. In Dynamic, SAC-𝜆 and

CPO fail to attain safe performance. However, with benefits from the

guide, SaGui (control-switch), on the basis of SAC-𝜆, attains a better
balance between safety and performance. With pre-training, a safe

initialization cannot benefit CPO-pre and SAC-𝜆-pre in safety, and

may have negative effects. We infer that it is difficult to generalize

a task when faced with a new reward signal [20]. Especially for

SAC-𝜆-pre with an initialized 𝑄𝑟
, the difficulty to adapt is evident.

6 RELATEDWORK AND FUTURE

DIRECTIONS

As we discussed in the introduction, safe RL has multiple facets [11],

considering alternative optimization criteria [7, 49], and different

types of prior knowledge to ensure safe exploration [1, 2, 22, 40, 51].

We will discuss alternatives to train the guide and how to adapt to

new tasks using a pre-trained policy.

Yang et al. [51] proposed an on-policy framework to guide learn-

ing by different baseline policies often dedicated to the target task.

But our framework can leverage the safe off-policy samples from

the guide that is unaware of the target task.

Multiple algorithms have been proposed for generalising policies

from reward-free RL for better performance in target tasks [13,

38, 54]. However, only Miryoosefi and Jin [30], Savas et al. [34]

have considered the reward-free RL with constraints, focusing on

tabular and linear settings, while we consider general function

approximation algorithms.

While we considered a relatively simple strategy to achieve rich

exploration, our framework allows any progress in reward-free RL

to be translated into training the guide agent. For instance, we could
adopt works with the entropy of the state density [19, 21, 24, 32, 36,

43, 47, 54]. Another option to improve exploration is to find a set of

diverse policies to the same problem [12, 23, 52]. Our framework

could easily combine multiple guides.

Work in transfer learning has leveraged meta-RL [10] for safe

adaptation [14, 25, 27]. Our work is also related to curriculum

learning [4, 29, 46]. We first train an agent to be safe and later solve

a target task. However, our approach focuses on safe exploration

and is able to transfer to tasks with different reward functions, so

the guide’s training is ignored. For curriculum learning, it would

be interesting to consider when to stop training the guide and start

training the student.

7 CONCLUSION

This work handles multiple challenges of reinforcement learning

with safety constraints. It shows how we can use a safe policy (the

guide) during data collection and gradually switch to a policy that

is dedicated to the target task (the student). It tackles the off-policy

issue that arises from collecting data with a policy different from the

target policy. It shows how the student can make the best use of the

guide’s policy using an incentive to imitate the guide, which makes

the student learn faster how to behave safely. It demonstrates that

simply initializing an agent with a safe policymay not be as effective

as learning a new policy dedicated to the target task through policy

distillation. Finally, it proposes a method that can collect diverse

trajectories, which reduces the sample complexity of the student

on the target task. In summary, the framework proposed is a safe

and sample-efficient way of training the agent on a target task.

ACKNOWLEDGMENTS

This research is funded by the Netherlands Organisation for Sci-

entific Research (NWO), as part of the Energy System Integration:

planning, operations, and societal embedding program and the

grants NWO OCENW.KLEIN.187: “Provably Correct Policies for

Uncertain Partially Observable Markov Decision Processes” and

NWA.1160.18.238: “PrimaVera”. Qisong Yang is supported by Xidian

University.

REFERENCES

[1] Joshua Achiam, David Held, Aviv Tamar, and Pieter Abbeel. 2017. Constrained

Policy Optimization. In Proceedings of the 34th International Conference onMachine
Learning. PMLR, 22–31.

[2] Mohammed Alshiekh, Roderick Bloem, Rüdiger Ehlers, Bettina Könighofer, Scott

Niekum, and Ufuk Topcu. 2018. Safe Reinforcement Learning via Shielding. In

Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence. AAAI
Press, 2669–2678.

[3] Eitan Altman. 1999. Constrained Markov decision processes. Vol. 7. CRC Press.

[4] Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. 2009.

Curriculum Learning. In Proceedings of the 26th Annual International Conference
on Machine Learning. ACM, 41–48.

[5] Dimitri P Bertsekas. 1982. Constrained Optimization and Lagrange Multiplier
Methods. Vol. 1. Academic press.

[6] Vivek S Borkar. 2005. An actor-critic algorithm for constrained Markov decision

processes. Systems & control letters 54, 3 (2005), 207–213.
[7] Yinlam Chow, Mohammad Ghavamzadeh, Lucas Janson, and Marco Pavone. 2017.

Risk-constrained reinforcement learning with percentile risk criteria. The Journal
of Machine Learning Research 18, 1 (2017), 6070–6120.

[8] Gabriel Dulac-Arnold, Nir Levine, Daniel J. Mankowitz, Jerry Li, Cosmin Paduraru,

Sven Gowal, and Todd Hester. 2021. Challenges of real-world reinforcement

learning: definitions, benchmarks and analysis. Machine Learning 110, 9 (2021),

2419–2468.

[9] Benjamin Eysenbach and Sergey Levine. 2021. Maximum Entropy RL (Provably)

Solves Some Robust RL Problems. arXiv preprint arXiv:2103.06257 .
[10] Chelsea Finn, Pieter Abbeel, and Sergey Levine. 2017. Model-Agnostic Meta-

Learning for Fast Adaptation of Deep Networks. In Proceedings of the 34th Inter-
national Conference on Machine Learning. PMLR, 1126–1135.

[11] Javier García and Fernando Fernández. 2015. A Comprehensive Survey on Safe

Reinforcement Learning. The Journal of Machine Learning Research 16, 1 (2015),

1437–1480.

[12] Mahsa Ghasemi, Evan Scope Crafts, Bo Zhao, and Ufuk Topcu. 2021. Multiple

Plans are Better than One: Diverse Stochastic Planning. In Proceedings of the
International Conference on Automated Planning and Scheduling. AAAI Press,
140–148.

[13] Michael Gimelfarb, André Barreto, Scott Sanner, and Chi-Guhn Lee. 2021. Risk-

Aware Transfer in Reinforcement Learning using Successor Features. arXiv
preprint arXiv:2105.14127 .

[14] Djordje Grbic and Sebastian Risi. 2020. Safe Reinforcement Learning through

Meta-learned Instincts. In ALIFE 2020 : The 2020 Conference on Artificial Life. MIT

Press, 183–291.

[15] Sehoon Ha, Peng Xu, Zhenyu Tan, Sergey Levine, and Jie Tan. 2020. Learning to

Walk in the Real World with Minimal Human Effort. In Proceedings of the 2020

Conference on Robot Learning. PMLR, 1110–1120.

[16] Tuomas Haarnoja, Haoran Tang, Pieter Abbeel, and Sergey Levine. 2017. Rein-

forcement Learning with Deep Energy-Based Policies. In Proceedings of the 34th
International Conference on Machine Learning. PMLR, 1352–1361.

[17] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. 2018. Soft

Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement Learning with a

Stochastic Actor. In Proceedings of the 35th International Conference on Machine
Learning. PMLR, 1861–1870.

[18] Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, George Tucker, Sehoon

Ha, Jie Tan, Vikash Kumar, Henry Zhu, Abhishek Gupta, Pieter Abbeel, and

Sergey Levine. 2018. Soft Actor-Critic Algorithms and Applications. arXiv
preprint arXiv:1812.05905.

[19] Elad Hazan, Sham Kakade, Karan Singh, and Abby Van Soest. 2019. Provably

Efficient Maximum Entropy Exploration. In Proceedings of the 36th International
Conference on Machine Learning. PMLR, 2681–2691.

[20] Maximilian Igl, Gregory Farquhar, Jelena Luketina, Wendelin Boehmer, and Shi-

mon Whiteson. 2021. Transient Non-stationarity and Generalisation in Deep

Reinforcement Learning. In 9th International Conference on Learning Representa-
tions. OpenReview.net, 1–9.

[21] Riashat Islam, Zafarali Ahmed, and Doina Precup. 2019. Marginalized State

Distribution Entropy Regularization in Policy Optimization. arXiv preprint
arXiv:1912.05128.

[22] Nils Jansen, Bettina Könighofer, Sebastian Junges, Alex Serban, and Roderick

Bloem. 2020. Safe Reinforcement Learning Using Probabilistic Shields (Invited

Paper). In 31st International Conference on Concurrency Theory. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik, 1–16.

[23] Saurabh Kumar, Aviral Kumar, Sergey Levine, and Chelsea Finn. 2020. One

Solution is Not All You Need: Few-Shot Extrapolation via Structured MaxEnt RL.

In Advances in Neural Information Processing Systems 33. Curran Associates, Inc.,

8198–8210.

[24] Lisa Lee, Benjamin Eysenbach, Emilio Parisotto, Eric Xing, Sergey Levine, and

Ruslan Salakhutdinov. 2019. Efficient Exploration via State Marginal Matching.

arXiv preprint arXiv:1906.05274.
[25] Thomas Lew, Apoorva Sharma, James Harrison, and Marco Pavone. 2020.

Safe Model-Based Meta-Reinforcement Learning: A Sequential Exploration-

Exploitation Framework. arXiv preprint arXiv:2008.11700.
[26] Lihong Li, Thomas J Walsh, and Michael L Littman. 2006. Towards a Unified

Theory of State Abstraction for MDPs. In International Symposium on Artificial
Intelligence and Mathematics. ISAIM, 1–10.

[27] Michael Luo, Ashwin Balakrishna, Brijen Thananjeyan, Suraj Nair, Julian Ibarz,

Jie Tan, Chelsea Finn, Ion Stoica, and Ken Goldberg. 2021. MESA: Offline Meta-RL

for Safe Adaptation and Fault Tolerance. arXiv preprint arXiv:2112.03575.
[28] Antoine Marot, Benjamin Donnot, Camilo Romero, Balthazar Donon, Marvin

Lerousseau, Luca Veyrin-Forrer, and Isabelle Guyon. 2020. Learning to run a

power network challenge for training topology controllers. Electric Power Systems
Research 189 (2020), 106635.

[29] Luca Marzari, Davide Corsi, Enrico Marchesini, and Alessandro Farinelli.

2021. Curriculum Learning for Safe Mapless Navigation. arXiv preprint
arXiv:2112.12490.

[30] Sobhan Miryoosefi and Chi Jin. 2021. A Simple Reward-free Approach to Con-

strained Reinforcement Learning. arXiv preprint arXiv:2107.05216.
[31] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness,

Marc G. Bellemare, Alex Graves, Martin A. Riedmiller, Andreas Fidjeland, Georg

Ostrovski, Stig Petersen, Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen

King, Dharshan Kumaran, Daan Wierstra, Shane Legg, and Demis Hassabis. 2015.

Human-level control through deep reinforcement learning. Nature 518, 7540
(2015), 529–533.

[32] Zengyi Qin, Yuxiao Chen, and Chuchu Fan. 2021. Density Constrained Reinforce-

ment Learning. In Proceedings of the 38th International Conference on Machine
Learning. PMLR, 8682–8692.

[33] Alex Ray, Joshua Achiam, and Dario Amodei. 2019. Benchmarking Safe Explo-

ration in Deep Reinforcement Learning. https://cdn.openai.com/safexp-short.pdf.

[34] Yagiz Savas, Melkior Ornik, Murat Cubuktepe, and Ufuk Topcu. 2018. Entropy

Maximization for Constrained Markov Decision Processes. In 56th Annual Aller-
ton Conference on Communication, Control, and Computing. IEEE, 911–918.

[35] Erik Schuitema, Martijn Wisse, Thijs Ramakers, and Pieter Jonker. 2010. The

design of LEO: A 2D bipedal walking robot for online autonomous Reinforcement

Learning. In International Conference on Intelligent Robots and Systems. IEEE,
3238–3243.

[36] Younggyo Seo, Lili Chen, Jinwoo Shin, Honglak Lee, Pieter Abbeel, and Kimin

Lee. 2021. State Entropy Maximization with Random Encoders for Efficient

Exploration. Presented at the ICLR 2021 Workshop on Self-Supervision for

Reinforcement Learning.

[37] Thiago D. Simão, Nils Jansen, and Matthijs T. J. Spaan. 2021. AlwaysSafe: Re-

inforcement Learning Without Safety Constraint Violations During Training.

In Proceedings of the 20th International Conference on Autonomous Agents and
MultiAgent Systems (AAMAS). IFAAMAS, 1226–1235.

https://arxiv.org/abs/2103.06257
https://arxiv.org/abs/2105.14127
https://arxiv.org/abs/2105.14127
https://arxiv.org/abs/1812.05905
https://arxiv.org/abs/1812.05905
https://arxiv.org/abs/1912.05128
https://arxiv.org/abs/1912.05128
https://arxiv.org/abs/1906.05274
https://arxiv.org/abs/2008.11700
https://arxiv.org/abs/2112.03575
https://arxiv.org/abs/2112.12490
https://arxiv.org/abs/2112.12490
https://arxiv.org/abs/2107.05216

[38] Krishnan Srinivasan, Benjamin Eysenbach, Sehoon Ha, Jie Tan, and Chelsea

Finn. 2020. Learning to be Safe: Deep RL with a Safety Critic. arXiv preprint
arXiv:2010.14603.

[39] Medha Subramanian, Jan Viebahn, Simon H. Tindemans, Benjamin Donnot, and

Antoine Marot. 2021. Exploring grid topology reconfiguration using a simple

deep reinforcement learning approach. In 2021 IEEE Madrid PowerTech. IEEE,
1–6.

[40] Yanan Sui, Alkis Gotovos, Joel Burdick, and Andreas Krause. 2015. Safe Ex-

ploration for Optimization with Gaussian Processes. In Proceedings of the 32nd
International Conference on Machine Learning. PMLR, 997–1005.

[41] Richard S. Sutton and Andrew G. Barto. 2018. Reinforcement Learning: An Intro-
duction. Vol. 2. MIT press.

[42] Richard S. Sutton, A. Rupam Mahmood, and Martha White. 2016. An Emphatic

Approach to the Problem of Off-policy Temporal-Difference Learning. The Journal
of Machine Learning Research 17, 1 (2016), 2603–2631.

[43] Oleg Svidchenko and Aleksei Shpilman. 2021. Maximum Entropy Model-based

Reinforcement Learning. arXiv preprint arXiv:2112.01195.
[44] Matthew E. Taylor and Peter Stone. 2009. Transfer Learning for Reinforcement

Learning Domains: A Survey. The Journal of Machine Learning Research 10, 56

(2009), 1633–1685.

[45] Chen Tessler, Daniel J. Mankowitz, and Shie Mannor. 2019. Reward Constrained

Policy Optimization. In 7th International Conference on Learning Representations.
OpenReview.net, 1–9.

[46] Matteo Turchetta, Andrey Kolobov, Shital Shah, Andreas Krause, and Alekh Agar-

wal. 2020. Safe Reinforcement Learning via Curriculum Induction. In Advances in
Neural Information Processing Systems 33. Curran Associates, Inc., 12151–12162.

[47] Giulia Vezzani, Abhishek Gupta, Lorenzo Natale, and Pieter Abbeel. 2019. Learn-

ing latent state representation for speeding up exploration. arXiv preprint
arXiv:1905.12621.

[48] Zhaoming Xie, Patrick Clary, Jeremy Dao, Pedro Morais, Jonathan W. Hurst, and

Michiel van de Panne. 2019. Learning Locomotion Skills for Cassie: Iterative

Design and Sim-to-Real. In 3rd Annual Conference on Robot Learning. PMLR,

317–329.

[49] Qisong Yang, Thiago D. Simão, Simon H. Tindemans, and Matthijs T. J. Spaan.

2021. WCSAC: Worst-Case Soft Actor Critic for Safety-Constrained Reinforce-

ment Learning. In Thirty-Fifth AAAI Conference on Artificial Intelligence. AAAI
Press, 10639–10646.

[50] Tsung-Yen Yang, Justinian Rosca, Karthik Narasimhan, and Peter J. Ramadge.

2020. Projection-Based Constrained Policy Optimization. In 8th International
Conference on Learning Representations. OpenReview.net, 1–10.

[51] Tsung-Yen Yang, Justinian Rosca, Karthik Narasimhan, and Peter J Ramadge. 2021.

Accelerating Safe Reinforcement Learning with Constraint-mismatched Baseline

Policies. In International Conference on Machine Learning. PMLR, 11795–11807.

[52] Tom Zahavy, Brendan O’Donoghue, André Barreto, Sebastian Flennerhag,

Volodymyr Mnih, and Satinder Singh. 2021. Discovering Diverse Nearly Opti-

mal Policies with Successor Features. ICML 2021 Workshop on Unsupervised

Reinforcement Learning.

[53] Moritz A. Zanger, Karam Daaboul, and J. Marius Zöllner. 2021. Safe Continu-

ous Control with Constrained Model-Based Policy Optimization. In IEEE/RSJ
International Conference on Intelligent Robots and Systems IROS. IEEE, 3512–3519.

[54] Jesse Zhang, Brian Cheung, Chelsea Finn, Sergey Levine, and Dinesh Jayaraman.

2020. Cautious Adaptation For Reinforcement Learning in Safety-Critical Settings.

In Proceedings of the 37th International Conference on Machine Learning. PMLR,

11055–11065.

[55] Zhuangdi Zhu, Kaixiang Lin, and Jiayu Zhou. 2020. Transfer Learning in Deep

Reinforcement Learning: A Survey. arXiv preprint arXiv:arXiv:2009.07888.
[56] Brian D Ziebart. 2010. Modeling Purposeful Adaptive Behavior with the Principle

of Maximum Causal Entropy. Carnegie Mellon University.

https://arxiv.org/abs/2010.14603
https://arxiv.org/abs/2010.14603
https://arxiv.org/abs/2112.01195
https://arxiv.org/abs/1905.12621
https://arxiv.org/abs/1905.12621
https://arxiv.org/abs/arXiv:2009.07888

A SAC-LAGRANGIAN

In this section, we present how we learn the parameters in SAC-𝜆.

Similar to the formulation used by Haarnoja et al. [18], we can get the actor loss:

𝐽𝜋 (𝜃) = − E
𝑠𝑡∼D

𝑎𝑡∼𝜋𝜃 (· |𝑠𝑡)

[
𝑄𝑟
𝜋𝜃
(𝑠𝑡 , 𝑎𝑡) − 𝛼 log𝜋𝜃 (𝑎𝑡 | 𝑠𝑡) − 𝛽𝑄𝑐

𝜋𝜃
(𝑠𝑡 , 𝑎𝑡)

]
, (9)

where D is the replay buffer and 𝜃 is the parameters of the policy 𝜋 .

The safety and reward critics (including a bonus for the policy entropy) are, respectively, trained to minimize

𝐽𝐶 (𝜇)= E
(𝑠𝑡 ,𝑎𝑡)∼D

[
1

2

(
𝑄𝑐
𝜇 (𝑠𝑡 , 𝑎𝑡) − (𝑐𝑡 +𝛾𝑄𝑐

𝜇 (𝑠𝑡+1, 𝑎𝑡+1))
)
2

]
(10)

and

𝐽𝑅 (𝜓) = E
(𝑠𝑡 ,𝑎𝑡)∼D

[
1

2

(𝑄𝑟
𝜓
(𝑠𝑡 , 𝑎𝑡) − (𝑟𝑡 + 𝛾 (𝑄𝑟

𝜓
(𝑠𝑡+1, 𝑎𝑡+1) − 𝛼 log(𝜋𝜃 (𝑎𝑡+1 | 𝑠𝑡+1)))))2

]
, (11)

where 𝑎𝑡+1 ∼ 𝜋 (· | 𝑠𝑡+1), 𝑄𝑐
and 𝑄𝑟

are parameterized by 𝜇 and𝜓 , respectively.

Finally, let 𝜒𝛼 and 𝜒𝛽 be the parameters learned for the exploration and safety weight such that 𝛼 = softplus(𝜒𝛼) and 𝛽 = softplus(𝜒𝛽),
where

softplus(𝑥) = log(exp(𝑥) + 1).
We can learn 𝛼 and 𝛽 by minimizing the loss functions:

𝐽𝑒 (𝜒𝛼) = E
𝑠𝑡∼D

𝑎𝑡∼𝜋𝜃 (· |𝑠𝑡)

[
−𝛼 (log(𝜋𝜃 (𝑎𝑡 | 𝑠𝑡)) + H)

]
, (12)

and

𝐽𝑠 (𝜒𝛽) = E
𝑠𝑡∼D

𝑎𝑡∼𝜋𝜃 (· |𝑠𝑡)

[
𝛽 (𝑑 −𝑄𝑐

𝜋𝜃
(𝑠𝑡 , 𝑎𝑡))

]
. (13)

So the corresponding weight will be adjusted if the constraints are violated, that is, if we estimate that the current policy is unsafe or if it

does not have enough entropy.

B TWO STRATEGIES IN COMPOSITE SAMPLING

B.1 Linear-decay

We show the linear-decay strategy to compose 𝜋𝑏 in Algorithm 3. In this case, we have two modes: step-wise and trajectory-wise. We linearly

decrease the probability to execute the step-wise and use the guide with a constant decay rate after each iteration of the algorithm, conversely

increasing the probability of executing the trajectory-wise and using the student policy. So, we initialize the probabilities 𝑃𝜋 = 1 to determine

𝜋𝑏 , and 𝑃𝑤𝑖𝑠𝑒 = 1 to determine the mode at the beginning (line 1). We linearly decrease them with a constant decay rate 𝜐 (lines 12 and

20), determined by the training length. At the beginning of each episode, we sample 𝜅𝑤𝑖𝑠𝑒 ∼ 𝑈 (0, 1), so if 𝜅𝑤𝑖𝑠𝑒 < 𝑃𝑤𝑖𝑠𝑒 , we will execute

step-wise, or we are in trajectory-wise (lines 3-11). Under step-wise, at each time step, we sample from the guide 𝜋♢ with probability 𝑃𝜋 , and

sample from the student 𝜋⊙ with probability 1 − 𝑃𝜋 (lines 14-18). Under trajectory-wise, we only make a decision once at the beginning of

the trajectory (line 10).

B.2 Control-switch

We show the control-switch strategy to compose 𝜋𝑏 in Algorithm 4. In this case, the guide policy serves as a rescue policy to ensure the

safety during sampling. To balance between the safe exploration and the sample efficiency (the samples from the target policy is relatively

more valuable), the student policy keeps sampling, i.e., 𝜋𝑏 = 𝜋⊙ at the start of a trajectory (line 3); after we meet the first 𝑐𝑡−1 > 0, we have

𝜋𝑏 = 𝜋♢ until the end of the trajectory (lines 13-16). In addition, we leverage two replay buffers D♢ and D⊙ to save the guide and student

samples separately (lines 8-12), so as to control the probability 𝑃D⊙ to use the more on-policy samples in D⊙ . Thus, we have the probability
𝑃D♢ = 1 − 𝑃D⊙ to sample from D♢.

Algorithm 3 Composite sampling (linear-decay)

input 𝜋♢, 𝜋⊙ , 𝜐
1: initialize 𝑃𝜋 ← 1, 𝑃𝑤𝑖𝑠𝑒 ← 1

2: for each iteration do

3: Sample 𝜅𝑤𝑖𝑠𝑒 ∼ 𝑈 (0, 1)
4: if 𝜅𝑤𝑖𝑠𝑒 < 𝑃𝑤𝑖𝑠𝑒 then

5: step-wise← true
6: else

7: step-wise← false
8: 𝑃𝑏 (♢) = 𝑃𝜋
9: 𝑃𝑏 (⊙) = 1 − 𝑃𝜋
10: 𝑏 ∼ 𝑃𝑏
11: end if

12: 𝑃𝑤𝑖𝑠𝑒 = 𝑃𝑤𝑖𝑠𝑒 − 𝜐
13: for each environment step do

14: if step-wise then
15: 𝑃𝑏 (♢) = 𝑃𝜋
16: 𝑃𝑏 (⊙) = 1 − 𝑃𝜋
17: 𝑏 ∼ 𝑃𝑏
18: end if

19: end for

20: 𝑃𝜋 = 𝑃𝜋 − 𝜐
21: end for

output 𝜋𝑏

Algorithm 4 Composite sampling (control-switch)

input 𝜋♢, 𝜋⊙

1: initialize D♢ ← ∅, D⊙ ← ∅
2: for each iteration do

3: 𝑏 ← ⊙
4: control-switch(𝑡) ← 𝑓 𝑎𝑙𝑠𝑒

5: for each environment step do

6: 𝑎𝑡 ∼ 𝜋𝑏 (· | 𝑠𝑡)
7: Generate (𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑟♢𝑡 , 𝑐𝑡 ,I𝑡 , 𝑠𝑡+1)
8: if 𝑏 = ♢ then
9: D♢ ← D♢ ∪ {(𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑟♢𝑡 , 𝑐𝑡 ,I𝑡 , 𝑠𝑡+1)}
10: else

11: D⊙ ← D⊙ ∪ {(𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑟♢𝑡 , 𝑐𝑡 ,I𝑡 , 𝑠𝑡+1)}
12: end if

13: if ¬ control-switch(𝑡) ∧ 𝑐𝑡 > 0 then

14: 𝑏 ← ♢
15: control-switch(𝑡) ← 𝑡𝑟𝑢𝑒

16: end if

17: end for

18: end for

output 𝜋𝑏

C EVALUATION OF THE TARGET POLICY

Ablation study. In Figure 6, we only show the safety and performance of the behavior policy 𝜋𝑏 in ablation study. In this section, we

evaluate the safety and performance of the target policy 𝜋⊙ in Figure 8. About Guide effect, we can observe thatMaxEnt converge quite

slowly in safety, and does not achieve a high return compared to SaGui. So, the quality of the guide also has a quite obvious influence on the

target policy. As to regularization, with the adaptive safety weight, SaGui converge faster to a safe optimal target-policy compared to FixReg

and DecReg. In terms of composite sampling, if it is ablated to be GuiSam, the corresponding target policy will diverge, and fail to get a safe

policy that can finish the task well. If only the student samples (StuSam) are used, the target policy will have competitive performance in

both return and cost-return compared to SaGui, but it cannot ensure the safety during training, as shown in Figure 6.

0.25 0.50 0.75 1.00 1.25
TotalEnvInteracts 1e6

0

50

100

150

Co
st

-R
et

ur
n
π

⊙

0.25 0.50 0.75 1.00 1.25
TotalEnvInteracts 1e6

−6

−4

−2

0

2

4

Re
tu

rn
 π

⊙ FixReg
DecReg
MaxEnt
StuSam
GuiSam
SaGui (control-switch)

Figure 8: Ablation study in Static showing the safety (left) and performance (right) of the target policy.

Comparison with baselines. In Figure 7, we evaluate the behavior policy 𝜋𝑏 for all algorithms: CPO, SAC-𝜆, CPO-pre, SAC-𝜆-pre, and SaGui.

So, in Figure 9, we show how their resulted target policy will perform during training. In all these algorithms, SaGui (control-switch) is the

only one that can find a safe optimal target-policy in all environments. However, SaGui (linear-decay) cannot achieve similar performance,

especially in Semi-dynamic and Dynamic. We infer that SaGui (linear-decay) lack samples from the target policy, especially at the early stage

of training. As to the pre-training baselines, CPO-pre and SAC-𝜆-pre do not attain obvious improvement compared to CPO and SAC-𝜆 that

are trained from scratch. Instead, pre-training may have some negative impacts on getting a good target policy. The only exception is that

CPO-pre is largely improved in the relatively simple environment Static.

0

50

100

150

Co
st

-R
et

ur
n
π

⊙

CPO
CPO-PRE
SAC-λ
SAC-λ-PRE
SaGui (linear-decay)
SaGui (control-switch)

0.25 0.50 0.75 1.00 1.25
TotalEnvInteracts 1e6

−15

−10

−5

0

5

Re
tu

rn
 π

⊙

(a) Static

0

25

50

75

100

125

0.5 1.0 1.5 2.0 2.5
TotalEnvInteracts 1e6

−6

−4

−2

0

2

4

(b) Semi-Dynamic

20

40

60

80

1 2 3 4
TotalEnvInteracts 1e6

0

10

20

30

(c) Dynamic

Figure 9: Evaluation of 𝜋⊙ for CPO, CPO-pre, SAC-𝜆, SAC-𝜆-pre, SaGui (linear-decay), and SaGui (control-switch) over ten

seeds. The solid lines are the average of all runs, and the shaded area is the standard deviation. The black dashed lines indicate

the safety thresholds.

D HYPERPARAMETERS

We list the hyperparameters used in SaGui, which are summarized in Table 1. As to the baselines, we use the default hyperparameters in

https://github.com/openai/safety-starter-agents. All runs in the experiment use separate feedforward Multilayer Perceptron (MLP) actor and

critic networks. The size of the neural network (all actors and critics of the algorithms) depend on the complexity of the tasks. We use a

replay buffer of size 10
6
for each off-policy algorithm to store the experience. The discount factor is set to be 𝛾 = 0.99, the target smoothing

coefficient is set to be 0.005 to update the target networks, and the learning rate to 0.001. The clipping intervale hyper-parameters [I𝑙 ,I𝑢] is
set to [0.1, 2.0], while the sampling probabilities 𝑃D♢ and 𝑃D⊙ are set to 0.25 and 0.75, respectively. The maximum episode length is 1000

steps in all experiments. We set the safety constraint 𝑑 based on the problem. The rest of the hyperparameters are explained in the Empirical

Analysis part of the paper.

Parameter Static Semi-Dynamic Dynamic Note

Size of networks (32, 32) (64, 64) (256, 256)
Size of replay buffer 10

6
10

6
10

6 |D|
Batch size 32 64 256

Number of epochs 50 100 150

Safety constraint 5 8 25 𝑑

Table 1: Summary of hyperparameters in SaGui.

https://github.com/openai/safety-starter-agents

	Abstract
	1 Introduction
	2 Background
	2.1 Constrained Markov Decision Processes
	2.2 Maximum Entropy Reinforcement Learning
	2.3 SAC-Lagrangian

	3 Safe and Efficient Exploration
	3.1 Problem Statement
	3.2 Problem Setting
	3.3 Transfer Metrics

	4 Guided Safe Exploration
	4.1 Training the Safe Guide (SaGui)
	4.2 Policy Distillation
	4.3 Composite Sampling

	5 Empirical Analysis
	5.1 Ablation Study
	5.2 Comparison with Baselines

	6 Related Work and Future Directions
	7 Conclusion
	Acknowledgments
	References
	A SAC-Lagrangian
	B Two strategies in composite sampling
	B.1 Linear-decay
	B.2 Control-switch

	C Evaluation of the target policy
	D Hyperparameters

