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ABSTRACT
The competitive and cooperative forces of natural selection have
driven the evolution of intelligence for manymillions of years, even-
tually culminating in nature’s vast biodiversity and the complexity
of our human minds. In this paper, we present a novel multi-agent
reinforcement learning framework, inspired by the process of evo-
lution. We assign a genotype to each agent, and propose an inclusive
reward that optimizes for the fitness of an agent’s genes. Since an
agent’s genetic material can be present in other agents as well,
our inclusive reward also takes genetically related individuals into
account. We study the effect of inclusion on the resulting social
dynamics in two network games, and find that our results follow
well-established principles from biology. Furthermore, we lay the
foundation for future work in a more open-ended 3D environment,
where agents have to ensure the survival of their genes in a natural
world with limited resources. We hypothesize the emergence of an
arms race of strategies, where each new strategy will be a grad-
ual improvement in response to an earlier adaptation from other
agents, effectively creating a multi-agent autocurriculum similar to
biological evolution. Our evolutionary autocurriculum provides a
novel social dimension that features a non-stationary spectrum of
cooperation due to the finite environmental resources and changing
population distribution. It has the potential to create increasingly
advanced strategies, where agents learn to balance cooperative and
competitive incentives in a more complex and dynamic setup than
previous works, where agents were often confined to predefined
team setups that did not entail the social intricacies that biological
evolution has. We argue this could be an important contribution
towards creating advanced, general and socially intelligent agents.
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1 INTRODUCTION
Creating intelligent agents with the ability to adapt to a diverse
set of challenges and environments is a prominent goal of artificial
intelligence research. In the past decades, the field of single-agent
Reinforcement Learning (RL) [40] has made great progress in devel-
oping agents capable of completing tasks provided in the form of a
reward signal [1, 15, 27, 28, 36]. However, in traditional single-agent
RL, once an agent has learned to master its given task, learning
stops, since there is no further incentive for improvement. This
makes it difficult to create agents which can solve a wide variety of
complex tasks; an important characteristic of general intelligence.
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Creating extra handcrafted tasks for an agent to train and generalize
on (i.e., transfer learning [42]) can mitigate this, but this approach
is resource intensive and still caps the final complexity that the
agent can achieve. Recent work on procedurally generated tasks
and environments [10, 38, 46] attempts to solve this problem, but
creating adequate reward signals in the environments still remains
costly.

Another problem is that an objective can be too complex to learn
from scratch. In this case, the space of possible policies is too large
to cover effectively with regular exploration strategies. This leads
to an agent that cannot close the gap between its initial random
behavior and solving the task, getting stuck in low-performing
suboptima. Intermediate rewards (such as reaching checkpoints in
a maze) can be created to help the agent learn the final overarching
goal, but over-engineering the reward signal can lead to problems
like specification gaming [2, 21] and potentially limits the range and
originality of the learned strategies. A slightly different approach
is the use of curriculum learning [5, 11, 29], in which an agent
gradually progresses from an easy environment (e.g., a small maze)
towards more difficult ones (the full maze), similar to how human
education works. Curriculum learning can provide an efficient way
of learning complex tasks, but the final complexity is limited by the
most advanced task, and creating suitable progressions in the cur-
riculum is resource intensive. Improved exploration strategies can
help an agent to avoid getting stuck in suboptimal states. Work in
the field of intrinsic rewards proposes ways of overcoming a sparse
reward signal. For example, curiosity driven RL [8, 9, 33] provides
a self-supervised reward signal which promotes the exploration
of previously unknown environment dynamics, often leading to
the development of useful skills solely by following the intrinsic
reward.

Nature, however, is not a single-agent system, but a multi-agent
world full of evolving organisms. The competitive and cooperative
forces of natural selection have driven the evolution of intelligence
for many millions of years, culminating in nature’s great biodi-
versity and the richness of our human minds. In nature, when a
strategy with an increased fitness emerges, it changes the envi-
ronment dynamics for others, creating a new set of challenges to
adapt to [48]. The agents that successfully adapt to these challenges
have in turn improved their strategies, thereby again providing new
challenges, and so forth. Less successful agents, which are unable
to keep up, go extinct. Agents are therefore always at a similar level,
and provide just the right amount of challenge for growth. This
can be applied to reinforcement learning as well: learning agents
continuously improve, thereby pushing the others to adapt, leading
to the emergence of a multi-agent autocurriculum [23]. Multi-agent
autocurricula provide a scalable way for agents to explore a large
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strategy space by simply following the gradients of their experience,
called “exploration by exploitation” [4, 23].

In theory, an autocurriculum enables the possibility of unbounded
growth for innovation, limited only by the strategy space of the
environment and the agents’ learning capacities. Autocurricula
have formed the backbone for some of the most advanced forms
of artificial intelligence known to date. In the form of self-play, it
has led to agents with superhuman skill levels in the two-player
zero-sum games of Backgammon [43], Go, Chess and Shogi [37],
and the continuous real-time strategy game of StarCraft II [44]. In
team-based competitive environments, it has led to agents beating
the world champions in the real-time strategy game of Dota2 [6],
to human-level performance in a first-person 3D multiplayer game
of capture-the-flag [20], and to an arms race in a 3D hide-and-seek
game [4], where several distinct strategic phases emerged, each
requiring increasingly sophisticated forms of cooperation and use
of tools.

Our work fits in the tradition of the aforementioned works on
multi-agent autocurriculum learning, aiming to create high levels
of complexity starting from elegant, simple rules. However, the
dynamics in previous work on multi-agent autocurricula are lim-
ited to either all competition, or in the case of predefined team
setups, all cooperation with competition between teams. Humans –
like many other organisms in nature – are not that binary, instead
showing a range of cooperative behavior. As the main contribution
of this work, we propose the first steps towards a novel multi-
agent autocurriculum inspired by biological evolution, where we
construct an evolutionary aligned reward based on the survival
of an agent’s genes. Since other agents potentially carry parts of
the same genetic material, the reward function includes the fitness
of others as well, weighted by a measure of genetic relatedness.
Our reward structure therefore also leads to the emergence of a
spectrum of cooperation, based on the relatedness of the genotypes
present. This spectrum can shift over time: for example, when the
total population size grows, resources become scarce, leading to a
tension between helping closer relatives and relatives carrying less
of your genetic material. At any given time, the actual levels of co-
operation are therefore determined by the population of genotypes,
but themselves influence the population of genotypes that will be
present in the future. This cycle adds a novel social dimension to
the multi-agent autocurriculum, which continuously challenges the
agents to find new strategies that balance cooperation and defec-
tion appropriately. We argue that our multi-agent autocurriculum
has the potential to show a continuous growth in agents’ strategic
complexity, only bounded by the strategy space of the environment
and the agents’ learning capabilities.

2 METHODS
2.1 Information stability
We propose a general definition of fitness as the stability of an
information state with regards to its environment. The more stable
an information state is, the longer it will keep existing. For example,
galaxies or diamonds are information states with a high fitness in
the realm of physics. When considering complex organic molecules
on a primeval Earth, the strategy of producing a copy of oneself be-
fore being destroyed (i.e., replicating) turned out to be a particularly

stable one, drastically lengthening the existence of one’s informa-
tion state. Yet, every so often, an error occurs in the copying process,
known as a mutation. When a mutation is beneficial, it leads to an
improvement in fitness, which is favored by natural selection. At
the same time, however, a mutation also changes the information
state. Mutations, coupled with natural selection, generally lead to a
gradual shift in the population of replicators, towards increasingly
stable (fit) information states. Replicators, which exist today in the
form of DNA, have built an astonishing set of ingenious organisms
around themselves to help them survive.

In biology, the parts of DNA that code for the observable traits
(i.e., the behavior) of an organism are the genes, and together they
form a genotype. The genotype represents the complete information
state on which selection acts. To translate our definition of fitness
into an evolutionary aligned reward function for reinforcement
learning, we implement an abstract version of genetics in our agents.
We assign an agent 𝑖 with an abstract genotype 𝒈𝑖 , which is a
sequence of 𝑛 genes where each gene locus/index 𝑘 ∈ [1, 𝑛] contains
a gene 𝑔𝑘

𝑖
. Different integer values for 𝑔𝑘

𝑖
then represent different

gene variants, where in principle every gene locus can have an
undetermined amount of gene variants .

We propose a metric of information similarity between geno-
types to quantify their relatedness. In information theory, the Ham-
ming distance𝐻 (𝒔1, 𝒔2) [18] between two sequences 𝒔1 and 𝒔2 is the
number of positions at which corresponding entries are different,
measuring the amount of substitutions (‘bit flips’) needed to change
one sequence back into the other. Starting from the normalized
Hamming distance, we derive a similarity metric, expressing the
genetic relatedness between two agents as a real number between
0 and 1, which we name the Hamming similarity. Considering two
agents 𝑖 and 𝑗 , the Hamming similarity is defined as:

ℎ(𝒈𝑖 ,𝒈𝑗 ) ≡ 1 − 1
𝑛
𝐻 (𝒈𝑖 ,𝒈𝑗 ) =

1
𝑛

𝑛∑︁
𝑘=1

𝛿 (𝑔𝑘𝑖 , 𝑔
𝑘
𝑗 ) , (1)

where 𝛿 (· , ·) is the Kronecker delta. Note that this metric is de-
fined when both genotypes have the same length. In the case of
different genotype lengths, we could use the Damerau-Levenshtein
distance [7], an extension of the Hamming distance which takes
into account information deletions and insertions as well.

2.2 Inclusion
2.2.1 Inclusive reward function. Since an agent’s genetic material
can be present in others as well, helping agents which are geneti-
cally related should also be promoted by our reward function. We
therefore modify the reward of each agent 𝑖 by adding the rewards
of the other agents as well, multiplied by their Hamming similarity
ℎ (Eq. 1). We call this modified reward the inclusive reward, after
the concept of inclusive fitness [16, 34], which posits that under the
right circumstances, natural selection favors organisms that help
their genetic relatives. We define the inclusive reward 𝑟∗ as:

𝑟∗𝑖 ≡
∑︁
𝑗

ℎ(𝒈𝑖 ,𝒈𝑗 )𝑟 𝑗 = 𝑟𝑖 +
∑︁
𝑗≠𝑖

ℎ(𝒈𝑖 ,𝒈𝑗 )𝑟 𝑗 (2)

An illustrative example of an inclusive reward is given in Figure 1,
where we consider two agents playing a prisoner’s dilemma [22].
Both agents can either cooperate (C), or defect (D). A rational agent
will always choose to defect, since that action always gives more



Figure 1: A prisoner’s dilemma played by two players with
genotypes [1, 1, 1, 1] and [1, 1, 1, 0] becomes a harmony game
under the inclusive reward.

payoff, regardless of the action of its opponent. However, when both
agents defect, they are worse off than had they both cooperated,
leading to the dilemma. However, the dynamics change drastically
when we introduce genes with our inclusive reward function. If
we consider that the genotypes of the row player and the column
player are given by [1, 1, 1, 1] and [1, 1, 1, 0], respectively, and
they therefore have a Hamming similarity of 3

4 . The direct payoff
of an agent, which we will call the individual payoff 𝑃 , indicates an
agent’s individual fitness, regardless of others. But the agent’s action
also influences the payoff of the opponent, which carries three of
its own genes. The total inclusive reward of the row player then
becomes 𝑃row+ 3

4𝑃column, with a symmetric inclusive reward for the
column player. Therefore, from the perspective of the genotypes,
the prisoner’s dilemma of Fig. 1 effectively becomes a harmony
game [49], where the only Nash Equilibrium is cooperation for both
agents.

2.2.2 General prisoner’s dilemma. In a general prisoner’s dilemma,
𝑏 is the benefit provided to the other by cooperating, and 𝑐 is the
cost for cooperation. The payoff matrix is given by:

C D
C 𝑏 − 𝑐 , 𝑏 − 𝑐 −𝑐 , 𝑏
D 𝑏, −𝑐 0, 0

From this general payoff matrix, we can derive two inequalities
that need to be satisfied for cooperation under the inclusive reward:
𝑐 < ℎ𝑏 and ℎ𝑐 < 𝑏, where ℎ is the Hamming similarity between
the two players. We do not consider the second inequality, which
is simply a consequence of the first, since ℎ ∈ [0, 1]. This first
inequality turns out to be equivalent to Hamilton’s rule [16] from
biology, which posits that an cooperative trait can persist if the
benefit 𝑏, multiplied by the relatedness 𝑟 , exceeds the cost 𝑐 .

3 COOPERATION ON NETWORKS
Our evolutionary aligned reward function should incentivize an
agent to maximize the fitness of its genetic material, which can be
present in other agents as well. Therefore, we defined an inclusive
reward (Eq. 2) which adds the individual rewards by weighing them
with the Hamming similarity defined in Eq. 1. In this section, we
study the properties of this inclusive reward by focusing on two
settings where independent Q-learners [47] play two-player pris-
oner’s dilemmas on networks. Self-interested agents often fail to
cooperate in prisoner’s dilemmas due to the dominance of the defec-
tive strategy over cooperation. In nature, however, many organisms
have evolved stable cooperative strategies [16]. The goal of these
experiments is to show the emergence and stability of cooperation

Figure 2: Example network with community structure. Here,
the probability of a connection between agents inside a com-
munity is 𝑝𝑖𝑛 = 0.9, while the probability for agents between
communities is 𝑝𝑜𝑢𝑡 = 0.1. All three communities represent a
separate genotype. Figure adapted from [14].

in environments where agents try to maximize the fitness of their
genetic material.

3.1 Experiments
3.1.1 Opponent discrimination. A first experiment considers fully
connected networks where agents can recognize each other (op-
ponent discrimination). This means that an agent knows which
opponent it is playing, but it does not know what genotype the
opponent has, nor does it remember anything of what the agent did
in the past; it only bases its action on a learned behavior for that
opponent (Q-table). The setup is based on the evolution of sens-
ing organs, which provide an organism the ability to observe the
phenotype of other organisms in the environment, but not directly
its genotype. Senses such as vision are crucial for animals, and
over many generations led to the intuitive recognition of offspring,
or the avoidance of predators [48], examples which we intend to
capture with our setup. Opponent discrimination is implemented in
our agents as a Q-table where every state corresponds to a different
opponent on the network, and the agents receive each time step as
an observation which opponent they are playing.

3.1.2 Limited dispersal. Our second experiment gives agents no op-
ponent discrimination, which means agents have only one strategy
for all interactions. Instead, we look at the effect of limited disper-
sal (also called population viscosity [16, 17]) on the emergence of
cooperation between independent Q-learners under our inclusive
reward. Under the limited dispersal hypothesis, it is assumed that
organisms do not disperse far from their birth place, making them
more likely to interact with genetic relatives.

To model limited dispersal, we move from fully connected net-
works to random partition networks [12] which have community
structure [14]. Random partition networks are constructed starting
from predefined groups of nodes that form (still unconnected) com-
munities. Nodes that belong to the same community are connected
with probability 𝑝𝑖𝑛 , and nodes between communities with 𝑝𝑜𝑢𝑡 .
We define a dispersal coefficient 𝜂 ≡ 𝑝𝑜𝑢𝑡/𝑝𝑖𝑛 ∈ [0, 1], denoting the



Figure 3: Frequency of cooperation in function of the Ham-
ming similarity with the opponent on a fully connected net-
work (genotype length 6, 2 variants per gene) with 64 agents,
one per unique genotype. The cost-benefit payoff ratio 𝑐/𝑏 in-
fluences the Hamming similarity threshold at which agents
start cooperating, matching Hamilton’s rule [16].

strength of the network dispersal. Every node in a community has
the same genotype. This means that agents with similar genotypes
are more likely to be connected than others (Fig. 2). The influence
of network structure on the emergence of cooperation has been
well-studied in evolutionary game theory [30, 32, 35, 41]. Here, we
provide an alternative approach of modelling the strategies with
reinforcement learning, where we study the resulting dynamics
under an evolutionary aligned (inclusive) reward.

3.1.3 Reward. The payoff matrix of the prisoner’s dilemma pro-
vides the individual fitnesses that each agent receives under their
combined actions. We again use these individual fitnesses to con-
struct our inclusive reward, according to Eq. 2. After every inter-
action, a player 𝑖 uses its individual payoff 𝑃𝑖 and the opponent’s
payoff 𝑃 𝑗 to determine its inclusive reward 𝑟∗

𝑖
:

𝑟∗𝑖 = 𝑃𝑖 + ℎ(𝒈𝑖 ,𝒈𝑗 )𝑃 𝑗 . (3)

In both the opponent recognition and the limited dispersal ex-
periment, our Q-learners try to optimize their myopic inclusive
reward (meaning a bandit-like discount factor of 0), similar to
how generational fitness is often defined in evolutionary game the-
ory [13, 31, 32, 41]. Players pick and update their Q-values according
to an 𝜖-greedy scheme with exponentially decaying exploration.

3.2 Results
3.2.1 Opponent discrimination. We use a fully connected network
for opponent discrimination, where each node represents an agent.
We consider genotypes of length 6, with 2 gene variants per gene
locus. We create one agent for every possible genotype, thereby
making the network symmetric for all agents, for a total of 26 = 64
combinations. All Q-tables are initialized to zero. Initial populations
of all defectors, all cooperators, and mixtures were tried as well,
but did not influence the results. Each time step, agents play one
prisoner’s dilemma against all of their opponents simultaneously,
including itself, where the individual payoffs are defined by the
benefit 𝑏 and the cost 𝑐 (𝑐 is fixed at 1, while we vary 𝑏). Figure 3

Figure 4: Proportion of cooperators in the (converged) popu-
lation in function of the benefit to cost ratio 𝑏/𝑐 in a random
partition network (genotype length 3, 2 variants per gene).
Each community represents one of 8 unique genotypes, with
8 agents per genotype/community. 𝜂 is the network dispersal
coefficient. ⟨𝑘⟩=9 for all experiments, which together with
𝜂 determines 𝑝𝑖𝑛 and 𝑝𝑜𝑢𝑡 (Eq. 4). Blue, red and green values
show the proportion of cooperators under the inclusive re-
ward for different dispersal coefficients. Gray values show
results without inclusiveness. Cooperation increases under
the inclusive reward and under small dispersal coefficients.

shows the resulting frequencies (averaged over the agents) that
agents cooperate against opponents with respect to the Hamming
similarity, for three values of 𝑐/𝑏. The resultsmatchwithHamilton’s
rule [16], which as noted in section 2.2.2 predicts the spread of
a cooperative strategy when 𝑐/𝑏 < ℎ. Results without inclusive
rewards (not shown in Figure 3) led to all defection.

3.2.2 Limited dispersal. We consider a random partition network,
where agents have genotypes of length 3, with 2 variants per gene. A
community of 8 nodes is created per unique possible genotype, i.e. 8
communities of 8 nodes. In figure 4, we consider three values of the
dispersal coefficient 𝜂, and measure the proportion of cooperators
that emerge in the network after convergence, with respect to the
benefit to cost ratio 𝑏/𝑐 . Although we vary 𝜂, we keep the average
degree fixed at ⟨𝑘⟩ = 9 to avoid that a variation in 𝜂 leads to a
variation in average degree, since it is known that varying the
average network degree can drastically influence the spread of
cooperation [30, 32, 35]. We keep ⟨𝑘⟩ steady by deriving 𝑝𝑖𝑛 and
𝑝𝑜𝑢𝑡 through the following relation for ⟨𝑘⟩, 𝜂 and 𝑝𝑖𝑛 :

⟨𝑘⟩ = 9 = 7𝑝𝑖𝑛 + 56𝑝𝑜𝑢𝑡 = (7 + 56𝜂) 𝑝𝑖𝑛 . (4)

The results from Figure 4 with inclusive reward show higher
proportions of cooperation than with individual rewards, even
though some level of cooperation can emerge without inclusiveness.
Small dispersal coefficients and large benefit-to-cost ratios also lead
to higher levels of cooperation, which matches with our prediction
based on limited dispersal theory.

4 MARKOV GAMES
In future work, we intend to move beyond the limitations of net-
works and abstract matrix games, into temporally and spatially



Figure 5: Impression of the Neural MMO environment [38]. Rocks, water, grass and forest cover the area. Agents, represented
by three connected nodes, gather food and water, and engage in combat with each other or with environmental threats.

extended Markov games [25]. Our main focus will be on the Neural
MMO environment [38] (Fig. 5). Neural MMO is a multi-agent video
game environment in which agents survive by gathering resources
such as water and food in a rugged environment. The agents can
also engage in combat against other agents or with threats from
the environment itself. Neural MMO is open-source, and serves
as a customizable platform for multi-agent intelligence research,
where agent configurations, reward functions, environment layout,
resources, etc. can be rewritten and adjusted to suit the purposes
of our research.

The goal of the previous network experiments was to examine
the evolution of cooperation under a genetic inclusive reward func-
tion. Now, bymoving tomore open-ended environments like Neural
MMO, we will test our hypothesis that our autocurriculum can lead
to the emergence of increasingly complex and socially intelligent
strategies. In Neural MMO, agents can move around in the environ-
ment, which leads to a dynamic ‘network’ structure. Where matrix
games previously provided strategies as directly accessible atomic
actions, the agents now need to learn to implement high-level
strategies with policies executing a sequence of many low-level
actions. Rewards cannot be matched with one clear, causal action
anymore, resulting in the credit-assignment problem [39], and the
concept of a general well-defined interaction between two agents
ceases to exist, since an agent’s actions can now influence events
removed in distance as well as time. Moreover, the most rewarding
and innovative strategies are not directly accessible anymore, but
have to be discovered. Strategies of cooperation and defection can
take many forms, and decisions do not always need to occur at the
same moment: some information about what a player is starting to
do can change another player’s actions in the process.

4.1 Evolutionary aligned rewards
In the previous games, fitness was simply provided by the payoff
matrix, and then used to create the inclusive reward. Here, com-
puting the fitness of an agent is not as straightforward anymore,
and we need to propose a mathematical expression of fitness to
create our evolutionary aligned reward, in line with our definition
of fitness as a measure of stability or longevity of an information
state (section 2.1).

Longevity reward. To optimize for longevity, an agent receives
a reward of +1 for every time step that at least one copy of its
genotype is still alive. Since other agents can share its genes, the
agent receives an additional inclusive reward of +1 for every re-
lated genotype alive, multiplied by the Hamming similarity. This
‘longevity’ reward 𝑟𝐿 for agent 𝑖 at time step 𝑡 then becomes

𝑟𝐿𝑖,𝑡 B
∑︁

𝒈𝑗 ∈𝐺𝑡

ℎ(𝒈𝑖 ,𝒈𝑗 ), (5)

where 𝐺𝑡 is the set of unique genotypes alive at 𝑡 .
This reward optimizes for the long term survival of an agent’s

genes, while leaving the strategy of how to accomplish this long-
term survival open for the agents to discover.

Replication reward. In the field of biology, fitness is often defined
as the expected number of offspring an organism produces [24, 26,
45]. Therefore, we also propose a reward function which directly
promotes themaximization of the amount of shared geneticmaterial
that is present in the environment. Now, an agent 𝑖 receives a
reward of +1 for every newborn, and -1 for every agent that dies,
which we again weigh by the Hamming similarity to include the
potential presence of an agent’s genes in other agents as well. This
‘replication’ reward 𝑟𝑅 for agent 𝑖 at time step 𝑡 is then given by

𝑟𝑅𝑖,𝑡 =
∑︁
𝑗 ∈𝐽𝑡

ℎ(𝒈𝑖 ,𝒈𝑗 ) −
∑︁
𝑗 ∈𝐽𝑡−1

ℎ(𝒈𝑖 ,𝒈𝑗 ), (6)

where the first sum is over the group of agents 𝐽𝑡 , alive at time step
𝑡 , and the second sum over the agents from the previous time step
𝑡−1, where every agent is weighted by its Hamming similarity.

Combined reward. Given that the longevity reward – excluding
the possibility of immortal organisms – will eventually lead to the
discovery of replication as a crucial part of an agent’s strategy,
we can extend our longevity reward with the concept behind the
replication reward, providing a reward signal that combines the
best of both. We define this ‘combined’ reward 𝑟𝐶 for agent 𝑖 at
time step 𝑡 as

𝑟𝐶𝑖,𝑡 =
∑︁
𝑗 ∈𝐽𝑡

ℎ(𝒈𝑖 ,𝒈𝑗 ), (7)



where we sum over the group of agents 𝐽𝑡 that are alive at time
step 𝑡 . The combined reward simply gives a positive reward (the
Hamming similarity) when an agent which carries the same genetic
material is alive for one more time step. The difference between
the original longevity reward and the combined reward is subtle. In
the former, we sum over the unique genotypes alive, for which all
agents that carry a specific genotype only count for one positive
reward, since only one copy is required for the information state to
be alive. In the latter, however, we also take into account how many
copies of those unique genotypes there are. Also, the replication
reward is equal to the difference of the combined reward over two
time steps.

When performing our experiments, we intend to try all three
reward functions and study their properties.

4.2 Rules of the game
The rules of the game in our intended adaption of the Neural MMO
environment are as follows. One health point is subtracted every
time step from an agent’s total health. To replenish health, an agent
can consume water or food, which has to be gathered by standing
near a pool or walking through a forest area. Besides foraging,
agents can engage in combat, and attack each other when they are
in striking distance for high damage, or with projectiles from afar,
which deal less damage but are safer. The action space of an agent
consists of movement actions, attack actions, and very importantly,
an action that makes the agent reproduce. For the reproductive
process, we propose to implement a simple system: when an agent
decides to reproduce, it gives 1/4th of its health and resources
to its offspring. More elaborate schemes are of course possible.
Here, a strategy that reproduces fast will have more offspring, but
produces agents that are in general weaker and are therefore more
susceptible to getting killed. Either our agents will learn one optimal
reproductive strategy, or niches will develop, where some agents
focus on multiplication while others focus on individual strength
(e.g., predator-prey dynamics).

The resources in Neural MMO are not endless. When resources
are plentiful, each reward function will promote cooperation be-
tween any two agents that share at least one gene, and in principle
induce indifference for agents that share none. However, when the
population size grows towards the carrying capacity of the envi-
ronment, resources become scarce, and a tension arises between
helping closer relatives and more distant ones. Helping agents with
a lower genetic similarity wouldmean the consumption of resources
that could be used to help agents with higher similarity instead, so
we expect to see a non-stationary spectrum of cooperation emerge.

4.3 Experimental setup
4.3.1 Training. To train our agents, we will move from tabular
Q-learning to Deep Reinforcement Learning (Deep RL) with Proxi-
mal Policy Optimization (PPO) [36] and Long Short-Term Memory
(LSTM) layers [19] to enable our agents to reach the necessary
strategic complexity. We use a parameter-sharing scheme where
all agents share the same neural network weights, but where the
policy is conditioned on a unique genotype identifier, provided
to the network as a dedicated part of the observation state. This
is a common strategy in multi-agent RL [3, 4] which allows for

specialization of strategies, where all the specializing strategies are
condensed in one (large) neural network (i.e., a function approxima-
tion of different function approximators). The identifiers therefore
allow the neural network to learn different policies for each agent.

Using one policy network for all agents leads to a large compu-
tational benefit, where the alternative would be to store and update
separate policy networks for every agent, which can be extremely
taxing for large-scale multi-agent simulations. Another benefit is
that using the same network will act as a learning stabilizer by
promoting a shared understanding of the environment dynamics,
and by having more experiences to update the weights, thereby
reducing the variance.

4.3.2 Evolving the world. We start the game with one agent, car-
rying a single genotype. Once this agent learns to reproduce, its
offspring carries the same genotype. However, with a probability 𝜇,
each of its genes can mutate to another gene variant. This creates
a new species, which also carries a new unique policy identifier
and can therefore grow into a new strategy. So far, genes only in-
fluence the behavior of agents through the reward function, but in
future experiments, we intend to try whether genes can also ex-
press properties of the agents themselves, such as in-game statistics
like maximal health or combat strength. There are no predefined
generations; each agent can reproduce at any time step, making
the world and the population in it grow organically.

5 DISCUSSION
Our initial experiments on networks with opponent discrimination
and limited dispersal match well-established biological principles,
such as Hamilton’s rule and limited dispersal theory. The results
hint at the the potential of our inclusive reward function for the
emergence of dynamic social structures not limited to only full
cooperation or competition. We believe that the Neural MMO en-
vironment will allow us to present an empirical proof that our
evolutionary aligned reward functions (section 4.1) can provide a
continuous incentive for progress towards increasingly complex
strategies within non-stationary social structures. We only expect
to observe a direction towards increasingly complex strategies; no
specific strategic properties are hypothesized, except the maximiza-
tion of genetic fitness. Still, the Neural MMO setting will likely
lead to behavior that is interpretable in an evolutionary context.
Our reward is of course not limited to Neural MMO, and has the
potential to be applied in many multi-agent reinforcement learn-
ing environments where inclusiveness and dynamic coalitions are
important characteristics.

In conclusion, this paper laid the first foundations for a trans-
lation of evolutionary processes into multi-agent reinforcement
learning, thereby providing a viable approach for creating generally
capable and socially intelligent agents, starting from elegant and
simple rules. We propose that in sufficiently rich environments,
our evolutionary aligned reward has the potential to lead to a high
strategic complexity, where agents will learn to balance cooperative
and competitive incentives.
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