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ABSTRACT
While reinforcement learning agents have had many impressive
successes, such agents can often face difficulty in sparse reward
environments. Agents often face this difficulty in real-world tasks —
it can take a long time before an agent stumbles upon a rare positive
outcome without guidance. To combat this problem, we propose
an technique that we call Adversarial Multi-Teacher Curriculum
Design with Traces. This technique involves multiple independent
teachers engaged in a game against a goal-conditioned student. The
primary algorithmic novelty, relative to existing work, is engaging
multiple teachers and using a behavior cloning loss. In addition,
we also introduce a new sparse reward environment for simulated
driving in PyBullet. Empirical results show the potential of our
algorithm in this novel domain.

KEYWORDS
Reinforcement Learning, Curriculum Learning, Adversarial Learn-
ing

1 INTRODUCTION
Many reinforcement learning [16] (RL) algorithms struggle to learn
in sparse reward environments because of insufficient feedback
from the environment resulting in weaker gradient updates. Many
solutions like reshaping the reward function, rewarding the ex-
ploratory behaviour based on novelty / information theoretic met-
rics, learning an intrinsic reward function etc. were introduced but
these algorithms still fail in sparse reward environments.

We approach this problem using a curriculum learning [10] ap-
proach. As prior works have shown, while it is impractical for
humans to set the entire curricula, it is inefficient to use a heuristic-
based teacher agent to setup curricula as they do not work on all
environments or do not generalize well. Thus, taking inspiration
from generative adversarial networks [8] and building on the prior
work of adversarially motivated intrinsic goals [13], we train the
teacher agent based on its ability to set goals in a curriculum style.
We then train a goal conditioned agent to reach these goal states.We
introduce the notion of allowing multiple teachers to train simul-
taneously while generating a curriculum for a single student, and
show that this approach can outperform a curriculum generated
by a single teacher. Furthermore, we analyse the effect of the be-
havioural cloning loss that we used on both the teacher and student
agents. To evaluate the performance of our method, we introduce a
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novel driving game that is also resettable, PyBullet-driving. In
cases where there is a single start state or the start state can be
precisely set, such as in PyBullet-driving, our results show the
potential of our algorithm to learn significantly faster than when
learning without a curriculum.

2 RELATEDWORK
Many algorithms use intrinsic motivation to help reinforcement
learning algorithms handle challenging sparse reward environ-
ments. There are many interpretations/formulations for intrinsic
motivation. Some approaches use state visitation counts as its met-
ric [1] , some define it as a measure of reducing uncertainty of
prediction models [4], and others as having unpredictable conse-
quences on the environment or entropy of the goal distribution
[14]. Some approaches also learn agents intrinsic rewards based on
the rewards from the environment [17].

[11] provided a classification and literature review of several
kinds of curriculum methods in reinforcement learning. In curricu-
lum learning [2], the student (agent) learns to perform on increas-
ingly difficult tasks or subgoals. In this work, we want to focus on
the case where the teacher agents sets these goals that are neither
too difficult nor too easy to achieve. Handcrafted curricula can be
time consuming and infeasible. AMIGo [5] introduced a novel way
of setting goals that are adversarially motivated — the teacher agent
learns to set goals by training in a fashion similar to generator in
a typical GAN setting. Our approach differs by 1) requiring the
teacher agent to reach the goal itself and 2) enabling the student to
learn from an additional signal of behavior cloning loss (over the
teacher’s trajectories). The closest setting to our work is introduced
in [12]. This paper’s contributions include:

(1) Introducing simultaneous, multiple teacher training and
show that it outperforms existing baselines

(2) Introducing a novel sparse reward driving simulator environ-
ment that we believe will be a good environment for future
curriculum learning research.

(3) Analyzing the effect of behavior cloning loss on both the
teacher and student agents.

(4) Providing empirical results suggesting the promise of this
method.

3 ADVERSARIAL MULTI-TEACHER
CURRICULUM DESIGNWITH TRACES

This section describes our novel approach and suggests why it can
outperform other existing approaches in sparse reward environ-
ments. Then, we define the behavioural cloning loss used to train
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the student agent. Finally, we formalise Adversarial Multi-Teacher
Curriculum Design with Traces in Algorithm 1.

3.1 Method
We train two types of agents — a Teacher and a Student. In each
Teacher-Student rollout, we sample a starting state 𝑠0 ∈ S and
starting from this state, the Teacher, with policy 𝜋𝑇 (𝑎 | 𝑠), interacts
with the environment for a number of time steps to reach the state
𝑔𝑡 ∈ S. Again, starting from the same state 𝑠0, the Student, with goal
conditioned policy 𝜋𝑆 (𝑎 | 𝑠, 𝑔𝑡 ), interacts with the environment and
tries to achieve goal state 𝑔𝑡 . The Teacher should aim to generate
increasingly difficult goals that form an ideal curriculum for the
Student to learn to reach a wide variety of difficult goal states.

There are two reasons why this approach may be helpful to
student learning. First, we know by construction that 𝑔𝑡 is reach-
able from starting state 𝑠0. Moreover, a Teacher provides a valid
trajectory from 𝑠0 to 𝑔𝑡 that the student can use to enhance the
Student’s learning through behavioural cloning. Second, with a
proper reward function as a function of the Student’s ability to
reach the set goals and validity of the goals, the training of the
Teacher will ensure that the goals it sets are incrementally difficult
for Student to achieve.

While traditional curriculum learning methods typically have
either a fixed curriculum or a single teacher agent, we consider
the case with multiple teachers. In each rollout, one of the Teacher
agents sets the goal and the Student tries to reach that goal. We
repeat this until each Teacher agent has set𝑚 goals. Once the rollout
data is collected, we update the model parameters for each of the
agents.

3.2 Reward Structure
We assign sparse rewards to both the Teacher and Student agents,
based on whether the Student is able to reach the goal set by a
Teacher. If Student reaches the goal set by a Teacher, that Teacher
gets a single reward of -5 and Student gets a single reward of +5. On
the other hand, when Student does not reach the goal, the Teacher
gets a reward of +5 and the Student gets a reward of 0.

3.3 Behavioural Cloning
For assisting a Student’s learning, we use a Behavioural Cloning
loss (L𝐵𝐶 ) for the Student along with a standard TD loss (e.g., the
TD3 actor loss).

L𝐵𝐶 = E(𝑠𝑡 ,𝑔𝑡 ) ∈{Student’s Mini-Batch}

[
∥𝜋𝐵 (𝑎 | 𝑠𝑡 , 𝑔𝑡 ) − 𝜋𝐴 (𝑎 | 𝑠𝑡 )∥2

]
3.4 Algorithm
We denote the 𝑛 Teacher agents as 𝐴1, 𝐴2,... 𝐴𝑛 . We denote the
Student agent as 𝐵. Consequently we represent the parameters of
actor and critic networks of Teacher agents with 𝜃𝐴1 , · · · , 𝜃𝐴𝑛

and
that of the Student agent with 𝜃𝐵 . In every “episode,”𝑚 times for
every Teacher agent, we do a rollout of the Teacher agent followed
by a rollout of the Student agent that aims to reach the goal set by
the corresponding Teacher agent. After all the rollouts, we update
the parameters of each Teacher agent (using the loss functions used
in typical reinforcement learning algorithm such as TD3) followed

by an update to the Student agent using a typical RL loss and a
behavior cloning loss functions. We repeat this loop for a fixed
number of episodes or until the Student agent learns to reach all
the goals set by teachers.

Data: 𝑁,𝑚 ; //Number of Teacher agents, multiplier

Data: 𝜃𝐴1 , · · · , 𝜃𝐴𝑛
, 𝜃𝐵 ; //Parameters for the agents

for episode = 1, 2, · · · do
for trial = 1, 2, · · · , 𝑁 ·𝑚 ; //Rollouts

do
Teacher[𝑖//𝑚] sets goal;
Student tries to achieve goal;

end
for 𝑖 = 1, 2, · · · , 𝑁 ·𝑚 do

Update 𝜃𝐴 (𝑖//𝑚) ; //RL Loss

Update 𝜃𝐵 ; //RL and BC Loss

end
end

Algorithm 1:Multi Teacher Asymmetric Self-play

4 EXPERIMENTAL DOMAIN
Due to the unavailability of popular sparse reward environments for
curriculum learning 1, we have created a driving environment us-
ing PyBullet [6]. The code for the driving environment is available
at https://github.com/kharyal/pybullet-driving-env. Some exper-
iments were also run using Cogment [15] and the code is made
available at https://github.com/kharyal/cogment-verse/tree/main

Figure 1: The PyBullet driving environment allows a Teacher
to set the goal state (•) by interacting with the environment
and the Student tries to reach the goal set by a Teacher.

Observation Space. The environment returns an observation vec-
tor and an occupancy map. The observaction vector is composed
of [𝑥,𝑦,𝜓, 𝜃, 𝜙, 𝑣𝑥 , 𝑣𝑦, 𝑔𝑥 , 𝑔𝑦], where 𝑥 and 𝑦 are the 𝑥 and 𝑦 co-
ordinates of the agent, 𝜓, 𝜃, and 𝜙 ∈ [−1, 1] are the normalized
Euler angles, and 𝑣𝑥 , 𝑣𝑦 are agent the velocities in the 𝑥 and 𝑦 di-
rections, and 𝑔𝑥 and 𝑔𝑦 define the x and y coordinates of the goal.
1In particular, a resettable environment (or one with a single, fixed start state) is
required as the Student needs to start from the same initial location as Teacher [13].
For example, most of the popular OpenAI gym [3] environments (like LunarLander-v2,
BipedalWalker-v2, HandManipulateBlock-v0 etc.) do not support this kind of reset-
ability.

https://github.com/kharyal/pybullet-driving-env
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Figure 2: Racetrack task

The occupancy map is a 75×75, three-channeled binary map: the
first channel denotes the position of car, the second channel shows
obstacles on the map, and the third shows the goal location.

Note that we provide both the occupancy map and the obser-
vation vector as the vector does not have information about the
obstacles’ position, and the image does not contain information
about agent orientation and velocity.

Action Space. The action is a continuous 2D vector [𝑡, 𝑠], where
𝑡 ∈ [0, 1] is the throttle and 𝑠 ∈ [−0.6, 0.6] is the steering angle.

Transition Dynamics. All obstacles are placed randomly for one
Teacher-Student roll-out according to a configurable probability
distribution. Given the action, PyBullet solves for the joint and
motor control of the car’s steering using realistic physics (including
friction and inertia), to produce the subsequent state.

5 EXPERIMENTS
This section empirically evaluates Adversarial Multi-Teacher Cur-
riculum Design with Traces in our driving domain. First, we con-
sider how a Teacher can improve a Student’s learning (relative to no
curriculum). Second, we analyse how the number of Teacher agents
effects the Student’s performance on unseen goals in a sparse-
reward environment. Third, we test how important the behavioural
cloning loss is to Student’s learning.

We implement all the Teacher and Student agents as independent
policies with similar network architectures with memory. Unlike
Teacher, Student has an extra condition on the goal in its policy.
We use TD3 [7] to train both Teacher and Student agents. The
hyperparameters used for the training are given in Table (2). When
the teacher runs, we allow it to run for 250 environmental steps —
the goal the teacher sets is the teacher agent’s location on step 250.
The student has a maximum number of 375 environmental steps —
if the student reaches the goal, the episode stops.

Experiment specifics are summarized in Table 1. Multiplier de-
notes the number of goals each teacher sets in one episode and is
introduced to ensure that each student gets to solve for an equal
number of goals. For example, each teacher in a 4-teacher run sets
one goal in one episode, while each teacher in a 2-teacher run sets
two goals, thus making the total number of goals set in each run
constant. For the no-curriculum baseline, since there are no teach-
ers, the multiplier denotes the number of random goals that the
student agent solves for in one episode.

We measure the generalization ability of trained agents by test-
ing them on randomly generated, unseen goals. Apart from this,

Table 1: Run specific parameters

Run # Teacher Multiplier

1-Teacher 1 4
2-Teacher 2 2
4-Teacher 4 1
no-curriculum baseline - 4
no-BCL baseline 1 4

Table 2: Hyperparameters used for TD3

Hyperparameter Value

Discount Factor (𝛾 ) 0.99
Policy noise (𝜎𝑇𝐷3) 0.1
Policy noise clip (𝑐) 0.2
Policy frequency 2
Optimizer Adam[9]
Learning rate 3 × 10−4
𝜏 0.005
Batch Size 512
Replay Buffer size 5000

we consider a racetrack-like configuration with unseen obstacles
(Figure 2).

Figure 3: This graph of the success rate (%) on random goals
versus episodes (averaged over 7 runs) shows that general-
izability increases with the increase in number of Teacher
agents. Moreover, we can note that the no-curriculum base-
line fails to learn anything useful due to the sparse reward
setting.

5.1 Impact of Adversarial Teacher Curriculum
Design with Traces

Figure 3 shows Student’s success rate on unseen goals, when trained
with different number of Teacher agents. Consider the difference
between the blue learning curve (with a single teacher) and the
purple learning curve (where there is no curriculum). This result
shows how a teacher can help improve the learning rate of the
student. Due to the sparse reward nature of the environment, the



agent trained without curriculum fails to learn, as it doesn’t get
enough feedback from the environment. Note that the total number
of environment interactions in an episode for the no-curriculum
agent is less than the agents in our method since there are no
teacher agent. To compensate for this, we run the experiment for a
longer time and show that the no-curriculum agent does not learn
much even after the 4-teacher agent has reached its peak.

5.2 Impact of Multiple Teachers
Figure 3 also compares the impact of different numbers of Teacher
agents. As the number of Teachers increases, the adversarial train-
ing is more stable, which leads to better generalization - as seen in
Figures (4) and (5), 4 Teachers provide better adversarial challenge.
This prevents the Student from overfitting on the narrow set of
goals a single Teacher generates.

Figure 4: Student’s (adversarial) reward averaged over 100
episodes vs episodes. It can be noted that 2 and 4 Teacher
provide much more adversarial challenge to Student as com-
pared to single Teacher. For lesser number of Teacher agents,
Student can easily overfit the goals set by them until they
learn to set new goals. This results in reduced generalizabil-
ity on unseen goals despite Student’s reward being extremely
high throughout the training.

5.3 Impact of Behavioural Cloning
Figure 6 shows the impact of behavior cloning. Surprisingly, remov-
ing the behavior cloning loss returns the student performance to
that similar to the performance when having no curriculum. Our
hypothesis for this behavior is the challenging nature of the sparse
reward environment accompanied by longer episodes making it
practically impossible for the Student agent (a normal goal con-
ditioned RL agent) to learn just based on the typical RL gradient
updates (like policy gradient). This inability of the Student agent
to learn quickly further leads to lack of feedback to the Teacher
agent(s) making them only as good as a random Teacher agent that
generates arbitrary goals. However this is only a preliminary result
and we consider thorough ablation studies to be part of the future
work.

6 CONCLUSION AND FUTUREWORK
We have proposed a novel Adversarial Multi-Teacher Curriculum
Design with Traces which uses multiple learning agents to produce

Figure 5: Success rate (left axis) and Student’s reward (right
axis) on random goals vs episodes. For more Teacher agents
(top), better Student’s reward hints towards better general-
ization, which is not the case with lesser number of Teacher
agents (bottom). This suggests a better adversarial learning
with increasing number of Teacher agents.

Figure 6: Average success rate vs episodes for 1 Teacher and
no-BCL baseline. This graph demonstrates that without the
Behavioural Cloning Loss, Student fails to learn much.

a diverse curriculum. We have also shown that this approach works
well on sparse reward environments. We have also created a new
environment which can act as a test-bench for future work in the
field of curriculum based and adversarial RL.

We have multiple goals for future work. First, we will test this
approach in multiple domains (with resettable simulators). Second,
we will investigate whether the Teacher and Student agents can
begin episodes from slightly different start states (e.g., a robotic arm
can be reset to a fixed start state, but it will never be perfectly the
same). Third, we will analyze Teachers’ learned polices to under-
stand what successful goal setting looks like in different domains.
Fourth, we will further analyze why Adversarial Multi-Teacher



Curriculum Design with Traces performs so much better than the
case when there is no behavior cloning loss.
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