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ABSTRACT
Deep Reinforcement Learning methods require a large amount
of data to achieve good performance. This scenario can be more
complex, handling real-world domains with high-dimensional state
space. However, historical interactions with the environment can
boost the learning process. Considering this, we propose in this
work an imitation learning strategy that uses previously collected
data as a baseline for density-based action selection. Then, we
augment the reward according to the state likelihood under some
distribution of states given by the demonstrations. The idea is to
avoid exhaustive exploration by restricting state-action pairs and
encourage policy convergence for states that lie in regions with
high density. The adopted scenario is the pump scheduling for a
water distribution systemwhere real-world data and a simulator are
available. The empirical results show that our strategy can produce
policies that outperform the behavioral policy and offline methods,
and the proposed reward functions lead to competitive performance
compared to the real-world operation.

KEYWORDS
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1 INTRODUCTION
Over the past years, Reinforcement Learning (RL) approaches com-
bined with function approximators have been applied in different
tasks such as games [21, 25] to control [36, 37]. The appeal of this
approach is the ability to support decision-making and leverage
scalability for complex domains. However, exploration in large state
spaces as found in the real world can be costly, inefficient, and even
infeasible. For example, in scenarios such as healthcare systems
and autonomous driving, trial and error methods are not an option
due to safety constraints. A way to mitigate these problems is using
historical interactions with the environment, an approach called
Offline Reinforcement Learning1.

In the Offline RL [22] settings, the experiences of the agent are
limited to collected data, without the possibility of further explo-
ration. The reasons for this limitation include the complexity of
building accurate simulators and safety constraints for exploring
the environment. Even when online data collection is reasonable,
the use of prior datasets capable of generalizing to efficient policies
can be attractive due to the costs to interact with the environment.

1Some works uses the term Batch instead of Offline
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Offline RL methods such as [10, 19] rely upon the idea of constrain-
ing the policy to the dataset to mitigate overestimation caused when
facing out-of-distribution state-action pairs.

On the other hand, in Online RL, agents interact with the envi-
ronment in an exploration-exploitation trade-off fashion. A widely
applied exploration strategy is the epsilon-greedy [32], in which a
given probability trade-off between exploring the environment or
exploiting the policy learned. The exploration can also be encour-
aged by intrinsic motivation as curiosity or disagreement in the
state’s estimation by augmenting the reward function. For instance,
some works [1, 4, 33] propose strategies based on counting occur-
rences of states/actions to encourage exploration of unfamiliar areas
of the state-action space. In [27], the reward is augmented based on
the disagreement of an ensemble of parametric Q-functions. Finally,
methods to perform safe exploration are discussed in [11]. In partic-
ular, incorporating demonstrations and restricting the exploration
to meaningful states can produce safe policies.

This work proposes the Safety through Intrinsically Motivated
Imitation Learning (SIMIL) strategy that uses the distribution of
historical interactions (demonstrations) as a guideline for action se-
lection. The approach works as follows: given a current state, action
selection depends on choosing the one that occurs most frequently
in the most similar states found in the demonstrations. Later, we
augment the immediate reward with an intrinsic motivation [31]
according to the state likelihood under some distribution of states.
The underlying idea is to constrain the policy to state-action pairs
found in expert demonstrations using k-Nearest Neighbors (k-NN)
to avoid exhaustive exploration. Also, we encourage states that
lie in high-density regions under the demonstrations distribution
using Kernel Density Estimation (KDE) [28].

We apply this imitation learning strategy in a scenario of pump-
ing scheduling for water distribution systems (WDS). For that, it
is available a dataset of three years of data collected in timesteps
of one minute from a real-world operation. The pump scheduling
is the process to decide when, and in some cases at which speed,
the pump(s) should operate regarding the forecasting of the water
demand. Yet, some requirements must be satisfied, including safety
constraints of water level in the tanks and pressure in the network’s
nodes. Some works have addressed these questions through several
methods, including linear optimization, evolutionary and branch-
and-bound algorithms, and recently Deep RL [2, 7, 12, 13]. This
work uses a Deep Q-Networks (DQN) [24, 25]-based approach to
handle the pump scheduling problem. The contributions presented
in this work are the following:

• A formulation of the pumping scheduling problem using
Partially Observable Markov Decision Process (POMDP) is
presented, with definitions of system states/observations,
actions, and reward function. These definitions allow the
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system to operate by achieving the constraints and minimiz-
ing the associated costs;
• An imitation learning strategy using real-world/offline data.
The empirical results demonstrated that the obtained policies
achieved competitive average cumulative rewards compared
with fully-offline training.
• To evaluate the proposed scheduling, we compare the results
with the real-world water distribution system regarding the
electricity consumed, pumps use distribution and the tank
level profile. The results showed that our approach achieved
competitive performance with real-world operation.

The organization of the paper is as follows. Section 2 describes
some related works. Section 3 introduces the pump scheduling
problem and its formalization as a POMDP; Section 4 presents
the architecture used and technical aspects. Section 5 describes
the imitation learning strategy proposed. Section 6 describes the
conducted experiments and shows the obtained results. Finally, are
presented conclusions in Section 7.

2 RELATEDWORKS
Offline RL methods rely on the capacity to exploit and generalize
from static datasets to efficient policies. Although, leveraging the
learning process using prior experiences can be challenging due
to the distributional shift issue and overly optimism in the face of
uncertainty [10, 22]. The Random Ensemble Mixture (REM) [3] used
in this paper addresses this problem by using a convex combination
of Q-values to mitigate overestimation under the assumption of
a diverse and large dataset. Also, it can be adopted orthogonally
to other sampling methods allowing further online data collection.
Similarly, Jaques and colleagues [19] handle the overestimation
issue by applying a dropout-inspired Q-learning and penalizing
divergence from prior data distribution through KL-control. Batch
Constrained Deep Q-Learning (BCQ) [9, 10] also constrains the
policy regarding actions found in the dataset using as a baseline a
generative model.

Some other works have used demonstrations as a pre-training
step. In [17] is presented Deep Q-learning from Demonstrations
(DQfD) that uses demonstrations as a pre-training and later im-
proves the learned policy with self-generated experiences. The
pre-training phase applies a supervised loss to ground values from
unseen actions regarding the demonstrations. After the pre-training,
DQfD interacts with the environment through the learned policy.
In [26] the method incorporates the actor-critic algorithm DDPG,
and a loss is applied to tie the policy to the offline data.

As an imitation learning strategy, this work interacts with the
environment by performing a density-based action selection us-
ing the demonstrations as a distribution. Some approaches instead
use this distribution to create models to perform exploration. For
instance, Model-based Offline Policy Optimization (MOPO) [38]
builds a model using supervised learning and then penalizes the
uncertainty in further interactions based on the model’s error esti-
mation. Therefore, MOPO balances the return and risk in collecting
experiences out-of-distribution of the support data. Similarly, the
Model-Based Offline Reinforcement Learning (MOReL) [20] pro-
poses to learn a policy for a pessimist MDP (P-MDP) using offline

data. This P-MDP partitions the state space according to the un-
certainty, applying a reward penalty to unknown areas. In [30]
the authors propose a model-based approach that can mix online
data collection with prior offline data. For that, a model is built and
incrementally improved through Monte Carlo Tree Search rollouts.

Imitation Learning approaches [18] aims to mimic the behav-
ior observed in demonstrations. In [5] is proposed a hierarchical
method for action selection with self-improvement over time. The
first step is to select a primitive that corresponds to some behavior.
The second step is selecting a sub-goal achieved by performing
the chosen primitive. Finally, an action generator picks a policy
to execute the primitive. The underlying idea is to improve the
action generator by practicing. Similar to our work and [6], this
approach uses k-NN queries to retrieve a primitive from demon-
strations given a current state. The difference lies in the fact that
we propose a passive sampling approach, letting the evaluation of
the state-action pairs to the learning method.

Our work has a basis on the wealth of literature on imitation
learning and offline RL. However, the intersection between these
branches remains underexplored. While offline methods rely upon
methods to improve the exploitation of static datasets, the explo-
ration often seeks to uncover areas in the state space. Yet, static
datasets may not be large and diverse, and exploring unknown
states can produce undesirable behaviors. Thus, the premise of our
contribution is to increase the sample efficiency. We consider expert
demonstrations as an underlying model for action selection and
encourage policy convergence to high-density regions under the
demonstration distribution through intrinsic motivation.

3 MODELING THE PUMP SCHEDULING
PROBLEM

In water distribution systems, pump scheduling is a decision pro-
cess about when operating pumps to supply water while limiting
electricity consumption. Therefore some constraints must be re-
spected, including a minimum pressure within the network, safety
water level in the tanks, and avoiding frequent switches in pump
operation to protect the assets. To that end, distinct strategies can
be used according to the particularities of the system. For instance,
pumping water in off-peak hours when the price of electricity has
different tariffs throughout the day or reducing the tank level in
periods of low consumption to preserve the water quality, and so
on.

The water distribution system used here is located in Worms,
Germany, and supplies water for about 120000 citizens2. The com-
position of this system is one station with four pumps (NP1, NP2,
NP3, NP4), with distinct settings and fixed speed (ON/OFF). The
flow 𝑄 through those pumps is proportional to the electricity con-
sumption 𝑘𝑊 , being NP1 > NP2 > NP3 > NP4. In other words,
using pump NP1 supplies more water in the network than pump
NP2 but also corresponds to higher electricity consumption. Also,
two storage tanks with different capacities are placed and provide
water for the end consumers. Among the constraints and require-
ments established in the operation settings for this system are the
following:

2The dataset has been provided by the IoT.H2O project (IC4WATER JPI funding)



• It is desirable to avoid frequent switches and distribute pump
operations to protect the assets;
• It is imposed a boundary condition of the tank level and,
once achieved, the minimum pressure is guaranteed;
• It is desirable to provide water exchange in the tank during
one day of operation to keep the water quality.

Figure 1: The tank constraints.

Figure 1 shows the
constraints defined for
the tank levels. The tank
is located 47m above the
pumps and has a 10m
length. Thus, the tank
levels considered are in
the range of [47, 57]m.
We assume only one tank
once that the second has
the level stable along
with the operation. The specialists consider a safety operation guar-
antee with at least 3m filled with water. Besides this, the system
does not have sensors measuring the water’s quality. Thus, to en-
sure the exchange and preserve the water’s quality, we assume that
in one operation day, the level must decrease below half of the
total capacity. Finally, the upper boundary constraint overlaps the
physical limit.

As with many real-world tasks, the scenario of pumping sched-
uling is partially observable. In other words, the agent has a noisy
or incomplete observation of the environment. For example, some
state features are noisy since they are collected by sensors. Also,
the water demand has variance along the hours, days, and seasons,
even following a pattern as shown in Figure 2. A POMDP is an
extension of MDP that considers uncertainty regarding the current
state of the environment. Formally, the POMDP can be defined
as [32]:

Figure 2: Water consumption pattern of Worms WDS.

𝑃𝑂𝑀𝐷𝑃 = < 𝑆,𝐴, 𝑃, 𝑅,Ω,𝑂,𝛾 > (1)
where the set 𝑆 correspond to the States of the environment;

𝐴 is defined as the set of Actions available; 𝑃 is the Transition
Probability which defines the probability being in some state

𝑠𝑡 ∈ 𝑆 , taking an action 𝑎𝑡 ∈ 𝐴, resulting a next state 𝑠 ′𝑡+1 ∈ 𝑆 ; the
Reward 𝑟𝑡 ∈ 𝑅 is the return to be in some state 𝑠𝑡 and perform an
action 𝑎𝑡 ; 𝑂 is the set of conditional probabilities of take an action
𝑎𝑡 in some state 𝑠𝑡 and receive an Observation 𝑜𝑡 ∈ Ω about the
next state 𝑠 ′

𝑡+1; Finally, 𝛾 is the Discount Factor ∈ [0, 1] which
determines the relevance of immediate rewards over rewards in the
future.

The States 𝑆 and the Observations Ω are interchangeable in
the context of this work as adopted in [14] and represented by:

• The water level in the tank and water consumption;
• The previous action performed (currently being applied);
• The cumulative time that the pumps operated in a horizon
length of 24 hours, the month and time 𝑡 ;
• A binary value called water quality indicating whether on
the current day of operation the system has reached a certain
minimum in the tank level.

Actions 𝐴 are defined by the set of binary values that represent
if some pump is operating (value 1) or not (value 0) once the pumps
have fixed speed. At each timestep, only one pump is running or
none of them.

Finally, two Reward functions are designed to choose the most
efficient pump at a given time 𝑡 , as well as respect the boundary
conditions of the tank level, preserve the water quality, and make
use of different pumps. The immediate rewards are defined by the
Equations 2 and 3:

𝑟𝑡 = 𝑒
1/(−𝑄𝑡 /𝑘𝑊𝑡 ) − 𝐵 ∗𝜓 + log(1/(𝑃 + 𝜔)) (2)

𝑟𝑡 = −𝑒 (−1/𝑘𝑊𝑡 ) − 𝐵 ∗𝜓 + log(1/(𝑃 + 𝜔)) (3)

where at the time 𝑡 , 𝑄𝑡 is the flow rate through the active pump,
and 𝑘𝑊𝑡 is the respective electricity consumption; 𝐵 is the achieve-
ment of lower/upper restrictions of the water level in the tank.
These lower/upper values are defined by specialists in the system
and in case of not achievement, 𝐵 = 1 in case of overflow and 𝐵 =

𝑎𝑏𝑠 (𝑙𝑒𝑣𝑒𝑙_𝑜 𝑓 _𝑡ℎ𝑒_𝑡𝑎𝑛𝑘𝑡 − 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦_𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛) ∈ (0, 1] in case of
(near) shortage, being 𝜓 = 10, otherwise 𝐵 = 0. Also, 𝐵 has an
exception, being -1 strictly for the timestep when the tank level
reaches the water quality condition. 𝑃 is a penalty that increases
with accumulated pump run time. The penalty 𝑃 increases +1 at
each timestep of cumulative operating time, and for the Equation 3
it also hold for the action (NOP). In the case of switching to a pump
that has already been running throughout the day, 𝜔 equals 30 for
the respective timestep of the switch, otherwise 1. If no pumps are
running, neither −𝑒 (−1/𝑘𝑊𝑡 ) nor 𝑒1/(−𝑄𝑡 /𝑘𝑊𝑡 ) are considered.

Which differentiates the Equation 2 is efficiency regarding the
pumps through 𝑄𝑡/𝑘𝑊𝑡 , when the Equation 3 directly penalize
the electricity consumption through the term 𝑒−1/𝑘𝑊𝑡 . As a conse-
quence, this leads to a different perception regarding the actions.
As the agent tries to maximize these rewards along its trajectory,
the result is the emergence of some behavior applying the policy
learned through these distinct returns. Thus, by designing two re-
ward functions, we aim to analyze the adequacy of those behaviors
regarding the goals established.



4 DEEP REINFORCEMENT LEARNING
The DQN [24, 25] combines Q-Learning [35] with Deep Neural
Networks. The state-input can be, for instance, a set of images or
continuous values, and the output is an estimation of how good is
be in that state 𝑠 and perform an action 𝑎, called Q-value. During the
learning process, DQN tries to approximate the optimal Q* for each
state-action pair performing updates through the Bellman equation.
This approach achieves higher scalability compared to other meth-
ods once that is not necessary to keep a vast search space. Later,
Hausknecht and Stone [14] introduced long short-term memory
(LSTM) in this structure to handle partially observable environ-
ments, and van Hasselt and colleagues adopt a Double DQN [34] to
tackle the optimistic nature of the original Q-Learning. The present
work is built upon these ideas, as shown in Figure 3.

Figure 3: The architecture with the hidden layers LSTM and
Dense.

4.1 Learning Process
Using a simulator of the environment and real-world data of the
water consumption at determined time 𝑡 (see Figure 2), the sim-
ulator can calculate at timestep 𝑡 the values of flow 𝑄 , pressure
𝐻 , and electricity consumed 𝑘𝑊 , as well the tank level at 𝑡 + 1.
The dynamic of this simulator is first to define the state 𝑠 and then
use some strategy to choose an action to be performed. Once this
action is applied, a reward is given, and the next state is perceived,
constituting a transition 𝑇 = < 𝑠𝑡𝑎𝑡𝑒, 𝑎𝑐𝑡𝑖𝑜𝑛, 𝑟𝑒𝑤𝑎𝑟𝑑, 𝑛𝑒𝑥𝑡 𝑠𝑡𝑎𝑡𝑒 >.

During this process, new transitions feed the Experience Replay.
The Experience Replay [23] and the Target Network are two tech-
niques applied in [25], to improve the performance of DQN. The
former break the correlation of data, and the latter makes the learn-
ing process more stable. Transitions stored in the replay memory
consist of a batch. Then, this batch is split into mini-batches and
shuffled to break the correlation between the data. Finally, the states
of these mini-batches are inputs in the neural network, which aims
to approximate Q*(s, a) through the Bellman Equation 4 [32].

𝑄∗ (𝑠, 𝑎) = E[𝑅(𝑠, 𝑎) + 𝛾𝑚𝑎𝑥𝑎′𝑄 ′(𝑠 ′, 𝑎′)], (4)
where an expectation is defined regarding the future returns, dis-

counting it through the factor 𝛾 ∈ [0, 1]. The Q-Learning approach
establishes a convergence for the optimality, updating the Bellman
equation through Equation 5.

𝑄 (𝑠, 𝑎) = 𝑄 (𝑠, 𝑎) + 𝛼 [𝑅(𝑠, 𝑎) + 𝛾𝑚𝑎𝑥𝑎′𝑄 ′(𝑠 ′, 𝑎′) −𝑄 (𝑠, 𝑎)] . (5)

In order to update the Q(s, a), every state-action pair is recorded
and updated iteratively in the tabular form of Q-learning [35]. This
approach suffers from a problem called curse of dimensionality [32]
as the number of possible states and actions grows. This can be even
more complicated when considered continuous values, that must
be discretized in some way. For that, DQN combines Q-learning
with neural networks as a function approximator with weights 𝜃
to estimate the Q-values. This is accomplished by minimizing the
loss 𝛿 at each time step 𝑖 , as shown in Equation 6.

𝛿𝑖 (𝜃𝑖 ) = E[𝑅(𝑠, 𝑎) + 𝛾𝑚𝑎𝑥𝑎′𝑄 ′(𝑠 ′, 𝑎′, 𝜃𝑖−1) −𝑄 (𝑠, 𝑎, 𝜃𝑖 )]2, (6)

where the weights 𝜃𝑖−1 are those fixed in the target network that
in turn, are periodically updated copying weights 𝜃 . The frequency
that the target network updates can be seen as a hyperparameter,
being with the replay memory properties an object of study in the
performance of DQN and variants [8].

The problem of traditional Q-learning is that it tends to overesti-
mate state-action pairs out of the distribution when exploiting a
fixed dataset [10]. REM mitigates this using an ensemble of models
to improve the generalization through the Equation 7.

𝛿𝑖 (𝜃𝑖 ) = E[𝑅(𝑠, 𝑎) + 𝛾𝑚𝑎𝑥𝑎′
∑︁
𝑘

𝛼𝑘𝑄
′
𝑘
(𝑠 ′, 𝑎′, 𝜃𝑘𝑖−1)−∑︁

𝑘

𝛼𝑘𝑄𝑘 (𝑠, 𝑎, 𝜃𝑘𝑖 )]
2,

(7)

where for each mini-batch, 𝛼 is a set of weights randomly gen-
erated such that

∑
𝑘 𝛼𝑘 = 1. Thus, REM is a convex combination of

Q-values, converging for itself [3].

4.2 Sample Efficiency
The performance of the family of DQN-based approaches is strongly
correlated with sample efficiency. This section describes the strate-
gies adopted to provide richer observation of the current state,
improve training performance, and make better use of samples.

4.2.1 State stacking. In the original approach of DQN, 𝑛 last previ-
ous states (frames) are concatenated [25]. Thus, the input provides
a richer observation of the current state, such as the system’s dy-
namic.

4.2.2 Training data scale. The state-input values have different
ranges that differ substantially. It is applied normalization in both
states and reward values for the range [0, 1] using Equation 8.
The feature is the value 𝑥 , and max/min was defined considering
historical observations.

𝑥 ′ =
𝑥 −𝑚𝑖𝑛(𝑥)

𝑚𝑎𝑥 (𝑥) −𝑚𝑖𝑛(𝑥) (8)

4.2.3 Prioritized Experience Replay (PER). Schaul and colleagues
present in [29] an improvement regarding the Experience Replay,
prioritizing samples more "unexpected". In other words, samples
that provide the highest values |𝛿𝑖 | through the Equations 6 are



those much to learn from [16]. Then, every transition in the mini-
batch is associated with the correspondent magnitude of the loss,
such as 𝑇 = < 𝑠𝑡𝑎𝑡𝑒, 𝑎𝑐𝑡𝑖𝑜𝑛, 𝑟𝑒𝑤𝑎𝑟𝑑, 𝑛𝑒𝑥𝑡 𝑠𝑡𝑎𝑡𝑒, |𝛿 | >. Finally, to
balance the bias introduced by the prioritization of samples, PER
applies Importance Sampling (IS) weights.

5 IMITATION LEARNING
The imitation learning strategy Safety through Intrinsically Moti-
vated Imitation Learning (SIMIL) present in this work assumes that
offline data is available and online data collection is feasible. The
underlying idea is to use the offline dataset distribution as a model
to constrain the action selection and enhance the sample efficiency
while encouraging the policy’s convergence to states that lie in
high-density regions under the same prior distribution.

The imitation learning strategy works as a follows: given a cur-
rent state 𝑠𝑡 and demonstrations D, select the action 𝑎 mostly ap-
plied in the k-most similar states to 𝑠𝑡 in D. For that, we make use
of k-Nearest Neighbors (k-NN), where the parameter k can be cho-
sen such that minimizes the distance𝑚𝑖𝑛

∑
D 𝑑 (𝜏, 𝜏D ), regarding

trajectories 𝜏D ∈ D. The objective is to keep new transitions tied
to the previously collected data, mitigating overestimation facing
unseen state-action pairs. Finally, a reward bonus 𝜌𝜂 (𝑠𝑡 ) is added
to the immediate reward according to the Kernel Density Estimation
(KDE) for 𝑠𝑡 through Equation 9, being 𝜌 the importance factor for
the bonus. Thus, we encourage policy convergence to states with
high density under prior dataset distribution.

𝜂 (𝑠𝑡 ) =
1
𝑁

𝑁∑︁
𝑖=1

𝐾

(
𝑠𝑡 − 𝑠D𝑖

ℎ

)
. (9)

In Equation 9, 𝐾 (𝑠𝑡 ) ≥ 0 is the kernel that estimates the density
for the current state 𝑠𝑡 over the states 𝑠D found in the demonstra-
tions. The parameter ℎ is the bandwidth that trade-off the results
between balance and variance. In this work, we adopt the k-NN
based on Manhattan distance once it can provide suitable metric
for real-values without parameter tuning and KDE with a gauss-
ian kernel from Scikit-learn [28]. The Algorithm 1 summarizes the
strategy proposed.

In particular, we reduce the dimensionality of the state’s repre-
sentation for the meaningful features regarding the current sta-
tus of the WDS and skip some of them for the k-NN queries.
That is because the timesteps are strongly correlated, and skip-
ping some of them reduces the computational overhead due to
k-NN query. Thus, the state representation used to calculate the
reward bonus and perform k-NN queries has the reduced form of
𝜙 (𝑠𝑡 ) = < 𝑡𝑎𝑛𝑘 𝑙𝑒𝑣𝑒𝑙,𝑤𝑎𝑡𝑒𝑟 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛, 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑡𝑖𝑚𝑒,𝑚𝑜𝑛𝑡ℎ >.

6 EXPERIMENTS
6.1 Experimental Setup
In this work, we aim to evaluate if (1) the proposed imitation learn-
ing strategy can generate policies that outperform offline methods
baselines; (2) the proposed POMDP can obtain policies that offer a
competitive performance relative to that observed in the real world.
To this end, we conducted the experiments using the real-world
dataset divided into one year for the learning process and one year
for the evaluation. Both Offline RL methods and SIMIL use the same

Algorithm 1: Safety through Intrinsically Motivated Imi-
tation Learning (SIMIL)

Input: set of Q-Networks with weights 𝜃𝑄 , set of Target
Q’-Networks with weights 𝜃𝑄

′ ← 𝜃𝑄 , replay
memory D ′, demonstrations D, frequency which
update target net 𝜆, importance factor 𝜌 ;

Output: Policy 𝜋
1 for 𝑡 ∈ {1, 2, ...} do
2 Sample state 𝑠𝑡
3 Select action 𝑎𝑡 using k-NN (𝑠𝑡 ) in D
4 Play (𝑠𝑡 , 𝑎𝑡 ), observe the reward 𝑟𝑡 and the next state 𝑠 ′𝑡
5 Calculate 𝜂 (𝑠𝑡 ), sum it to a final reward 𝑟 ′𝑡 = 𝑟𝑡 + 𝜌𝜂 (𝑠𝑡 )
6 Store transition (𝑠𝑡 , 𝑎𝑡 , 𝑟 ′𝑡 , 𝑠 ′𝑡 ) into D ′
7 𝑠𝑡 ← 𝑠 ′𝑡
8 end
9 for 𝑡 ∈ {1, 2, ...} do
10 Sample a mini-batch of n transitions from D ′
11 Calculate loss 𝛿 (𝜃𝑄 )
12 Perform a gradient descent step to update 𝜃𝑄

13 if t mod 𝜆 = 0 then
14 Update the set of weights 𝜃𝑄

′ ← 𝜃𝑄

15 end
16 end

amount of data for learning. For accurate comparisons, all samples
interact with the simulator for both training and evaluation. This
means that the evaluation of the offline dataset is done through
interactions with the simulator. We compare the policies BCQ, REM,
and SIMIL + REM using 5 models for each reward function due to
the stochasticity in the learning process [15]. Table 1 shows the
experimental setup used.

Hyperparameter Value
State stacking 4
Mini-batch size 36

(LSTM, Dense, Dense) nodes (100, 100, 100)
Update target 𝜆 12000

Loss function (REM) Huber loss
Loss function (BCQ) Mean Squared Error

Optimizer Adam
Learning rate 0.00003
Discount factor 0.99

𝛼 (PER) 0.6
𝛽 (PER) 0.4→ 1

#Q-Networks (REM) 5
BCQ threshold 0.3

𝐿2 regularization (dense layers) 0.000001
Table 1: Experimental setup

6.2 Results
To analyze the performance, we call the set of policies obtained
using the Equations 2 and 3 by Π1 and Π2 respectively. We show in



Policy Electricity Consumption (kW)
REM Π1 -1.11 ± 9.78

SIMIL + REM Π1 -4.05 ± 1.97
BCQ Π1 -3.54 ± 2.71
REM Π2 4.08 ± 7.93

SIMIL + REM Π2 -3.33 ± 5.77
BCQ Π2 -1.40 ± 3.33

Table 2: Average electricity consumption (%) ± standard devi-
ation compared to real-world operation.

Figure 4 the min, max, and average cumulative reward along with
the episodes using the 5 policies obtained. The results show that
SIMIL has lower variance and competitive performance relative to
cumulative rewards compared to fully-offline policies. The lower
peaks in performance are mainly due to not meeting the tank level
safety constraints.

The three sub-goals: electricity consumption, distribution of
pump usage, and tank level are the counterparts of the policy.
Thus, a suitable policy performs with lower electricity consump-
tion/higher efficiency, reduces switches, and distributes the pump
operation while respecting the tank level constraints. We show
in Figure 5 the performance of policies 𝜋∗ with a better average
cumulative reward for Offline RL and SIMIL. Tables 2 and 3 present
a comparison between the policies using as baseline the real-world
statistics for the evaluation data. Table 2 compares the electricity
consumption for Π regarding real-world operation while Table 3
shows the action distribution for 𝜋∗. The results show that SIMIL
policies achieve competitive results with real-world operations con-
sidering electricity consumption. Finally, generally, the policies
presented an operation in the safety range of tank levels.

Sensitivity analysis.We hypothesize that in the demonstration
dataset, undesirable states tend to be visited less frequently, leading
to a smaller 𝜂 (𝑠𝑡 ) bonus to their relative density. Since the aug-
mented reward by intrinsic motivation changes the behavior of the
policy in favor of known states, it might work as a safety constraint.
However, this bonus can be contradictory to other policy sub-goals.
For instance, policies obtained using Equation 3 (Π2) tend to avoid
operating (NOP) or use less powerful pumps more, consequently
leading to lower tank levels where the electricity consumption is
lower. On the other hand, mid-tank level states tend to be those that
lie in the highest density regions. To evaluate this, we compared
the importance factor 𝜌 as 0 (no bonus), 1 (used in the previous
experiments), and 5, and the results are presented in Figure 6. The
empirical results indicate a decrease in the cumulative average re-
ward for the policy set Π2 using 𝜌 = 5. Contrary, the Π1 policies
perform slightly better, showing a tendency to use less powerful
pumps to stay longer in the mid-range tank levels. Finally, 𝜌 = 1
has better performance compared to 𝜌 = 0 for both scenarios.

7 CONCLUSIONS
This work presents Safety through Intrinsically Motivated Imitation
Learning (SIMIL), an imitation learning strategy using density-based
action selection and intrinsic motivation to constrain policies to
expert demonstrations. Our contribution lies in the idea that SIMIL,
while retrieving expert demonstrations behavior, also allows the

Policy NOP NP1 NP2 NP3 NP4
Real-world 30.47 8.30 43.42 8.31 9.50
REM 𝜋∗1 11.38 4.93 0.87 82.82 0.0

SIMIL + REM 𝜋∗1 17.05 0.17 28.54 5.29 48.95
BCQ 𝜋∗1 22.87 17.79 8.13 51.09 0.12
REM 𝜋∗2 32.64 25.85 0.04 41.47 0.0

SIMIL + REM 𝜋∗2 28.08 3.12 36.04 4.89 27.87
BCQ 𝜋∗2 37.11 37.48 0.06 25.35 0.0

Table 3: Action distribution (%)

possibility of extrapolating it in favor of states that lies in high-
density regions. That could represent a means to deploy safe deep
RL approaches in real-world applications. Finally, the results show
that SIMIL can lead to policies that could even outperform fully-
offline methods.

We present a real-world problem called pumping scheduling for
water distribution utilities as an evaluation scenario. The contri-
butions of this work extend to this domain. The proposed reward
functions lead to policies that satisfy the safety constraints, protect
the assets and lead to electricity savings. The authors hope that this
representation of the pumping scheduling problem can help other
researchers in different WDS settings.
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