
Multi-agent RMax for Multi-Agent Multi-Armed Bandits
Eugenio Bargiacchi

Artificial Intelligence Lab

Vrije Universiteit Brussel

Belgium

svalorzen@gmail.com

Raphael Avalos

Artificial Intelligence Lab

Vrije Universiteit Brussel

Belgium

raphael.avalos@vub.be

Timothy Verstraeten

Artificial Intelligence Lab

Vrije Universiteit Brussel

Belgium

timothy.verstraeten@vub.be

Pieter Libin

Artificial Intelligence Lab

Vrije Universiteit Brussel

Belgium

pieter.libin@vub.be

Ann Nowé

Artificial Intelligence Lab

Vrije Universiteit Brussel

Belgium

ann.nowe@vub.be

Diederik M. Roijers

Vrije Universiteit Brussel

HU Univ. of Appl. Sci. Utrecht

Belgium / The Netherlands

diederik.roijers@vub.be

ABSTRACT
In this paper, we provide PAC bounds for best-arm identification

in multi-agent multi-armed bandits (MAMABs), via an algorithm

we call multi-agent RMax (MARMax). In a MAMAB, the reward

structure is expressed as a coordination graph, i.e., the total team

reward is a sum over local reward functions that are conditioned

on the actions of a subset of the agents. Assuming that these local

rewards functions are bounded, we derive a PAC(𝛿, 𝜀) learning

algorithm that achieves an accuracy of 𝜀 relative to the maximum

team reward, with a number of required samples at most linear in

the size of the largest reward reward function with probability 1−𝛿 .
Furthermore, we show that in practice MARMax performs much

better than this theoretical upper bound on the sample complexity

by an order of magnitude. We further improve on the empirical

result by tempering the optimism used in MARMax, resulting in

a new algorithm that we call MAVMax. We show empirically that

MAVMax further cuts down the number of required samples by

around 30% w.r.t. MARMax.

KEYWORDS
PAC bounds, multi-agent systems, multi-armed bandits, best-arm

identification, RMax

1 INTRODUCTION
Imagine a wind-farm with multiple turbines [17]. The orientation

with respect to the incoming wind direction – the yaw – deter-

mines the power output of a turbine. At the same time, a turbine’s

orientation also affects the intensity of its wake, which reduces the

power produced by the wind turbines downwind of it. We thus

need to find the right joint policy for the entire wind-farm. This is

an example of a multi-agent coordination problem. Furthermore,

because the dynamics of the environment are initially unknown,

we need to learn the optimal joint policy through (multi-agent)

reinforcement learning.

The example given above can be modelled with a multi-agent
multi-armed bandit (MAMAB) [2]. In these settings, agents (e.g.,

turbines) can influence local rewards (e.g., the power output of a

single turbine), with their local actions. However, the actions of an

agent only impact a subset of the local rewards; the setting is loosely

Proc. of the Adaptive and Learning Agents Workshop (ALA 2022), Cruz, Hayes, Silva,
Santos (eds.), May 9-10, 2022, Online, https://ala2022.github.io/ . 2022.

coupled [6]. Exploiting this property of being loosely coupled is

key to keeping such problems tractable. Both for selecting a joint

action [6], and, as we show in this paper, for learning.

Previous approaches for learning in MAMABs have focused on

minimising regret [2, 18]. That is, the learning happens in operation,

always continues, and we aim to minimise the amount of reward

missed due to exploring. However, this is not always how learning

can be applied in practice. Many real-world problems require the

learning phase to be limited in time, until a level of confidence is

reached. When this confidence level is reached, the agents should

stop learning, and the policy can be deployed for long-term execu-

tion in practice. This is called the best-arm identification setting in

the bandit literature.

In this paper, we contribute themulti-agent RMax (MARMax) and
multi-agent VMAX (MAVMax) algorithms for best (joint) arm identi-

fication in multi-agent multi-armed bandits. We show that to reach

a confidence level of 1−𝜀, with a probability of 1−𝛿 , i.e., a 𝑃𝐴𝐶 (𝜀, 𝛿)
guarantee, we can bound the number of joint action executions.

When the local reward functions are all bounded within the same

interval, this number of joint action executions does not depend

on the number of local reward functions, nor the size of the full

joint action space, but only on the maximum number of local joint
actions for a local reward function. This renders the exploration

process in MAMABs much more efficient than by flattening the

problem to single-agent bandits. To the best of our knowledge these

are the first algorithms that provide PAC-guarantees for best-arm

identification in MAMABs.

We evaluate MARMax and MAVMax on a set of benchmarks

from the MAMAB literature, and show that while our guarantees

already provide a probability bound on the number of samples until

the desired confidence level is reached, in practice our algorithms

require significantly fewer samples. Especially in MAVMax, which

uses more tempered optimism in the face of uncertainty compared

to MARMax, we are able to significantly decrease the number of

samples, i.e., the number of joint action executions, that is necessary

to reach the desired confidence level compared to the theoretical

upper bound on this number of joint action executions.

https://ala2022.github.io/

2 BACKGROUND
We model our problem as a multi-agent multi-armed bandit, which

is a repeated fully cooperative multi-agent game with a factored

team reward function:

Definition 2.1. A multi-agent multi-armed bandit (MAMAB) is a

tuple ⟨A,D, 𝐹 ⟩ where
• D is the set of 𝑁 enumerated agents,

• A = A1 × · · · × A𝑁 is a set of joint actions, which is the

Cartesian product of the sets of individual actions, A𝑖 , for

each agent in D,

• 𝐹 (a), called the global reward function, is a random func-

tion taking a joint action, a ∈ A, as input, but with added

structure. Specifically, there are 𝜌 possibly overlapping sub-

sets of agents, and the global reward is decomposed into

𝜌 local noisy reward functions: 𝐹 (a) = ∑𝜌

𝑒=1
𝑓 𝑒 (a𝑒) where

𝑓 𝑒 (a𝑒) ∈
[
0, 𝑟𝑒

max

]
. A local function 𝑓 𝑒 only depends on the

local joint action a𝑒 of the subset D𝑒
of agents.

In this work we tackle the problem of best arm identification. In
particular, we focus on the goal of recommending a joint arm that,

with probability 1 − 𝛿 , has an expected mean within a factor 𝜀 of

the optimal one. We refer to the mean reward of a joint action as 𝜇a,
which in turn is factorized into the same local reward components

as 𝐹 (a): 𝜇a =
∑𝜌

𝑒=1
𝜇𝑒 (a𝑒). For simplicity, we refer to an agent 𝑖 by

its index. We note that this is a fully cooperative setting, and that

the agents can coordinate to decide on a joint action.

One important feature of MAMABs is that the factorization of

𝐹 (a) allows us to model the problem as a coordination graph (CoG)
[6, 7]. Thus, we can efficiently extract the optimal joint action once

we have learned the means of all local actions 𝜇𝑒 (ae). A naive way

to do this would be to ‘flatten’ the CoG, i.e., enumerate all joint

actions, compute their associated mean reward, and then maximize.

However, this is typically computationally infeasible, as the number

of joint actions,𝐴 ≡ |A|, is exponential in the number of agents. For

instance, if each agent has two actions, then𝐴 = 2
𝑁
. Instead, we can

leverage the properties of the CoG, and extract the optimal reward

and associated actions using algorithms like variable elimination
(VE) [6].

In VE, agents are eliminated from the CoG sequentially, one by

one, solving the maximization problem as a series of local subprob-
lems. When an agent is eliminated, VE computes its best responses

to all possible actions of its neighbors, i.e., the agents with which

it shares a local reward function. The local values of these best re-

sponses are then used to create a new local mean reward, replacing

those to which the eliminated agent was connected. This exploits

the graphical structure resulting from the factorization, and the

size of the local subproblems depends only on the induced width,
i.e., how many agents the eliminated agent shares a local reward

function with at the time of its elimination. When the coordination

graph is sparse, i.e., agents are only involved in a small number of

local reward functions, the induced width is typically much smaller

than the size of the joint action space, making the maximization

problem tractable.

Learning the values of the mean joint rewards incurs similar

problems. Again, we could ‘flatten’ the MAMAB by treating each

joint action as a separate arm in a single-agentMAB, but this quickly

Algorithm 1 MARMax

1: Input: An MAMAB with a factorized reward function, 𝐹 (a) =∑𝜌

𝑒=1
𝑓 𝑒 (a𝑒), number of samples per local reward estimator,𝑚.

2: Output: The estimated best joint action, a𝑡 .
3: Initialize 𝜇𝑒 (a𝑒) to 𝑟𝑒𝑚𝑎𝑥

4: Initialize 𝑞𝑒 (a𝑒) and 𝑛𝑒 (a𝑒) to 0.

5: Initialize 𝜐𝑒 (a𝑒) to 1.

6: a𝑡 ← a random joint action

7: while
∑𝜌

𝑒=1
𝜐𝑒 (a𝑒𝑡) > 0 do

8: Pull a𝑡 and receive local rewards 𝑟𝑒𝑡 (a𝑒𝑡)
9: for all 𝑟𝑒𝑡 (a𝑒𝑡) do
10: 𝑞𝑒 (a𝑒𝑡) ← 𝑞𝑒 (a𝑒𝑡) + 𝑟𝑒𝑡 (a𝑒𝑡)
11: 𝑛𝑒 (a𝑒𝑡) ← 𝑛𝑒 (a𝑒𝑡) + 1
12: if 𝑛𝑒 (a𝑒𝑡) ≥ 𝑚 then

13: 𝜇𝑒 (a𝑒𝑡) ←
𝑞𝑒 (a𝑒𝑡)
𝑛𝑒 (a𝑒𝑡)

14: 𝜐𝑒 (a𝑒𝑡) ← 0

15: end if
16: end for
17: a𝑡 = argmaxa

∑𝜌

𝑒=1
𝜇𝑒 (a𝑒) //Using Variable Elimination

18: end while
19: return a𝑡

leads to too many arms to be able to learn effectively. Instead, we

wish to devise a strategy that allows us to gather the maximum

amount of information with each individual joint arm pull of the

MAMAB.

3 MULTI-AGENT RMAX
In a multi-agent multi-armed bandit (MOMAB), every timestep 𝜌

local reward functions are sampled. To determine a PAC-bound, it is

key to exploit that these local rewards are independently distributed

and drawn.

Inspired by RMax [3, 15], we first propose multi-agent RMax
(MARMax) as described in Algorithm 1. Following an RMax-inspired

strategy, the estimator for every possible local reward, 𝜇𝑒 (a𝑒), is op-
timistically initialised with 𝑟𝑒𝑚𝑎𝑥 , the upper bound of the associated

random variable. Until the local joint action is not sampled at least

𝑚 times, we consider that its reward is still unknown and therefore

keep it to its maximum value 𝑟𝑒𝑚𝑎𝑥 . After MARMax has performed

a local joint action at least𝑚 times, its reward becomes known, and
its estimator is replaced by the maximum likelihood estimator with

respect to the ≥ 𝑚 samples. In Algorithm 1 the known status is

maintained by 𝜐𝑒 (a𝑒) which is equal to 1 if it is unknown and 0

otherwise. The number of samples𝑚 is a parameter of MARMax

that we will determine to obtain theoretical guarantees.

MARMax calculates the best joint action a𝑡 on the basis of the es-

timators 𝜇𝑒 using variable elimination [8].When all the components

of this joint action a𝑡 , 𝑎𝑒𝑡 , are known, i.e.,
∑𝜌

𝑒=1
𝜐𝑒 (a𝑒𝑡) = 0, MARMax

terminates and recommends a𝑡 as its output. We note that when this

happens, the reward of all the other joint actions, a𝑎𝑙𝑡 consist of ei-
ther all known components as well, or are an upper bound on the𝑚-

sample maximum likelihood estimate for 𝜇 (a𝑎𝑙𝑡) =
∑𝜌

𝑒=1
𝜇𝑒 (a𝑒

𝑎𝑙𝑡
),

that would be computed if MARMax would continue to run until

all components become known. Therefore, we can base our PAC

bound off the confidence interval for the recommended joint action,

a𝑡 .
We aim for a PAC-bound where we reach at least a factor 1− 𝜀 of

the global upper bound on the team reward, with a probability of

at least 1 − 𝛿 . Recall that each local joint arm is a random variable

𝑋𝑒
bounded the interval

[
0, 𝑟𝑒𝑚𝑎𝑥

]
. After any given set of full joint

action pulls, for each group 𝑒 ∈ 𝜌 we obtain an ensemble of𝑚𝑒

samples, 𝑋𝑒
[1,𝑚𝑒] , to estimate 𝜇𝑒 (a𝑡). Then, considering the Hoeffd-

ing bound for the scaled random variables 𝑍𝑒 = 𝑋𝑒/𝑚𝑒
we obtain

the following:

𝑃

(����� 𝜌∑︁
𝑒=1

𝑚𝑒∑︁
𝑖=1

𝑍𝑒
𝑖 −

𝜌∑︁
𝑒=1

𝑚𝑒∑︁
𝑖=1

𝜇𝑒

𝑚𝑒

����� > 𝑡

)
≤ 2𝑒𝑥𝑝

(
−2𝑡2∑𝜌

𝑒=1

∑𝑚𝑒

𝑖=1 (𝑟𝑒𝑚𝑎𝑥/𝑚𝑒)2

)
(1)

Given that, with𝑚 = min𝑒𝑚
𝑒
, we have:

𝜌∑︁
𝑒=1

𝑚𝑒∑︁
𝑖=1

𝑍𝑒
𝑖 −

𝜌∑︁
𝑒=1

𝑚𝑒∑︁
𝑖=1

𝜇𝑒

𝑚𝑒
= 𝜇 (a𝑡) − 𝜇 (a𝑡) (2)

𝜌∑︁
𝑒=1

𝑚𝑒∑︁
𝑖=1

(
𝑟𝑒𝑚𝑎𝑥

𝑚𝑒

)
2

=

𝜌∑︁
𝑒=1

(𝑟𝑒𝑚𝑎𝑥)2
𝑚𝑒

≤
∑𝜌

𝑒=1
(𝑟𝑒𝑚𝑎𝑥)2

𝑚
, (3)

and that we would like to express our bound in terms of the maxi-

mum possible reward

∑𝜌

𝑒=1
𝑟𝑒𝑚𝑎𝑥 , we can state the bound as:

𝑃

(
|𝜇 (a𝑡) − 𝜇 (a𝑡) | > 𝜀

𝜌∑︁
𝑒=1

𝑟𝑒𝑚𝑎𝑥

)
≤ 2𝑒𝑥𝑝

(
−2

𝜀2 (∑𝜌

𝑒=1
𝑟𝑒𝑚𝑎𝑥)2𝑚∑𝜌

𝑒=1
(𝑟𝑒𝑚𝑎𝑥)2

)
.

(4)

This leads, for each component, to a required number of samples

per arm of:

𝑚 ≥
∑𝜌

𝑒=1
𝑟𝑒𝑚𝑎𝑥

2

2𝜀2 (∑𝜌

𝑒=1
𝑟𝑒𝑚𝑎𝑥)2

ln (2/𝛿), (5)

In order to reach𝑚 samples for each local payoff estimate 𝜇𝑒 (a𝑒),
we need to consider the worst case number of full joint action arm

pulls, 𝑛, to obtain these samples. Assuming we can only pull 1

component that is still unknown at every time-step, we would need

𝜌𝐴𝑐
times𝑚 pulls in total. This would lead to:

𝑛 =𝑚𝜌𝐴𝑐 ≥
∑𝜌

𝑒=1
𝑟𝑒𝑚𝑎𝑥

2

2𝜀2 (∑𝜌

𝑒=1
𝑟𝑒𝑚𝑎𝑥)2

𝐴𝑐𝜌 ln (2/𝛿), (6)

where 𝐴 is the maximal size of the action space of an agent 𝐴 =

𝑚𝑎𝑥𝑖 |A𝑖 |, and 𝑐 is the maximal number of agents in scope for a

single local reward function, 𝑓 𝑒 (a𝑒). This leads us to the following

theorem:

Theorem 3.1. MARMax is a PAC(𝛿, 𝜀)-learning algorithm with
for a MAMAB with a maximum number of 𝐴𝑐 fields per local reward
function and 𝜌 local reward functions in total, when parameterised
with

𝑚 =

⌈ ∑𝜌

𝑒=1
𝑟𝑒𝑚𝑎𝑥

2

2𝜀2 (∑𝜌

𝑒=1
𝑟𝑒𝑚𝑎𝑥)2

ln (2/𝛿)
⌉
.

The number of required full joint action executions to reach the bound
is:

𝑛 = 𝑂

(∑𝜌

𝑒=1
𝑟𝑒𝑚𝑎𝑥

2

2𝜀2 (∑𝜌

𝑒=1
𝑟𝑒𝑚𝑎𝑥)2

𝐴𝑐𝜌 ln (2/𝛿)
)
.

When all the 𝑟𝑒𝑚𝑎𝑥 have the same value, 𝑟𝑚𝑎𝑥 , Equation 4 simplifies

to:

𝑃 (|𝜇 (a𝑡) − 𝜇 (a𝑡) | > 𝜀𝜌𝑟𝑚𝑎𝑥) ≤ 2𝑒𝑥𝑝

(
−2𝜀2𝜌𝑚

)
, (7)

which in turn leads to:

𝑚 ≥ ln 2/𝛿
2𝜌𝜀2

, (8)

and,

𝑛 ≥ 𝐴𝑐
ln 2/𝛿
2𝜀2

, (9)

i.e., the minimum number of required arm pulls only depends on

the number of fields in a local reward function, but not on the

number of local reward functions.

Lemma 3.2. When all local reward functions in a MAMAB, 𝑀 ,
are bounded random variables in the same interval [0, 𝑟𝑚𝑎𝑥], with a
maximum number of 𝐴𝑐 fields per local reward function and 𝜌 local
reward functions in total, MARMax is a PAC(𝛿, 𝜀)-learning algorithm
with for𝑀 when parameterised with

𝑚 =

⌈
ln 2/𝛿
2𝜌𝜀2

⌉
.

The number of required full joint action executions to reach the bound
is:

𝑛 = 𝑂

(
𝐴𝑐

ln 2/𝛿
2𝜀2

)
.

In Algorithm 1, the reward of local actions that was not been

sampled at least𝑚 times is estimated as 𝑟𝑒𝑚𝑎𝑥 . This ensures that

our estimator is an upper bound of the excepted reward, leading

to selecting that local action if it could be part of the optimal joint

Algorithm 2 MAVMax

1: Input: An MAMAB with a factorized reward function, 𝐹 (a) =∑𝜌

𝑒=1
𝑓 𝑒 (a𝑒), number of samples per local reward estimator,𝑚.

2: Output: The estimated best joint action, a𝑡 .
3: Initialize 𝜇𝑒 (a𝑒) to 𝑟𝑒𝑚𝑎𝑥

4: Initialize 𝑞𝑒 (a𝑒) and 𝑛𝑒 (a𝑒) to 0.

5: Initialize 𝜐𝑒 (a𝑒) to 1.

6: a𝑡 ← a random joint action

7: while
∑𝜌

𝑒=1
𝜐𝑒 (a𝑒𝑡) > 0 do

8: Pull a𝑡 and receive local rewards 𝑟𝑒𝑡 (a𝑒𝑡)
9: for all 𝑟𝑒𝑡 (a𝑒𝑡) do
10: 𝑞𝑒 (a𝑒𝑡) ← 𝑞𝑒 (a𝑒𝑡) + 𝑟𝑒𝑡 (a𝑒𝑡)
11: 𝑛𝑒 (a𝑒𝑡) ← 𝑛𝑒 (a𝑒𝑡) + 1
12: if 𝑛𝑒 (a𝑒𝑡) < 𝑚 then
13: {Here is the difference with MARMAX }
14: 𝜇𝑒 (a𝑒𝑡) ←

𝑞𝑒 (a𝑒𝑡)+(𝑚−𝑛𝑒 (a𝑒𝑡))𝑟𝑒𝑚𝑎𝑥

𝑚
15: else
16: 𝜇𝑒 (a𝑒𝑡) ←

𝑞𝑒 (a𝑒𝑡)
𝑛𝑒 (a𝑒𝑡)

17: 𝜐𝑒 (a𝑒𝑡) ← 0

18: end if
19: end for
20: a𝑡 = argmaxa

∑𝜌

𝑒=1
𝜇𝑒 (a𝑒) //Using VE

21: end while
22: return a𝑡

𝑖 is even 𝑎𝑖+1 = 0 𝑎𝑖+1 = 1

𝑎𝑖 = 0 𝑓 (suc; 0.75) 1.0

𝑎𝑖 = 1 𝑓 (suc; 0.25) 𝑓 (suc; 0.9)
Table 1: The reward table for 0101-Chain. 𝑓 (suc; 𝑝) is
a Bernoulli distribution with success probability 𝑝, i.e.,
𝑓 (1;𝑝) = 𝑝 and 𝑓 (0;𝑝) = 1−𝑝. The table for odd agents is the
same but transposed.

action. This upper-bound is however naive as it does not take into

account the 𝑘 < 𝑚 local rewards already sampled. Since for all

𝑘 ∈ [1,𝑚 − 1] and with the random variables 𝑋𝑖 bounded by 𝑟𝑚𝑎𝑥

𝑚∑︁
𝑖=1

𝑋𝑒,𝑖 ≤
𝑘∑︁
𝑖=1

𝑋𝑒,𝑖 + (𝑛 − 𝑘)𝑟𝑒𝑚𝑎𝑥 (10)

Based on this observation we extend Algorithm 1 by updating

progressively as in VMAX [10]. Such tempered optimism does not

affect the proof in any way, as long as the estimators, 𝜇𝑒 (a𝑒), for
the𝑚-sample-based averages remain an upper bound. This leads to

Algorithm 2, which we call multi-agent VMax (MAVMax). Updating
the estimators progressively leads to a tighter upper bound which

can be expected to speed-up convergence as sub-optimal actions

could be discarded earlier.

4 EXPERIMENTS
In this section we empirically evaluate our proposed methods, MAR-

Max and MAVMax, on a set of MAMAB environments.

4.1 0101-Chain
The 0101-Chain environment [2] consists of a number of local

reward functions that solely depend on successive pairs of agents,

i.e. agents 1 and 2, 2 and 3, 3 and 4, and so on. All agents have

binary actions.

Local rewards in this environment are drawn from independent

Bernoulli distributions, with a probability that depends on the local

joint action. The distributions corresponding to each local action

are shown in Table 1. These rewards result in a problem where the

optimal action can be trivially determined even for large number

of agents: even-indexed agents need to take action 0, while agents

with odd indices must take action 1.

Due to how our implementation of MARMax selects the joint

action to pull, however, this very structured pre-determined opti-

mal action was always discovered after 2 ·𝑚 timesteps. To make

the problem somewhat harder, we additionally tested on a ran-

domized version of the Chain. In particular, when generating the

environment, we sample a full joint action uniformly and set it as

the optimal action. Then, for each pair of agents, the rewards table

shown in Table 1 is either used as-is, or transposed, or its columns

swapped, or its rows swapped, so that the 1.0 best entry corresponds

to the pre-determined optimal local joint action of those agents. For

example, if agent 1 and agent 2 optimal actions are (0, 0), then the

reward table for their local reward is the same as Table 1 but with

the columns swapped. Note that here the information on whether

an agent’s index is even or odd is not used.

village
mine

Figure 1: Gem Mining example. Each village represents an
agent, while the mines represent the local reward functions.

4.2 Gem Mining
The Gem Mining environment [2] is adapted from the Mining Day

problem from [11], which is a multi-objective coordination graph

benchmark problem.

This environment consists of a set of villages (agents) and mines

(local reward functions). At each timestep, each village can send

its workers to a mine that is connected to it. Each mine is as-

sociated with a productivity value 𝑥 ∈ (0, 1), and samples a re-

ward from a Bernoulli distribution with a probability parameter

𝑝 = min(𝑥 · 1.03𝑤−1, 1.), where 𝑤 is the total number of workers

sent to it. However, if𝑤 is 0 then the reward is always 0 as well.

4.3 Wind Farm
The Wind Farm environment [2, 18] uses a state-of-the-art simula-

tor [16] to evaluate the energy production of a wind-farm subject

to predetermined fixed wind conditions. In a wind-farm, turbines

can be oriented at certain angles to maximize energy production.

At the same time, each turbine’s orientation directly affects the pro-

duction of turbines downwind through the wake effect. The goal

is to determine the best optimal joint configuration to maximize

energy production of the whole wind-farm.

We use the same setup as [2, 18]. Specifically, the simulated

wind-farm has 11 turbines (see Figure 2). Each turbine has a choice

between three different actions (angles) that it can turn to. The last

4 turbines downwind (2, 5, 8, and a) are always oriented directly

against the wind and are not controlled by agents, as they cannot

W

1 2
3

4 5

6
7 8

9

a0

Figure 2: Wind farm setup. The incoming wind is denoted
by an arrow. Each local group is denoted by a different color
and line type.

𝑁 𝜌 𝐴𝑐 𝛿 𝜀 𝑚 𝑛 Avg 𝑛 𝜀-Opt

MARMax

10 9 4 0.05 0.05 82 2952 328.00 1.00

0.10 0.10 17 612 68.80 1.00

20 19 4 0.05 0.05 39 2964 156.15 1.00

0.10 0.10 8 608 33.50 1.00

50 49 4 0.05 0.05 16 3136 65.09 1.00

0.10 0.10 4 784 21.11 1.00

MAVMax

10 9 4 0.05 0.05 82 2952 97.71 1.00

0.10 0.10 17 612 29.90 1.00

20 19 4 0.05 0.05 39 2964 55.00 1.00

0.10 0.10 8 608 19.81 1.00

50 49 4 0.05 0.05 16 3136 32.35 1.00

0.10 0.10 4 784 16.91 1.00

Table 2: Results for the 0101-Chain environment, with ran-
domized optimal actions, for different combinations of num-
ber of agents, 𝛿 and 𝜀.

generate turbulence that can impact power production. Thus, the

problem requires joint cooperation of 7 agents with 3 actions each.

4.4 Discussion
For each environment we show results over a range of different

choices of 𝛿 and 𝜀 parameters, as well as varying the number of

agents 𝑁 and local reward functions. Results are an average over

1000 independent runs for the 0101-Chain and Mines environments,

and 100 independent runs for the Wind environment.

For each choice of parameters we show the corresponding value

of𝑚, the upper bound value of 𝑛, the empirical average value of 𝑛

(the average number of timesteps needed to recommend an arm),

and the percentage of runs which achieved 𝜀-optimality, i.e. where

regret was less than 𝜀
∑𝜌

𝑒=1
𝑟𝑒𝑚𝑎𝑥 .

All environments use 𝑟𝑒𝑚𝑎𝑥 = 1 for all local reward functions. For

the 0101-Chain and Mines environments this is because rewards are

always sampled from Bernoulli distributions. For the Wind Farm

environment, we empirically evaluated the individual minimum

and maximum production of each turbine across all possible joint

actions, so that we could normalize each to a reward between

0 and 1.

In all environments, MARMax and MAVMax always fully re-

spect the theoretical bounds, recommending 𝜀-optimal arms nearly

all the time. Even when a 𝜀-optimal arm is not recommended, in

expectation the 𝛿 bound is never broken.

However, the arms recommended by both MARMax and MAV-

Max were most of the time not the optimal joint actions. This can

be explained as in a factored setting the exponential number of

full joint arms have expected rewards that are more tightly packed

than in a more traditional flat bandit environment. This is because

for each full joint action there are many similar ones that differ

from it by only a single local joint action. In the same way, there

will be many joint arms with expected rewards close to the optimal

one. Thus, uniquely identifying the optimal full joint action can

require a significant number of pulls in our setting. As MARMax

and MAVMax are optimized to find an 𝜀-optimal action, they do

𝑁 𝜌 𝐴𝑐 𝛿 𝜀 𝑚 𝑛 Avg 𝑛 𝜀-Opt

MARMax

7 10 144 0.05 0.05 74 106560 10656.00 1.00

0.10 0.10 15 21600 2160.00 1.00

9 12 36 0.05 0.05 62 26784 2232.00 1.00

0.10 0.10 13 5616 468.00 1.00

13 16 128 0.05 0.05 47 96256 6016.00 1.00

0.10 0.10 10 20480 1280.00 1.00

MAVMax

7 10 144 0.05 0.05 74 106560 8598.36 1.00

0.10 0.10 15 21600 1520.17 1.00

9 12 36 0.05 0.05 62 26784 1855.89 1.00

0.10 0.10 13 5616 377.12 1.00

13 16 128 0.05 0.05 47 96256 5039.90 1.00

0.10 0.10 10 20480 898.44 1.00

Table 3: Results for the Mines environment, for different
combinations of villages, mines, 𝛿 and 𝜀.

𝑁 𝜌 𝐴𝑐 𝛿 𝜀 𝑚 𝑛 Avg 𝑛 𝜀-Opt

MARMax

7 7 27 0.05 0.05 106 20034 1161.42 0.99

0.10 0.10 22 4158 237.43 1.00

MAVMax

7 7 27 0.05 0.05 106 20034 424.21 1.00

0.10 0.10 22 4158 95.39 1.00

Table 4: Results for the Wind environment, for different
combinations of 𝛿 and 𝜀.

not need to expend additional timesteps trying to determine the

true optimal joint action.

We additionally note that empirically the value of 𝑛, i.e. the

number of arm pulls before an arm is recommended, is generally

in the order of𝑚𝐴𝑐 rather than𝑚𝜌𝐴𝑐 as in Equation 6. While in

Equation 6 we considered the worst case scenario of being able to

pull only a single unknown local arm at a time, in practice each

pull of a joint action samples all 𝜌 local actions concurrently (with

hopefully most of them unknown). Given that 𝐴𝑐 is the size of the

largest local reward function, once it is fully explored (after𝑚𝐴𝑐

timesteps), the others will generally be explored as well.

Additionally, MAVMax is able to recommend an arm much faster

than MARMax, with 𝐴𝑣𝑔 𝑛 between 2/3 and 3/4 of MARMax. In

additional experiments we performed with higher 𝛿 and 𝜀 values

(and thus lower𝑚 and looser bounds), MAVMAx can sometimes fail

to recommend a 𝜀-optimal arm, but still never breaks the theoretical

bounds.

5 RELATEDWORK
There have recently been advances in multi-agent multi-armed

bandits regret minimization. The MAUCE algorithm [2] uses tech-

niques from the multi-objective literature to select the optimal joint

arm to take at each timestep using an UCB mechanism to ensure

consistent exploration. MATS [18] uses Thompson sampling on

individual local actions, together with variable elimination, to con-

sistently select full joint actions following the posterior probability

that they are optimal.

The best-arm identification literature is generally divided into

two distinct sub-fields: fixed budget and fixed confidence. Fixed

budget algorithms are provided a finite number of timesteps to act

in as input, and must provide the best possible recommendation

within that time. On the other hand, fixed confidence settings are

provided as input a risk probability, and the goal is to ensure that

the probability of recommending the wrong arm is lower than this.

While sharing similarities, the two settings usually have different

theoretical frameworks and bounds proven in one setting do not

apply to the other.

Some algorithms can work in an anytime fashion, and can be

used in both settings, provided they use appropriate stopping rules.

TTTS [13] uses Thompson sampling to recommend the most likely

best arm with some probability 𝑝 , and samples again to recommend

the most likely contender with probability 1 − 𝑝 . The Adaptive

UCB-E [1] uses a UCB mechanism to handle exploration without

requiring tuning, does not currently provide any guarantees.

In the fixed budget setting, the SR algorithm [1] uses a fixed

budget by splitting the arm pulling process into several phases.

After each phase an arm is removed from the considered set and is

not pulled afterwards. The last arm to remain is recommended as

the best.

For fixed confidence, the RMax algorithm [3] inspired this work.

RMax learns in stochastic games by marking interactions as known

after a set number of experience points have been collected. The

T3C algorithm [14] uses a deterministic scoring function based on

KL divergence to avoid the computational costs of TTTS when the

posteriors have significantly converged.

6 CONCLUSION
We have presented MARMax and MAVMax, two novel algorithms

for best-arm identification in multi-armed multi-agent bandits. The

algorithms exploit the structured representation of the joint re-

ward function, which allows them to efficiently learn and identify

a 𝜀-optimal joint action. We provide a PAC-bound for MARMax,

proving that the sample complexity of the algorithm is linear in the

size of the largest local reward function, rather than exponential

in the number of agents. We tested both algorithms empirically in

a variety of settings taken from the MAMAB literature, and show

that the bounds hold in all cases.

In future work, we aim to strengthen the bounds in multi-agent

multi-armed bandits. Firstly, as we observe in the paper, the number

of joint action executions we actually need to obtain𝑚 samples

for each local reward function is much smaller than the theoretical

upper bound we establish, for MARMax and even more so for

MAVMax. As such, we believe there is space to improve the bound

for our algorithms. In addition, we aim to adapt other best-arm

identification algorithms for single-agent multi-armed bandits [1, 5,

13] to the multi-agent setting, in the hope of establishing a tighter

bound. Finally, we aim to extend our results to sequential [4] and

multi-objective [9, 12] multi-agent settings.

ACKNOWLEDGMENTS
The first and second authors are supported by the Research Founda-

tion – Flanders (FWO), under grant numbers 1SA2820N& 11F5721N.

P.J.K.L. gratefully acknowledges support from the Fonds voorWeten-

schappelijk Onderzoek (FWO) via postdoctoral fellowship 1242021N,

and the Research council of the Vrije Universiteit Brussel (OZR-

VUB) via grant number OZR3863BOF. This research was supported

by funding from the Flemish Government under the “Onderzoek-

sprogramma Artificiële Intelligentie (AI) Vlaanderen” program.

REFERENCES
[1] Jean-Yves Audibert, Sébastien Bubeck, and Rémi Munos. 2010. Best arm identifi-

cation in multi-armed bandits.. In COLT. Citeseer, 41–53.
[2] Eugenio Bargiacchi, Timothy Verstraeten, Diederik Roijers, Ann Nowé, and

Hado Hasselt. 2018. Learning to coordinate with coordination graphs in repeated

single-stagemulti-agent decision problems. In International conference onmachine
learning. PMLR, 482–490.

[3] Ronen I Brafman and Moshe Tennenholtz. 2002. R-max-a general polynomial

time algorithm for near-optimal reinforcement learning. Journal of Machine
Learning Research 3, Oct (2002), 213–231.

[4] Lucian Buşoniu, Robert Babuška, and Bart De Schutter. 2010. Multi-agent re-

inforcement learning: An overview. Innovations in multi-agent systems and
applications-1 (2010), 183–221.

[5] Victor Gabillon, Mohammad Ghavamzadeh, and Alessandro Lazaric. 2012. Best

arm identification: A unified approach to fixed budget and fixed confidence.

Advances in Neural Information Processing Systems 25 (2012).
[6] C.E. Guestrin, D. Koller, and R. Parr. 2002. Multiagent Planning with Factored

MDPs. In NIPS 2002: Advances in Neural Information Processing Systems 15. 1523–
1530.

[7] J.R. Kok and N. Vlassis. 2006. Collaborative Multiagent Reinforcement Learning

by Payoff Propagation. Journal of Machine Learning Research 7 (Dec. 2006),

1789–1828.

[8] Jelle R Kok and Nikos Vlassis. 2006. Using the max-plus algorithm for multiagent

decision making in coordination graphs. In RoboCup 2005: Robot Soccer World
Cup IX. 1–12.

[9] Roxana Rădulescu, Patrick Mannion, Diederik M Roijers, and Ann Nowé. 2020.

Multi-objective multi-agent decision making: a utility-based analysis and survey.

Autonomous Agents and Multi-Agent Systems 34, 1 (2020), 1–52.
[10] Karun Rao, Shimon Whiteson, et al. 2012. V-MAX: tempered optimism for better

PAC reinforcement learning.. In AAMAS. 375–382.
[11] D.M. Roijers, S.Whiteson, and F. Oliehoek. 2015. Computing convex coverage sets

for faster multi-objective coordination. Journal of Artificial Intelligence Research
52 (2015), 399–443.

[12] D. M. Roijers and S. Whiteson. 2017. Multi-objective decision making. Synthesis
Lectures on Artificial Intelligence and Machine Learning 11, 1 (2017), 1–129.

[13] Daniel Russo. 2016. Simple bayesian algorithms for best arm identification. In

Conference on Learning Theory. PMLR, 1417–1418.

[14] Xuedong Shang, Rianne Heide, Pierre Menard, Emilie Kaufmann, and Michal

Valko. 2020. Fixed-confidence guarantees for Bayesian best-arm identification. In

International Conference on Artificial Intelligence and Statistics. PMLR, 1823–1832.

[15] Alexander L Strehl, Lihong Li, and Michael L Littman. 2009. Reinforcement

Learning in Finite MDPs: PAC Analysis. Journal of Machine Learning Research
10, 11 (2009).

[16] M. T. Van Dijk, J. W. Wingerden, T. Ashuri, Y. Li, and M. Rotea. 2016. Yaw-

Misalignment and its Impact on Wind Turbine Loads and Wind Farm Power

Output. Journal of Physics: Conference Series 753, 6 (2016).
[17] Timothy Verstraeten. 2021. A Multi-Agent Reinforcement Learning Approach to

Wind Farm Control. Ph.D. Dissertation. Vrije Universiteit Brussel.
[18] Timothy Verstraeten, Eugenio Bargiacchi, Pieter JK Libin, Jan Helsen, Diederik M

Roijers, and Ann Nowé. 2020. Multi-agent Thompson sampling for bandit ap-

plications with sparse neighbourhood structures. Scientific reports 10, 1 (2020),
1–13.

	Abstract
	1 Introduction
	2 Background
	3 Multi-agent RMax
	4 Experiments
	4.1 0101-Chain
	4.2 Gem Mining
	4.3 Wind Farm
	4.4 Discussion

	5 Related Work
	6 Conclusion
	Acknowledgments
	References

