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ABSTRACT

We introduce a very simple and general way for deep neural net-
work to perform deductive reasoning based on error backpropa-
gation. Our idea is to view state and action as the input data, and
reward as the output data. Then by trained deep neural network and
a sequence of known state and unknown action, we update the un-
known action by error backpropagation with given optimal reward
as target. Then the agent adopts the updated action. This approach
can be applied to various types of digital environment. Moreover, in
contrast to recent approaches, it does not require Bellman function
or other hand-written functions. We provide experimental results
in this paper.

KEYWORDS

deep learning, neural networks, error backpropagation, deductive
reasoning

ACM Reference Format:

Brown Wang. 2022. Deducing Decision by Error Propagation. In Proceedings
of Proc. of the Adaptive and Learning Agents Workshop (ALA 2022) (ALA °22).
ACM, New York, NY, USA, 8 pages.

1 INTRODUCTION

Humans are renowned for their inductive and deductive reasoning.
Deep learning successes in modeling inductive reasoning by using
error backpropagation in deep neural network. A deep neural net-
work is trained as an universal function to model f : x — y where x
is the input data and y is the output data. However, whether there ex-
ists an universal inverse function capable of modeling = : y — x
remains questionable. Such universal inverse function might be
crucial in modeling human deductive reasoning ability.

In this paper, we propose that, for a deep-learning-trained deep
neural network f where f : x — y, f' : y — x and f~! can be
represented by:

. . 9 .

X e—x- ﬁgE(y,f(x))
where % is an estimated input data, f(X) is the neural network
output by forward feeding, y is a given output data, E(-) is the error
function, and S is the deducing rate controlling the update rate of
x. The purpose is to let X approximate x upon a given y through
error backpropagation and find arg miny E(y, f(%)).

The main advantage of the proposed method is that, based on
trained deep neural network f where f : a — r and given optimal
reward 7, we can derive the optimal action d of an agent simply by
using error backpropagation and f! : 7 — 4. This distinguishes
our method from models using Bellman function or other hand-
written functions. Moreover, our experimental results show that
our method can be applied to various types of digital environment
requiring little modification in our proposed model.

However, the above method implies that x is been optimized
upon an error surface created by a single neural network so there
inevitably exists local minima problem. To solve local minima prob-
lem as stated in Rumelhart et al. [14], we propose to train multiple
neural networks and randomly select a neural network for x to be
optimized upon. We name this technique Multi-Weight-Matrices
Stochastic Gradient Descent (MWM-SGD) to differentiate it from
the traditional SGD. We now give formal technical description as
below.

2 TECHNICAL DESCRIPTION

The technique comprises two phases — the learning phase and the
deducing phase. The learning phase is completely deep learning (in
Rumelhart et al. [14]).

2.1 The learning phase
Consider a fully connected deep neural network with h + 1 layers.
The dimension of each layer is denoted by dj,. The weight matrix
connecting the AP and the next layer is denoted by Wheleh“Xd’l.
The weight matrices are denoted by W £ [Wo, wi, ..., Wh—l]- The
activation function in the h" layer is denoted by oy,.

The input data matrix is denoted by:

X £ [X(O),x“),...,x(N>]eleode+l

The corresponding output data matrix is denoted by:

Y £ [y(O)) y(l), - y(N)]eIRdthNH

By SGD and error backpropagation, in each iteration, a pair of
input data X (N) € R% and output data y(N ) e R is randomly
selected where x(V) ~ X and y(N) ~ Y1, and the set of weight
matrices W is updated by:

f(W,x(N)) A gh(wh_l. . 'Ul(Wox(N)))

(1-1)
d
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where « is the learning rate, and E(-) is the error function.

After training, for any input data x(N) € R% where x(N) ~ x
and its corresponding output data y(N ) € R% where y(N )~y it
widely known that:

y™ =~ fw,xN) (1-2)
and that: )

y(N) zf(W,X(N)) (1-3)
where x(V) ~ x(N),
Tuse"AN B" to note that A is randomly selected from B where A € B, and

"A = B" to note that A is approximately or close to B in a less mathematically formal
term.



2.2 The deducing phase
Consider that, in the learning phase, there are M + 1 samples of

input data matrix X, its corresponding output data matrix Y and
its corresponding trained weight matrices W such that?:

X 2 {X(O),X(l),...,X(M)}
W2 (wOw®  w*)
Y 2 {Y(O)’Y(l)"_.’y(M)}

Suppose there exists a common and unknown input data x €
XM) for each M such that there exists its corresponding output
data y(M) € YM for each Mand y 2 {y(o),y(l), .. .,y(M)},

To find out such common and unknown input data x, we first
initialize an estimated input data x. Then, by MWM-SGD? and error
backpropagation, in each iteration, a pair of corresponding output
data y(M) and its corresponding weight matrices W M) is randomly
selected where y(M) ~yand WM ~ W, and # is updated by:

2]
£ g ﬁyE(y(Mkf(w(M),f)) @-1)
X
where £ is the deducing rate, and E(-) is the error function.
After training, for any corresponding output data y(M) where

y(M) ~ y and its corresponding weight matrices WM where
wM W, we propose that:
yM ~ fw™ 2 (2-2)

We also propose that even if statement (2-1) is replaced by:
a A~
¢ 2 - BLE[yM M) 4
f = pocp(y ™. v )
where y(M) X y(M), it still holds that:

y M~ fw 5 (2-3)

We apply our proposed model to a few applications as below.

3 APPLICATIONS

Consider a digital (twin) environment provides state s € R~k
action a € R% and its corresponding reward r € R% such that:

X250 50D, . (sa®™]
y & [r(o),r(l),.--:r(N)]

where (s, a) is an ordered pair.

In the learning phase, by SGD and error backpropagation, in each
iteration, a pair of (s, a)N) € R% and its corresponding riN) ¢
R% is randomly selected where (s, a)<N) ~Xandr®™) ~ Y, and
the set of weight matrices W is updated by:

W e W—a%E(r(N),f(W) (s, a)(N))) @

In the deducing phase, consider that, in the learning phase, there
are M + 1 samples of input data matrix X, its corresponding output

2 Please note that each X™) or Y(M) does not need to identical and each W (M)
can be trained in parallel. See reasons afterwards.

3 We name this MWM-SGD (Multi-Weight-Matrices Stochastic Gradient Descent)
since a set of trained weight matrices is randomly selected in each iteration for SGD. It
helps x escape local minima caused by initial weight variance. Also, MWM-SGD helps
updated X and its neural outputs coincides with multiple given outputs as stated in
statement (2-2). We can also use dropout (Srivastava et al. [18]) to boost MWM-SGD.

data matrix Y and its correspondingly trained weight matrices W
such that:
X 2 {X<0),X(1), B .,X(M)}

w2 (w@w®,  wh
Y2 {y© y® y®y

Suppose, given a common and known state s, there exist a com-

lI>

mon and unknown action a and an ordered pair (s,a) € XM for
each M such that there exists its corresponding optimal reward*
rM) e YM for each M and y £ {r(o),r(l),...,r(M)}.

To find out such common and unknown action a, we first initial-
ize an estimated action d. Then, by MWM-SGD and error backprop-
agation, in each iteration, a pair of corresponding optimal reward
r™) and its corresponding weight matrices wM) s randomly
selected where r(M) ~ y and WM W, and ais updated by:

Ge—d- ﬁ%E(r(M),f(W(M), (5.))) (ii)

After training, given the known state s, for any corresponding
optimal reward rM) where rM) ~ y and its corresponding weight
matrices WM where WM ~ W, it holds that:

rM ~ f(wM (s, a))

Thus, for the given known state s, the unknown action to achieve
the optimal rewards for the present epoch, 4, is found. The agent
then takes action @, moves on to the next state or epoch and repeats
the deducing phase til the next optimal action is found.

The above method can be viewed as having trained deep neural
nets serve as overall environmental perception experiences. And
by these experiences and given or desired optimal rewards, the
neural nets figure out an optimal action to achieve the optimal
rewards based on the present state. In this sense, not only datum
but also environmental perceptions are compressed into deep neural
networks as experiences (in the learning phase), allowing the the
neural networks as well as the experiences to be transferred or
stacked as integrated objects (in the deducing phase).

3.1 Classic Control

The source code can be downloaded at:
https://github.com/DeepDeducing/Classic_control.

We apply the above method to classic control problem in open-
ai-gym. We take cartpole problem as a template. The same rationale
can be generalized to other environments.

A cartpole environment is a traditional simulated physical envi-
ronment where a pole needs to be constantly staying upright in the
middle of the map. The cart under the pole can take two actions,
namely moving right or left. The cart has to decide which direction
it will move for the present epoch in order to let the pole remain
upright in the middle of the map.

In the learning phase, consider s, represents angle velocity of the
pole, s, represents position of the pole from the middle of the map,
a2 ay,...,a; represents a series of actions of the pole (tilting left

4 We solve sparse reward problem by: (1) Randomizing initial state in every iteration
in the learning phase. (2) Parallelly training multiple neural nets and their respective
sets of weight matrices in the learning phase to enhance the probability of accessing
to a sequence of optimal reward. The neural nets which learned a sequence of optimal
rewards will supplement those did not. It lessens the supposition we set here and

afterwards.
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or right), r, € R% is inversely proportional to the angle velocity of
the pole, and rp € R4 is inversely proportional to the position of
the pole (since the pole has to remain upright in the middle, higher
angle velocity or higher deviation of the pole from the middle of
the map results in lower reward) such that>:

Xo = [(Sv, Sp» a)(O)’ vy (S0, Sp» a) (N)]
Y, £ [r},o), . ..,ri(,N)]

and that:
Xp = [(Sv, Sp» a)(O)’ s (S0, Sp» a)(N)]

vp 2 [0 N

Then in the deducing phase, consider:

X2 X" x0x0, xRy
w2 (W L w O ow® w0y
R P ARNUS AL LRI Al

Suppose, given a known state s, and s, there exist unknown ac-
., ar and an ordered pair (s, Sps a) € XZ(,K),XIEM_K)
for each K, M — K such that there exists its corresponding optimal
reward rf,K) € YU(K), rl(,M_K) € Y;M_K) for each K,M — K and

y 2 {rz(,o),...,rz(,K),r(o),...,r(M_K)}.

. A
tions a = ay, . .

Then following statement (ii), to find out such unknown actions
a, we first initialize estimated actions @ £ do, ..., d;°. Then, by
MWM-SGD and error backpropagation, in each iteration, a pair of
corresponding optimal reward rM) and its corresponding weight
matrices WM is randomly selected where rM 5y and WM ~
W, and 4 is updated by:

Geda- ﬂ;E(r(M),f(W(M), (SorSp G0, - - .,a,)))
a

After training, given known state s, and sp, for any correspond-

ing optimal reward rM) where rM) ~ y and its corresponding
weight matrices WM where WM W, it holds that:

r®) & f(W(M), (s,d))

Thus, for the given known state s, and Sp, the unknown action
to achieve the optimal rewards for the present epoch, dy, is found.
The agent then takes action do”, moves on to the next state or epoch
and repeats the deducing phase til the next optimal action is found.

We apply our proposed model to the other classical control envi-
ronments. Under mountain-car environment, the reward is shaped
to be inversely proportional to the distance between the car and
the mountain hill on the right. Under pendulum environment, the
reward is shaped to be inversely proportional to the cos of the
theta. Under acrobot environment, there are two kinds of reward
(like cart-pole). The first kind of reward is inversely proportional
to the cos of the theta 1. The second kind of reward is inversely
proportional to the cos of the theta 2. MWM-SGD then ensures that
the updated actions and its neural output coincide with these two

different kinds of optimal rewards as in statement (2-2). Lastly, We
5 sy, sp and a; can be one-hotted. r, and r;, are vectors with activated neurons
where the density of the activated neurons is proportional to reward in real value.

6 Each &, is initialized close to 0. And @ need not to have the same length as a.

7 This step is usually done by taking arg max (d).

measure the quality of the deducing process of our proposed model
by using the original reward in each environment and show the

record in table 1.

K/M-K | Average Std Dev M Average Std Dev
1/1 215.47 116.45 1 -131.57 | 28.70
2/2 288.06 135.15 2 -109.26 11.65
3/3 576.74 289.64 3 -104.40 11.41
4/4 520.46 239.40 4 -104.86 | 11.37
5/5 851.43 205.01 5 -104.53 12.71

(a) Cartpole. K/M-K refers to the
size of sets of weight matrices in-
volved in MWM-SGD. Reward aver-
age and standard deviation are cal-
culated among 100 trials. The maxi-

(b) MountainCar. M refers to the
size of sets of weight matrices in-
volved in MWM-SGD. Reward aver-
age and standard deviation are calcu-
lated among 100 trials.

mum epoch for each trial is 999.

M Average Std Dev K/M-K ‘ Average Std Dev
1 -4.6129 1.4883 1/1 -199.75 18.04
2 -5.0134 1.2755 2/2 -136.50 11.41
3 -3.3252 1.4072 3/3 -134.01 27.13
4 -1.0197 1.5654 4/4 -121.55 42.50
5 -1.1678 2.0337 5/5 -117.66 15.82

(c) Pendulum. M refers to the
size of sets of weight matrices in-
volved in MWM-SGD. Reward aver-
age and standard deviation are cal-
culated among 100 trials. The max-
imum epoch for each trial is 999.
Please note that separate reward is
the averaged-return in each trial.

(d) Acrobot. K/M-K refers to the
size of sets of weight matrices
involved in MWM-SGD. Reward
average and standard deviation are
calculated among 100 trials.

Table 1: Performance comparison under different sizes of
sets of weight matrices

3.2 Tic Tac Toe

The source code can be downloaded at:
https://github.com/DeepDeducing/TicTacToe.

We further show our method can be applied to adversarial plan-
ning in strategic board game environment.

In the learning phase, consider s represents the state of the game
board, a £ aq,...,a; represents a series of actions of players A,
b £ by, ..., b; represents a series of actions of players B, and r4, r,
represents corresponding reward of player A and B such that:

X 2 [(s.a0.bo,....ar,b) 0, (s,a0,bo, ..., ar, b)) N]
y £ [(ra,rb)(o),...,(ra,rb)(N)]
Then in the deducing phase, consider:
X 2 {X(O),X(l), . .,X<M)}
w2 {wOwh  wt}
Y2 YO y® y®)

Suppose that (74, 0) represents optimal reward for player A,
(0, 7) represents optimal reward for player B, and that known
state s, unknown actions and corresponding optimal rewards (g4, 0),
(0, rp) for player A, B exist in each XM) and yM),

Then given the known state s, to find out the unknown optimal

actions for player A, we first initialize estimated actions a for player
A where @ £ dy, . .., 4, and estimated actions b for player B where
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b 2 by,...,b;. Then by MWM-SGD and error backpropagation, in
each iteration, d and b are updated by:

W A 9 , U U

d = poE((Far0) (W, (5.0, Bo. ... 1. B)

b b= pLE((0.73), (W, (5. b ... )
el

where WM ~ W,
This amounts to minimax:

min mng((r'a, 0),f(W(M), (s, do, 50, ..., dg, Bt)))
a b

min mng((O, fb),f(W(M), (s, o, bo, ..., ar, I;t)))
b a

After training, given the known state s, the unknown optimal
action for player A for the present epoch, do, is found. The agent
(here is the player A) then takes action dp and moves on to the
next state or epoch. Then player B takes over and repeats deducing
phase.

However, the result is hard to quantify. We show only part of
the result as in figure 1.

[9) ) [ O[X OX O[X O[X]|0

X X XX X|[X|O X|[X]|O X|[X|O X|[X]|O X|[X|O

[9) o [ [ [ [ o0 0[0|X 00X
[ [ [ (9 O[X|O| [O]|X]|O O[X|O| [O]|X]|O

] OX OX OX OX OX OX OX O[X|O
X X X X|0 X|O[X X|0|[X

Figure 1: States of the play by our proposed model

3.3 Sudoku

The source code can be downloaded at:
https://github.com/DeepDeducing/Sudoku.

We show our method can also be applied to spatial planning. We
use Sudoku as an example and try to let our proposed model solve

completely blank Sudoku. In the learning phase, consider ay, . .., asg
represents a series of random 9 algebras®, and r represents reward,
where r = 1if ao,...,ag are completely different and r = 0 if

otherwise, such that:
X2 [(ao,m,as)(o),-..,
y & [r(o), rO r(N)]

(ag,....,as) V]

Then in the deducing phase, consider:
X 2 {X(O),X(l), ) ..,X(M)}
w2 {(wOwh  w*}
Y2 YO,y  y*)

Suppose,  represents the optimal reward, £(5) represents the
present state® in row i, £ () represents the present state in column
Jj, and g(k) represents the present state in grid k.

Each a is one-hotted.
Visible algebra is one-hotted while missing algebra is initialized close to 0.

Then by MWM-SGD and error backpropagation, in each itera-
tion,a WM s randomly selected from W, and the missing alge-
bras in each row, column and grid are updated by (while the visible
algebras are not updated):

(i) _ a i M (s
tupdate - _ﬁmE(r,f(W( ), e )))
G o
bupdate = P07 E(f £ WO, 160))
(k) _ 2] . m
gupdate - _,BWE(V,]C(W( ),g( )))

and!®: . . .
t(:’j) «— t(:’j) + tl(li;{;{)ate

g o,

After training, whichever missing algebra holds the highest value
will become the new visible algebra and the whole deducing phase
starts over again til the next visible algebra is found.

We present part of our result as below:

NEREEENEEE
alwla]ofe|o]a|a|n

oloele|w|e|ula|-]w

w|w|a|e]ala]esle

[P S Y VS VR S I O N

<lafo|e|w|mo]=|ule

wlala]alo]o]w|e|~

SRV VY P Y I U N
olalo|e|als]o]ww

Figure 2: Blank 9x9 Sudoku table being solved by
our proposed model

We compare our result under different sizes of sets of weight
matrices (denoted M) with relative works solving 9x9 Sudoku as
below:

Model used (paper) Sudoku size | Givens | Accuracy
This paper (M = 20)* 9x9 0 97.3%
This paper (M = 20)* 9x9 17 97.1%
RecRelaN (Palm et al. [11]) 9x9 17 96.6%
Loopy BP, modified (Khan et al. [6]) 9x9 17 92.5%
Loopy BP, random (Bauke [1]) 9x9 17 61.7%
Loopy BP, parallel (Bauke [1]) 9x9 17 53.2%
This paper (M = 1)* 9x9 17 51.7%
Deeply Learned Messages (Lin et al. [7]) | 9x9 17 00.0%
RelaN, node (Santoro et al. [15]) 9x9 17 00.0%
RelaN, graph (Santoro et al. [15]) 9x9 17 00.0%
Deep Convolutional Network (Park [12]) | 9x9 24 70.0%

Table 2: Comparison of related papers according to Palm et
al. [11]

The result further shows that there are no overlapping Sudoku
tables generated by our proposed model!?.

10 In each iteration, all missing algebras are simultaneously, rather than sequentially,
updated. Each missing algebra also simultaneously receives three gradients from row,
column and grid.

11 The test was run on 10000 blank 9x9 Sudoku tables.
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3.4 Black Jack

The source code can be downloaded at:
https://github.com/DeepDeducing/BlackJack.

We further demonstrate our proposed model can be applied to
environment with undetermined reward. We take black jack prob-
lem for example. We use the same model in classic control except we
now apply particle swarm optimization (as in Kennedy [5]) into our
model to address the issue of undetermined reward. The unknown
actions of the player (our model), 4, compose a single particle. Sev-
eral particles are initialized and updated by gradient provided by
error backpropagation and MWM-SGD, following particle swarm
optimization rules!?. We show the result of our proposed model as
player under 10000 trials.

M Player wins | Draw | Dealer wins
2 4016 883 5101
4 4039 856 5105
6 4131 938 4931

Table 3: Performance comparison in black jack

3.5 Class Saliency Visualisation

The source code can be downloaded at:
https://github.com/DeepDeducing/Class_Saliency_Visualisation.

Last but not least, since deducing action based on corresponding
optimal rewards is equivalent to retrieving or optimizing input
data based on given output data, thus our method can be viewed
as a kind of model inversion or XAI (explainable A.L) tool to see
which part of input data is more emphasized by trained deep neural
network and receives more gradient during error backpropagation.

Thus we further demonstrate our proposed model can be applied
to class saliency visualisation and provide explainibility to deep
neural network. We also demonstrate that MWM-SGD improves
overall saliency in visualisation. The dataset we use is the traditional
MNIST hand-written digits.

In the deducing phase, consider multiple MNIST-trained deep
neural networks and their sets of weight matrices such that:

W2 (wOw®  w*)

Suppose, ¢ represents the given classification. To find out which
part of input data is more emphasized by trained deep neural net-
work and receives more gradient during error backpropagation, we
first initialize estimated image I. Then, by MWM-SGD and error
backpropagation, in each iteration, a set of weight matrices W (M)

is randomly selected where WM ~ W, and [ is updated by:

fei- ,b’a%E(é,f(W(M),f))

After training, the trained I can be viewed as a saliency visuali-
sation image. We show the degree of saliency of the trained I for
each hand-written digit and corresponding classification ¢ under
different sizes of sets of weight matrices (denoted M) as below:

12 With 100 particles, inertia coefficient w = 0.9, cognitive coefficient ¢; = 3, social
coefficient ¢; = 0, and r; = 1 constantly. The idea is to let each particle freely explore
the decision space without social interrelation (cognition-only). After training, the

particle holding the highest value will be chosen as the updated a.
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Figure 3: Saliency comparison under different size of sets of
weight matrices with respecttoM =1,M =5,M = 10, M = 15,
M =20, and M = 25

The result shows that MWM-SGD improves overall saliency.

4 DISCUSSION

For the sake of discussion, we name our proposed model “deep
deducing” with respect to deep learning.

4.1 Difference with other works

4.1.1 Deep Q Learning. The basic idea behind deep Q learning is
to view a deep neural network as a policy function x:

a=n(s)

where s, a are the state and action of the agent respectively.

To obtain such ideal policy function, deep Q learning uses state-
value function (Bellman function or other hand-written function)
to give a value to each action and train the deep neural network
according to these values. After training, for any given state s,
the trained deep neural network can derive an action a simply
by forward-feeding based on a = z(s). Mnih et al. [8] further
demonstrated that deep Q learning can be applied to Atari game
successfully. Nonetheless, despite its success in games, it is ques-
tionable whether Bellman function or hand-written equation exists
in human brain biologically. Upon this view, deep Q learning sel-
dom explicitly explains the interplay of state, action and reward
inside human brain neural network.

On the other side, deep deducing has deep neural network learn
the state input, action input and reward output "stochastically” from
the digital (twin) environment by using deep learning. Thus the
deep neural network itself factually replaces Bellman functionality
or any other hand-written equation.

Then by these trained neural networks, deep deducing derives
the action from the input layer. Namely, the action of an agent is
"generated" from the input layer by using error backpropagation.
Since the brain has many pathways from later layers back to earlier
ones (as in Hinton [4]), it is also biologically possible that the brain
has pathways from later layers back to the first one (input layer)
to convey the information required for generating or updating
action. Thus, if not all, to a certain extend, deep deducing explains
the interplay of state, action and reward in human brain neural
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network. Upon this view, deep deducing is different from deep Q
learning and its reinforcement learning method.

4.1.2 Generative Adversarial Neural Net. Generative Adversarial
Neural Net is probably the most interesting phenomenon in deep
learning area in the last few decades. Goodfellow et al. [3] shows
that by combining discriminator and generator and training their
respective weight matrices according to a two-player minimax game
with opposite target values, a generator can generate patterns that
mimic the original data.

Upon this view, deep deducing can be said to have a digital (twin)
environment serve as as a generator to reinforce the deep neural
networks in the learning phase. Then in the deducing phase, the
trained deep neural networks serves as discriminator.

However, from the above applications, we know that even for
a very thin layer of input data and discriminator, by using error
backpropagation, it can still "generate" patterns of actions without
any generator. Furthermore, in Tic Tac Toe application, we show
that splitting input data and training them adversarially under
the same discriminator also according to a two-player minimax
game with opposite target values, it can still perform generative
adversarial deduction.

The question then arises how a discriminator "generates" pat-
terns of actions with only data rather than generator.

We think the answer lies in the nature of the weight matrices
in deep neural network. Mordvintsev et al. [9, 10] and Szegedy et
al. [20] demonstrated that error backpropagtion toward random-
ized input data generated trippy image without generator, which
technique is commonly referred to as "deep dream". The technique
behind deep dream demonstrated that a deep neural network it-
self is enough for generating patterns. More explicitly, deep dream
demonstrated that trained weight matrices in deep neural network
gradually form an error surface where an input data cannot only be
placed to test if it reaches global minima, but can also be optimized
upon this error surface to converge to global minima by using er-
ror backpropagation, and the optimized input data will gradually
form a pattern mimicking the original input data. Deep deducing
further refines this process to shed light on the potential deductive
reasoning ability in deep neural network.

Upon this view, GAN can be said to have used a generator to
"perturbate” the error surface of deep neural network to adversari-
ally train the generator while deep deducing (in Tic Tac Toe) can
be said to have used a part of input data to "perturbate” this error
surface to adversarially train the other part of input data. Taking
only data into consideration, deep deducing might be more similar
to deep dream than GAN.

4.1.3  Other gradient methods used in decision-making. Since our
proposed method utilizes gradient provided by error backpropaga-
tion in deep neural networks, our proposed model can be viewed as
allowing estimated actions to be optimized upon an error surface.
Therefore, the comparison between our proposed model and other
optimization techniques is discussed here.

Gradient method has already been widely used in robotics. This is
usually done by designing an expert-designed cost function of robot
motion trajectory where the cost is the robot motion trajectory
length or distance from certain obstacles (such as in Nathan et al.

[13]).

However, designing expert-level cost function requires much
human expert interference. And since deep neural network can
form an cost function by its innate universal approximation feature,
it inevitably becomes a question whether expert-designed cost
functions is needed.

Aside from expert function, there are works using gradient pro-
vided by error backpropagation in trained deep neural networks
to optimize actions. For example, a work by Yize et al. [2] utilizes
gradient provided by error backpropagation in a single recurrent
neural network to optimize or tune a time sequence of parameters
in a building to cut down overall energy consumption. Also, Miguel
et al. [19] utilizes gradient provided by error backpropagation to
optimize wireless network. These works are usually referred to as
"differentiable planning".

However, the above methods utilize gradient provided by a only
single neural network or its variant, which inevitably faces local
minima problems. Even with momentum added to gradient descent,
it can only overcome some but not all local minima problems [2].
Even if we initialize different initial values for estimated action to
try to avoid poor local minima [19], there is no guarantee that a
single initial value will converge to desirable minima.

This is in fact due to the non-convex nature of error surface pro-
vided by a single deep neural net or its variant. Our proposed model
overcomes these problems by allowing the estimated action to be
optimized or performing gradient descent stochastically among
several trained neural nets. Our experiment shows that MWM-SGD
provides more stable results as in table 1 to 3. Also, MWM-SGD
helps an input data’s neural outputs coincide with multiple given
outputs as in statement (2-2).

4.1.4  Other gradient methods used to provide explainibility. Using
gradients provided by error backpropagation in deep neural net-
work to optimize input data to provide data saliency is no longer
news in XAI (Explainable A.L) territory. For example, Simonyan
et al. [17] demonstrated that, for a trained ConvNet, performing
optimization with respect to the input image while the learned
weights are fixed during this optimization generates saliency vi-
sualization. Also, DeepLIFT [16] was introduced to be applied to
the top of deep neural network prediction, enhancing gradient
method by multiplying the gradient with the input signal. The
above methods are referred to as "gradients explanation techniques”
or "backpropagation-based approaches".

However, the above methods are done in a single deep neural
network and its variant. Since optimizing input image by gradient
provided by error backpropagation in a single deep neural is equiv-
alent to optimizing input image on a single error surface created by
a single deep neural network, the above methods inevitably face
local minima problem.

To solve this problem, rather than a single deep neural network,
we train multiple neural networks and randomly select a neural
network for input image to be optimized upon. We show that this
method (MWM-SGD) can easily help input image to escape local
minima during the optimization process and generate salient visu-
alization as shown in figure 3 comparable to the above methods.



4.2 Pros and Cons

We discuss the pros and cons regarding deep deducing. The pros
and cons are two sides of a coin.

The obvious pro is that deep deducing is biologically plausible.
Since the brain has many pathways from later layers back to earlier
ones (as in Hinton [4]), it is possible that the brain also has pathways
from later layers back to the first one (input layer) to convey the
information required for deducing action. Also, by stacking sets
of trained neural networks, deep deducing helps deduced actions
escape local minima and provides a simple and integrated optimal
action to satisfy different optimal reward requirements, without
using any Bellman function or hand-written equation.

The obvious cons are that: (1) First, deep deducing heavily relies
on parrellism where multiple neural nets are parallelly trained in
digital (twin) environment to resolve sparse reward problem. Thus,
a refined digital (twin) environment is needed. (2) Second, deep
deducing obviously requires heavy parallel computational power
and memory resource which limits its application for the present
time.

Deep deducing differs from other kinds of deep reinforcement
learning in that deep deducing directly learns from the digital (twin)
environment stochastically (since deep deducing is completely deep
learning in the learning phase), then, based on these learned cases,
it makes deduction or automated reasoning according to the present
state. A reinforcement learning method could be applied to deep
deducing. However, it could be computationally time expensive for
the present time.

4.3 Future Broader Impact

With the advance of digital (twin) environment and metaverse,
the training of intelligent A.I. would largely be done in digital
(twin) environment rather than real physical environment. In this
scenario, reinforcement learning and stochastic learning would
both be options. This paper’s model can serve as an stochastic
learning method to compress environment experiences into deep
neural networks and allow AL to make decision by these neural
experiences. Furthermore, with the advance of quantum parallelism,
the problem of lack of parallel computational power might be solved,
furthering the impact of this paper’s model.

5 CONCLUSION

In this paper, we introduce a general approach for deep neural net-
work to perform deductive reasoning based on error backpropaga-
tion, which can be used to deduce action upon a given state-reward
sequence. Our method first learns a neural network that predicts a
sequence of rewards from a sequence of states and actions. Then,
given a state-reward sequence, appropriate actions can be optimized
through backpropagation. Thanks to deep learning, it is possible
to obtain an off-the-shelf error surface for actions to be optimized
upon. We show that this approach can be applied to various types of
digital environment with little modification. Moreover, in contrast
to recent approaches, it does not require Bellman function or other
hand-written functions.
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