Feature Specialization and Clustering Improves Hierarchical
Subtask Learning

Neale Van Stralen, Seung Hyun Kim, Huy T. Tran, Girish Chowdhary
University of Illinois at Urbana-Champaign
United States
{nealeav2,skim449,huytran1,girishc}@illinois.edu

ABSTRACT

Eigendecomposition methods have been shown to generate sets
of useful options which improve learning speed when used in hi-
erarchical reinforcement learning. However, these methods focus
on navigation by learning reward-agnostic representations and
struggle when presented with environments with dynamic reward
structures, such as adversarial agents. Taking inspiration from mam-
mals, which are known to maintain specialized groupings of cells to
perform complex planning, we propose leveraging the linear feature
space of the successor features framework to independently encode
spatial and reward information of an environment. We show that
subsequent decomposition of this representation results in options
which separately relate to spatial or rewarding features, allowing
for complex spatial planning around dynamic objects, such as ad-
versaries. We also propose the use of principle component analysis
to perform this decomposition, due to its use of a clustering ba-
sis, which we show better identifies options for spatial planning
than common methods. We combine these ideas in our Specialized
Neurons and Clustering Architecture (SNAC), which uses a split
successor feature encoding and cluster-based decomposition, and
empirically demonstrate that this architecture produces options
that are sensitive to adversarial agents, thus improving learning
speed and performance in challenging and dynamic spatial planning
tasks.

KEYWORDS

Reinforcement Learning, Hierarchical Reinforcement Learning, Op-
tions Learning

1 INTRODUCTION

Mammals often solve complex problems by decomposing them into
distinct subtasks. For example, in navigation, intermediate goal lo-
cations are often identified and used for efficient planning. There is
now strong evidence that this type of hierarchical navigation lever-
ages specialized neurons in the hippocampus, such as place and
object cells which fire near specific spatial locations or important
objects, respectively, to create a topological representation of the
environment [5, 7, 31, 34]. Exactly how mammals utilize these repre-
sentations to make decisions remains an active area of research, but
the strength of mammalian pattern recognition suggests that clus-
tering may play an important role in decision making [26]. Modern
hierarchical reinforcement learning (HRL) agents mimic the overall
structure of planning over subtasks (options) but currently lack
feature specialization and effective cluster-based decomposition,

Proc. of the Adaptive and Learning Agents Workshop (ALA 2022), Cruz, Hayes, da Silva,
Santos (eds.), May 9-10, 2022, Online, https://ala2022.github.io/. 2022.

which may be limiting performance in complex environments such
as those with dynamic objects or adversaries.

Here, we ask the question, “Can feature specialization and cluster-
based options enable HRL agents to decompose environments into a
useful task subspace, and will such decomposition result in signifi-
cantly improved learning speed and performance?” We address this
question within the context of successor features (SFs) [16], the
function approximation variant of the successor representation (SR)
[9]. We focus on SFs because recent work has shown that eigende-
composition of SFs can be used to generate a useful set of options
in a two-step approach that supports generalization to new tasks
[22]. Furthermore, SR has been shown to learn topological maps
similar to those in place cells of mice [23], suggesting that SFs inher-
ently mimic certain aspects of spatial navigation seen in mammals.
However, two key limitations prevent existing eigendecomposition
methods for HRL, which we refer to as eigenoption methods, from
being applied in complex and dynamic domains.

The first limitation is that existing eigenoption methods focus
on learning reward-agnostic options which work well for navi-
gation, but have limited sensitivity to dynamic elements of the
environment, such as adversaries or mobile rewards. We address
this limitation by improving the ability of SFs to model dynamic el-
ements in the environment and subsequently generate options that
specifically interact with those elements. Our key idea is to mimic
the task-specialization of the hippocampus by splitting the latent SF
representation into specialized components, each of which encodes
a unique element of the environment, such as spatial location or
adversary information. We then decompose each component to
generate a set of specialized options that relate to those unique
elements.

The second limitation is that existing eigenoption methods focus
on identifying unique states, commonly bottlenecks from mini-
mum cuts, to be used as option sub-goals [2, 20-22]. While options
leading to bottleneck states can aid in navigation, they cannot suf-
ficiently model complex tasks that require a more diverse set of
options, such as navigating around an enemy in a room [15, 20].
We address this limitation by proposing use of a different graph
decomposition method, principle component analysis (PCA), which
produces a basis for k-means clustering of an environments’ states
that captures information about cluster centroids and intra-cluster
structure. We use this basis to generate options that allow agents
to navigate to key clusters in the environment and also perform
detailed movement and control within those clusters, allowing for
more diverse behavior.

Our main contribution is to combine these two ideas, task spe-
cialization through a split SF encoding and cluster-based option

https://ala2022.github.io/

discovery through PCA, into an HRL architecture for solving com-
plex tasks in dynamic environments. We show that this architecture,
SNAC: Specialized Neurons And Clustering Architecture, signif-
icantly improves learning speed and performance over existing
eigenoption and general HRL methods. In particular, we show that
our method significantly outperforms baselines in a grid-world en-
vironment with moving adversaries, due its ability to better handle
dynamic objects. We also show that our method improves perfor-
mance over baselines in Atari, although there is significant room
for further improvement since current exploration methods for
learning SFs struggle with large environments like this. A key take-
away is that even though existing eigenoption methods are reward-
agnostic, we demonstrate that directly including reward modelling
in the representation learning process improves performance and
is a worthwhile avenue of research for decomposition-based HRL.

2 BACKGROUND AND RELATED WORK

We formulate our problem as a Markov decision process (MDP),
defined by the tuple (S, A, P, R). Here, S is the state space of the
environment, A is the action space of the agent, P : SX AX S —
[0, 1] is the transition function, and R : S X A — R is the reward
function. RL algorithms seek to find a policy 7 (als) : S — A that
selects actions over the state space that maximize the expected
discounted return E,; [Z%r:l% yirt+i |s¢ = s].

HRL seeks to improve learning speed and performance in prob-
lems with large state-action spaces by finding and exploiting hier-
archies within the environment [2, 16, 25]. The semi-MDP formu-
lation is a leading framework for HRL which decomposes a policy
into Markovian options [32]. A Markovian option w € Q is a tuple
(Zw» 7w, Pow), Where I, is an initiation condition, 7, is a policy
for the option, f, is a termination condition, and Q is the set of
all options. In the semi-MDP framework, options are called in se-
quence by a hierarchical controller (HC) using a policy 7 : S — Q
to solve complex environments through smaller, more manageable
subtasks.

2.1 Successor Features

SR provides an alternative structure for RL that focuses on sepa-
rating environment dynamics from rewards [9]. This separation
allows one to recompute value functions under dynamically chang-
ing rewards, which can be used to enable fast policy adaptation to
new reward structures [9, 16, 38]. SR accomplishes this separation
by correlating proximal spatial locations to one another, similar to
how mammals encode temporally adjacent states with similar brain
firing in place cells [23, 31]. More formally, the SR is the expected
discounted future state occupancy, defined as,

[oe]

M (s,a,s") =B, Z Vl(strisi =sllse =s,ar=al, (1)
i=0

where 1[-] is one when the input argument is true. The resulting SR
defines an adjacency matrix for a fully connected graph that models
the MDP, where the (i, j)* h element of M is the expected number
of times an agent will visit state s; in the future, when starting in
state s; and taking action a. A reward vector R(s”), representing the
reward generated at a state s’, can then be used to directly evaluate

the action-value function Q” as follows,

Q"(s,a) =) M(s,a,s")R(s"). @)

SFs generalize SR with function approximation to allow mod-
elling of environments with large state spaces [17]. The basis of SFs
is that the MDP state space can be represented by a feature space,
¢(s) : S— RN, and the spatial correlation from SR can be applied
to those features. SFs thus capture the expected discounted future
feature occupancy, and are defined as,

97 (5,a) =Bx | Dy p(seeinn)lse = s,ar = a, 3)
i=0
where the ith element of ¢ represents the expected discounting
of the ith feature of ¢. Similar to SR, the action-value function can
be approximated with a reward vector w, specifying the reward
generated by each feature, as follows,

Q" (s,a) =9 (s,0) Tw. 4

We omit the 7 notation in g7 for the remainder of this paper.

The key power of SFs is that they implicitly encode a graph of
the environment, as adjacent states in the MDP maintain similar en-
codings in g, but the effectiveness of the graph is influenced by how
one defines ¢. Modern SF architectures assume, and empirically
show, that state and reward prediction can generate sufficiently
dense encoding for ¢ to accurately capture the dynamics of the
environment [3, 17, 18]. Using reward prediction does not effect
SFs ability to separate dynamics and reward structure, it simply
identifies important features of the environment correlated to re-
ward (e.g., enemies or goal flags), similar to how humans and mice
identify important locations or objects as a basis for navigation
[31, 34].

2.2 Option Discovery

There are two primary approaches for learning a set of options,
{m1,..., 7N}, that can be used in the semi-MDP framework [32].
Exploration-based methods learn options which lead to diverse
states in the environment with the goal of improving exploration of
extremely large state spaces during training [1, 8, 11, 14]. Two such
methods are DIYAN [11], which learns diverse policies by maximiz-
ing option discernibility using a discriminator, and Deep Covering
Options (DCO), which learns options that lead to poorly explored
states with a Laplacian representation. However, exploration-based
methods struggle when used with complex tasks in HRL because
the generated options focus on high-level explorative navigation
and often forgo learning aspects of low-level control.

In contrast, decomposition-based methods decompose a learned
representation into a set of options which cover a diverse range of
subtasks in the environment [21, 22]. We focus on decomposition-
based methods because their options identify a broader range of
strategic positions for option goals, while exploration methods only
define options which navigate to distant states in the environment.

Decomposition-based methods are generally implemented in a
two-step process. The first step learns a graph-like representation of
the environment using, for example, deep graph Laplacians [21, 37],
proto-value functions [19], or SFs [22]. Such representations have
been shown to uncover equivalent, graph-like representations in

(a) Split Architecture

Feature Feature W(s,a) = ¥(s) .® >
Encoder Discounting + W, (s,a))y {Qi(s’a)}
— Mo (b) Dueling SF
-~ ~
-~ ~
~ ~ \
Ne PCA E{ :]
w.}
[@, | ®, | ' | by] [%o | ®s] Dl :
f f (c) Option Extraction
Food Predators Obstacles [RPe:‘vezltd][g:‘:
@] q : (d) Option Hierarchy
Biological | MDP e st HC (g E% 1
Version | Version : |_6
—| .°

Neural Update Signal/ ® Dot
Network Loss Product

Figure 1: The SNAC decomposition and option generation pipeline. (a) A neural network feature encoder learns a split latent
space, ¢, broken into N distinct components, each encoding a unique aspect of the environment. In the generalized MDP case,
we use state and reward prediction for the split. (b) The SFs, g, are learned with a dueling architecture defined in Equation (12)
and jointly updated according to Equation (13). (c) The SF representation ¢ is decomposed with PCA, creating a set of principle
components that are combined with SFs to create options. (d) A generic HRL framework, where learned options are used to

solve an overall task.

which spatially close states are encoded with similar representa-
tions [22]. These methods use random walk exploration to prevent
learning a representation that is skewed by the exploration policy.
An unbiased representation is required to ensure accurate repre-
sentation of the environment’s graph Laplacian, which is used for
decomposition and defined by a policy-agnostic adjacency matrix
[14, 19, 21, 22]. We discuss practical impacts of random walk ex-
ploration in Section 4.4. One limitation of existing methods used
to learn these representations is that they focus on capturing state
adjacency and struggle to model dynamic elements in the environ-
ment, such as adversaries.

The second step then decomposes the learned representation
into a basis of pseudo-reward functions that are used to train op-
tions (using any RL method) [19, 21, 22]. This decomposition is
typically performed using eigendecomposition methods, which
produce pseudo-rewards leading to minimum cuts, or bottlenecks,
in the geometric space of the environment. This approach has been
shown to be useful in navigation problems, as bottleneck states
can be used to bridge between sparsely connected states [17, 29].
However, options defined by eigendecomposition struggle to solve
environments where a goal is not in a bottleneck [19], and thus
have only been fully demonstrated in simple navigation problems
[21]. Recent works have also begun to address this limitation by
exploring alternative decomposition methods, such as k-means
clustering, but they are still only applied to navigation problems
[27].

3 OUR APPROACH

Our approach, SNAC, proposes three key ideas to improve current
eigenoption methods for HRL. Our first idea improves the process

of learning a graph-like representation, or topological map, of an
environment by using a split SF architecture that better encodes dy-
namic elements through feature specialization. Our second idea im-
proves the decomposition of a learned representation by using PCA
to identify cluster-based options. Finally, our third idea improves
training of a hierarchical policy by using a dueling SF architecture
to learn a smoother and more accurate SF representation — this
smooth representation enables us to skip the option learning phase
used in other SF eigenoption methods[19, 21, 22]. Our approach is
summarized in Figure 1 and our algorithm in Algorithm 1.

3.1 Bioinspired Feature Specialization through
Split Successor Features

SFs provide a powerful way to represent an environment as a topo-
logical map that can be decomposed into options [22]. However,
the quality of these options heavily relies on the underlying feature
encoding ¢, which is typically generated by state [22] or reward
predictions [16, 18]. There are two main limitations imposed by this
approach. First, there is no mechanism for enforcing specialization
within these features, resulting in options that entangle all elements
of the environment, such as spatial navigation, adversaries, and
rewarding goals. Second, many agents operate in sparse reward
environments where the state prediction loss dominates infrequent
reward signals, leading to poor representation of rewarding ele-
ments like dynamic adversaries.

In SNAC, we instead propose splitting the encoding of ¢ into
specialized components which independently encode specific el-
ements of the environment, such as obstacles, goal locations, or

adversaries. These specialized features are then decomposed sep-
arately to generate specialized policies relating to each element.
Such specializations are present throughout the brain, from macro-
scale hemispheric specialization [35] to specialization in specific
regions like the visual cortex, where language and spatial location
are processed independently [33]. We specifically draw inspira-
tion from the well-documented specialization in the entorhinal
cortex of humans and rodents, where specialized cells encode po-
sitional information, obstacle proximity, and object location. Of
particular interest are observations of object cells in [34], where
dynamic cells were observed to fire in proximity to objects that
were moved throughout an environment. We hypothesize that spe-
cialized features which capture a similar dynamic encoding will
generate options relating specifically to dynamic objects.

We mimic such specialization in SFs by separating ¢ into two
components, which are learned using the two most prevalent signals
available to RL agents: state prediction and reward dynamics. We
expect that training via state prediction will encode a dense feature
representation of the environment’s spatial features, similar to
place cells. More interestingly, we expect that training via reward
dynamics will encode a feature representation that captures all
objects an agent can interact with to generate reward, similar to
object cells [34]. We implement this idea by dividing the latent ¢
vector into two components,

¢ = (90, ¢s), (5)

where ¢ represents all rewarding features, which we call object
features, and ¢s represents spatial features of the environment.
Object features are learned with the following reward loss,

Lreward,9¢o =|lr —¢o(s) 'W”z, (6)

where w is the SF weight vector from Equation (4). Spatial features
are learned with the following state prediction loss,

Lipatialog, = IS’ = D(#s(), @),)

where D is a standard decoder trained to predict s”. The specialized
feature vector ¢ is then discounted to create specialized SFs,

¥ = (yo. ¢s). (8)

using Equation (3) with no modification.

We again note that using reward prediction to train the feature
basis does not effect the ability of SFs to separate dynamics and
reward structure [3, 17, 18]. The dynamics of the environment
are still represented in SFs by the feature discounting (s, a), with
reward structure still captured by w. This separation is independent
of how we learn the feature space ¢.

3.2 Decomposing Environments into a Task
Subspace with PCA

Eigenoption methods have successfully solved navigation tasks
in environments by generating options that lead to unique states
[22]. However, options that only lead to unique states cannot easily
handle dynamic environments that require complex movements,
such as positioning around mobile enemies.

In SNAC, we propose replacing eigendecomposition of the envi-
ronment, in this case represented through SFs, with cluster-based

decomposition of the environment. In the context of SFs, such clus-
tering could identify spatial clusters within the environment, such
as rooms, to be used as option goals for high-level navigation. This
decomposition could also identify intra-cluster relationships, which
are useful for defining options to navigate within a cluster. For ex-
ample, such options would allow for navigation to specific positions
within a room, which is missing from current eigenoption methods.
We implement this idea by decomposing our SF representation of
the environment with PCA. We use PCA because it is proven to
recover a basis for the cluster subspace of the input data that can
identify cluster centroids and intra-cluster connections [10]. We
reformulate this proof within the context of our SF decomposition
problem in the following lemma using ideas from [10]:

Lemma 1: The cluster centroid subspace of an SF topological map
is spanned by the first K — 1 principal components of PCA.

We use PCA to independently decompose each component, o
and s, of our specialized SFs. This decomposition creates sets of
principle components {wgp ;} and {wg ;} that capture the specializa-
tion found in our features. We then use these principle components
to generate sets of object and spatial options using Equation (14).

We note that clusters within SF topological maps could directly
serve as goals for individual options, for example through k-means
clustering. However, directly using such clusters for options would
limit the ability of the hierarchical policy to perform micro-level
movements within a cluster. We show in Section 4.3 that our PCA
cluster subspace outperforms direct use of k-means clusters as
options.

3.3 Improving SF Learning with Dueling SFs

SFs are traditionally learned with the following Bellman-style up-
date [16, 22],

Lsr, = E¢(s0) + yp(sesr,a’) = (s an)| 9)

where a’ = argmax, ((s¢+1, @) T w). There are two issues with this
update, pertaining to our SFs implementation. First, following from
[22], we use a random walk exploration to learn SFs that are not
biased by a policy. However, this results in a double sampling issue
as a’ would be randomly sampled. Second, these Bellman updates
are often noisy, specifically when multiple state-action pairs have
similar values, which leads to poor evaluation of the effect of actions
[36].

We propose a new SFs architecture, based on the dueling ar-
chitecture introduced in [36], to address both of these issues. The
dueling architecture represents the action value function through
two components,

Q(s,a) =V(s) + A(s, a), (10)

where V (s) is the state value function and A(s, a) is an advantage
function evaluating the value of individual actions. This param-
eterization allows for a powerful separation of state and action
evaluation. While dueling can be implemented in the above man-
ner, it is naive, as there is ambiguity in the value assignment: a
constant could be subtracted from A(s, a) and added to V (s) without
changing the value. Wang et al. [36] instead proposes using,

Q(s,a) =V(s) + (A(s,a) — |71| ZA(S, a’)), (11)

10
High
Value
0.8 4
S
~0.6
2
R —— SNAC (Ours)
= 041 SF Eigenoptions
§ —— Lap. Eigenoptions
— DIYAN
0.2 4 —_DCO
— PPO
&6 . , . : Low
o 1000 2000 3000 4000 5000 Value

Episode

Figure 2: (left) Comparing performance during training in the 4 rooms domain. Bold lines are median runs with shaded regions
representing 25-75 percentiles [25 replicates] (right) Four of 16 options generated by SNAC in 4 rooms, with the initial state
shown by “S”. The first principal component (1) represents high-level movement in the environment, i.e., moving to right/left
side of environment. The next two options (2 & 3) resemble cluster centroids in the right hand rooms. Subsequent options (4)
are complex options that enable micro-level movement, e.g., moving to the top right corner of the top right quadrant.

Algorithm 1: SNAC Algorithm
Initialize feature encoder parameterized by 0:
Fg,(s) = ¢(s) 5
Initialize feature discounting parameterized by fsF:
G, (s) =9(s,a) ;
Initialize HC parameterized by 0gc: Hg,, (s) = 7(s) ;

for i in SF exploration episodes do
Explore environment with random uniform policy
— [(s0, a1, 1), ---(Sn—1, an, sn)1;
Update feature encoder with Equation (6) and
Equation (7) ;
Update feature discounting with Equation (13);
end
Sample N states from environment— M € RNxP.
Split M into Mp € RN%S and Mg € RN*P=S baged on
feature split;
Decompose Mp and Mg with PCA to create n options —
{wo,i} and {ws,;} ;
repeat
Reset environment — sg ;
for i in steps do
Select option— j = 7(s;) ;
Select action for specific option
— a;j = argmaxq (P (s, a)TW]’) R
Step environment with a; — s;
end

Update HC according to learning algorithm (PPO) ;

to fix a zero advantage reference point at the selected action.

SFs use the same Bellman-style update as Q functions, so any
paramaterization or updates valid for the Q function Bellman equa-
tion, like the dueling architecture, can be applied to learn g [3].

Similar to [36], we paramaterize g (s, a) with the advantage formu-
lation from Equation (11),

V(5.0) = 95 +9a(0:5) = 950+ @a(@3) = 0 D pa(a’s)
T w

where s (s) represents the expected features induced by the state s
and @4 (a, s) represents the expected features induced by a specific
future action a. We use this dueling format of the advantage func-
tion in SNAC to improve our (s, a) evaluation “in the presence of
many similar-valued actions [36].” We also use this parameteriza-
tion to simplify the feature discounting loss to,

Lspp, = Ellg(st+1) + ywps(se1) — 9 (st anl?, (13)

which eliminates the double sampling issue as we can reparame-
terize the Bellman update with @g(s;+1), eliminating the need to
evaluate a’.

Our experiments show that our dueling SF architecture reduces
errors in our estimation of ¢ (s, a) relative to traditional SF methods.
This accurate SF representation then allows us to simply define an
option policy as,

mi(s) = argmax(Q;(s, a)) = argmax(y (s, a)Twi). (14)

This approach reduces training time and network complexity rela-
tive to existing methods which, likely due to noisy SF representa-
tions, require additional learning of ; using w; [11, 14, 19, 21, 22,
27].

4 RESULTS

We compare SNAC against five baselines, a traditional PPO RL
algorithm [28], and four HRL methods. Our primary HRL baselines
are decomposition-based eigenoption methods using the SF (SF
Eigenoptions) [22] and deep Laplacian (Lap. Eigenoptions) [21, 37]
representations. We also compare to the exploration-based option
generation methods DIYAN [11] and DCO [14].

The HC in all HRL methods (Eigenoptions, DIYAN, DCO, and
SNAC) is a PPO implementation which selects the options to use,

80{DSF (ours) . 201 .. SF Latent Space
Latent Space 15 ° y(s,a)
y(sa) ;
40 N N
ae’
20 37'3:’9 (S1,l)
L4
of %
S,—™ ? «—
2] & (S, S |[8,¢)
_40]
(Sp™)
—;5 —.;:0 —éS (') 2’5 5’0 7'5 -20 -10 0 10 20

Figure 3: PCA visualization of (s, a) for all state-action pairs in 4 rooms. (center) state-action pairs that terminate in the same s’
should have similar g (s, a) representations, as they will have similar future trajectories. (left) The dueling SF architecture (DSF)
produces clusters of (s, a) pairs that all terminate in the same s’. (right) The traditional SF architecture produces noisier (s, a)
representations that often overlap with (s, a) pairs terminating in different states. Note: Each point is a linear combination,
derived from PCA, of original data, and since the two sets of points come from two different learned representations, we

cannot compare them based on the axes values.

instead of selecting primitive actions as in traditional RL. The HC
operates at a higher temporal scale than the options, i.e. the HC
selects which option to use for the next N timesteps (N). We use
the same HC architecture for all methods to focus our study on
the effect of option generation architectures, as opposed to the HC
implementation. Hyperparameters for all methods were selected
to maximize training speed with a full factorial sweep over major
hyperparameters, namely learning rate, entropy, batch-size, and
the number of options in hierarchical methods.

4.1 Grid-world Navigation

We first test our algorithm in the 4 rooms domain [32], a bench-
mark grid-world navigation problem. This experiment focuses on
the effects of our PCA decomposition and SF dueling architecture,
since the lack of dynamic objects limits the impact of our feature
specialization approach. Here, the agent must navigate through
a series of bottlenecks to reach the goal, making it a challenging
domain for RL agents. Figure 2 shows that in this environment, our
method, SNAC, trains faster and has significantly less variation
in performance than baselines. We note that decomposition-based
methods have significantly less variation in performance when
compared to exploration-based methods.

We also visualize four selected options generated by SNAC for
this environment in Figure 2. A clear functional hierarchy is ob-
served based on the principal component index, i.e., k in wy. The
first few options capture global trends in the environment, specif-
ically left-right and top-bottom position, which can be used to
navigate to high-level clusters in the environment. The middle
options resemble explicit cluster centroids but with complex merg-
ing; for example, option two shows two apparent centroids in the
top-left and bottom-right quadrants. The last several options have
more complex structures that allow for micro-level control, such
as option four, which could be used to navigate to corners in the
top-left quadrant.

We also examine the effect of our dueling SF architecture on the
learned SF representation. Based on Equation (3), we expect there
to be two major outcomes of an SF representation: (1) the represen-
tation should maintain geometric relationships with respect to the

environment’s topology; and (2) (s, a) pairs with the same terminal
state s’ should have the same (s, a). We examine the benefits of
our dueling SF architecture by plotting the SF representation of all
state-action pairs in Figure 3 and highlighting a set of (s, a) pairs
that all terminate in the same location. We see that our dueling
SF and the traditional SF both capture general geometric relation-
ships of the domain, as each have four large clusters of points (i.e.,
the rooms) and four distinct points in between those clusters (i.e.,
the bottlenecks). However, we see that the traditional SF learning
architecture does not satisfy the second expected outcome of an
SF representation, since it produces a noisy clustering that mixes
representations of (s, a) pairs terminating in different states. In com-
parison, SNAC learns a smoother representation that more precisely
clusters (s, a) pairs which terminate in the same state. Our results
suggest that this improved representation helps with optimizing a
hierarchical policy through improved value estimation.

4.2 Adversarial Grid-world

We also evaluate our algorithm in a more complex grid-world en-
vironment with dynamic adversaries, to demonstrate the effect of
our specialized split SF encoding. Here, we use an open-source
implementation of a grid-world version of Capture the Flag (CtF)
[24]. The grid-world map in CtF is divided into two territories with
two teams of agents, red and blue, competing to capture a flag in the
adversary territory. The two teams interact in a simulated combat
when two opposing agents come in close proximity. The combat
outcome is probabilistic and biased by the territory on which it
occurs, giving an advantage to the defending team. This interac-
tion creates a challenging complexity in the environment, as the
territory significantly affects interaction outcomes and future tra-
jectories. In our experiments, the adversary team is controlled by
a heuristic policy that patrols its own territory and occasionally
ventures into enemy territory to capture flags.

We focus on the CtF map shown in Figure 5, which contains
a large obstacle in the middle of the map that creates two key
defensive (offensive) choke points. We first analyze the sensitivity
of our specialized features ¢ to specific objects in the environment.
The activation patterns of four features of ¢ are plotted in Figure 4,

Object (Reward) Based Feature Activation (¢,) | Spatial Based Feature Activation (¢)

Figure 4: The ¢ representation learned by our split SF architecture in CtF. Red depicts the spatial activation of ¢ in a 1v1 game
with the enemy, “E”, at different positions. Several object (reward) features ¢o activate when proximal to enemies, similar to
traces observed in the mouse entorhinal cortex in [34]. Other object features activate on a specific side of the map, since the
territory impacts combat outcomes. Spatial features activate near walls and at specific spatial locations, similar to grid cells
and boundary cells [4, 12, 30].

Object-based option Spatial-based option

0.5

—— SNAC (ours) —— DIYAN - .
—— SF Eigenoptions — DCO 1 ngh
0.4 —— Laplacian Eigenoptions = —— PPO | . Value
e v - v .
= .
K] .
Py .
- .
m -
X o2 -
01 , o
0.0 2 X . Low
o 50000 100000 150000 200000 250000 | - Value
Episode

Figure 5: (left) SNAC shows improved performance relative to baselines during training in a 1v2 CtF game, where one con-
trolled agent (A) competes against two adversarial enemies (E) to capture their flag (red star) while defending it’s own (blue
star). Bold line is the median, and shaded region is the 25-75 percentile [10 replicates]. (right) Two resultant options from
SNAC, shown in response to one enemy agent for simplicity. The coloring represents the relative value of the position, where
yellow indicates more value. The spatial-based option navigates to a specific spatial location, agnostic of the enemy position.
The object-based option is highly reactive to the enemy position; this specific option appears to be defensive, as it moves to

position the agent between the enemy and its own flag,.

and show very different behaviors. Several object-based features,
@0, show extreme sensitivity to enemy agents and only fire when in
close proximity to them, similar to a mouse’s sensitivity to moving
objects [34]. We also see that several features are activated when
on the adversary’s territory, a major factor affecting rewards in
CtF. Our spatial-based features, ¢s, behave similarly to boundary
cells [30] and place cells [31], firing next to walls and at specific
locations.

Figure 5 shows that SNAC significantly outperforms baselines in
a 1v2 game of CtF with respect to training speed and steady-state
performance. We expect these improvements are due to SNAC’s
ability to generate dynamic options that react to adversaries in the
environment, based on specialized features as shown in Figure 4,
as well as options that enable high-level and micro-level move-
ments due to PCA decomposition. Figure 5 visualizes corresponding
options generated by SNAC. We see that spatial options remain
similar to those presented in Figure 2, and are constant regardless
of the enemy’s position. However, as expected, our object-based
options show significant reactivity to dynamic attributes in the en-
vironment. For example, the option shown in Figure 5 resembles a

defensive behavior, as the agent navigates to position itself between
the adversary and its flag.

4.3 Adversarial Grid-world Ablation Study

We performed two ablation studies in the CtF environment to
demonstrate the impact of different SNAC components. The first
ablation in Figure 6 shows the performance of SNAC without PCA
and without the split feature encoding. We see that both model
variants perform worse than the full SNAC but still significantly
outperform baselines, suggesting these two components indepen-
dently improve performance and are constructively used together
in SNAC. This ablation also demonstrates the value of our feature
specialization, as “SNAC without PCA”, which is essentially SF
Eigenoptions with our split architecture, improves performance
over the standard SF Eigenoptions method. The second ablation
in Figure 6 shows the performance of alternative decomposition
methods when using our dueling SF architecture. We observe that
SNAC outperforms considered alternatives, while the dueling archi-
tecture has limited impact on the performance of SF Eigenoptions,
as the 25-75th percentile ranges overlap significantly. We also see

0.5
— SNAC (ours) — SF Eigenoptions
SNAC w/o PCA — PPO
0.4 —— SNAC w/o Split E
v - - ,
& 0.3+
(1]
o
£
= 0.2
0.1
0.0 T T . :
0 50000 100000 150000 200000 250000
Episodes

Win Rate

0.5

— SNAC (ours) —— SF Eigenoptions
Dueling w/ SF Eigenoptions — PPO
0.4 — Dueling w/ K-means Options o
e A IR R AN

0.3

0.2

0.1

0.0 7 ¥ T T

0 50000 100000 150000 200000 250000
Episodes

Figure 6: Ablation experiments performed in the 1v2 CtF game described in Figure 5. (left) Results from removing core compo-
nents of SNAC demonstrate that its components independently improve performance over baselines. We observe that SNAC
w/o PCA (i.e., SF Eigenoptions with a spit architecture) improves training speed and consistency over vanilla SF Eigenoptions,
but remains slower than SNAC. Additionally, SNAC w/o Split maintains faster learning than SF Eigenoptions, showing that a
PCA decomposition performs well even with reward-agnostic SFs. (right) Evaluating our SF dueling architecture with alterna-
tive decomposition techniques shows that cluster-based decompositions, like PCA and k-means, improve performance over
traditional eigendecompositions but do not have the intra-cluster movement options needed to handle dynamic enemies.

Alien

Total Reward
s g 2 3
3% 5 B 8

8
8

—— SNAC (Ours)
SF Eigen Option
— PPO

N
S
8

0 10000 20000 30000

Episodes

40000 50000

Figure 7: Comparing performance in the Atari game Alien.
Both option generation methods significantly outperform
traditional RL in the first 5000 episodes, after which only
SNAC continues to show strong performance. However,
there is a performance plateau near the end of training,
likely due to limited exploration when learning the under-
lying SFs. State visitation during SF training is highlighted
on the right and shows less than half the map is visited.

that while k-means clustering [27] is outperformed by SNAC, it
does outperform other baselines, further supporting the notion
that cluster-based options better handle more complex, dynamic
environments than eigendecomposition.

4.4 Atari

We also tested our method in the Alien game from the open-source
Atari learning environment [6], which requires complex spatial
planning to win due to moving adversaries. We see in Figure 7 that
there are significant early performance gains during learning for
SNAC and SF Eigenoptions relative to vanilla PPO. However, only
SNAC maintains higher performance further into learning, while
SF Eigenoptions quickly plateaus. This plateauing is also seen in
our architecture (to a lesser extent) near the end of training, and
demonstrates the primary limitation of current SF methods: they
perform well on tightly constrained environments, like grid-worlds,

where it is reasonable to explore a majority of the states during
preliminary SF training. However, in larger environments such as
this one, the exploration of states distant from starting locations is
limited, leading to an inaccurate SF representation and options that
struggle to generalize to the rest of the environment. We highlight
the states explored during SF training in Figure 7, which shows that
over half of the environment is never explored during training. We
expect that implementations that better explore large action spaces
[13] will improve performance.

5 CONCLUSIONS

Successor features is a bioinspired framework that provides a strong
approach for predicting the underlying dynamics of an environ-
ment, which can be leveraged for decomposition of a complex
task into subtasks. In this work, we show that augmenting SF de-
composition with feature specialization and clustering, inspired
by cell specialization and clustering in the hippocampus, signif-
icantly improves learning performance and speed in benchmark
spatial planning tasks. More specifically, we empirically show that
the options learned by our approach, SNAC (Specialized Neurons
And Clustering Architecture), outperform baselines due to high
reactivity to dynamic objects such as adversaries, options that more
completely cover the task subspace, and smoother learning of SFs.

Regarding future work, our specialized encoding architecture
could be improved through creation of a more generalized architec-
ture to develop splits that better mimic that of the hippocampus.
Techniques could also be implemented to update and optimize
learned options over long horizons, similar to continual learning
in humans. However, the most pressing limitation of our approach
is the exploration limitation of current SF methods due to random
walk sampling, as seen in our Atari results.

ACKNOWLEDGMENTS

This work was supported in part by ONR N00014-20-1-2249, ONR
N00014-19-1-2373, and ARL W911NF2020184.

REFERENCES

(1]

[2

—

(3]

=L

[11]

[12]

[13

[14]

[15

[16]

[17]

[18

[19]

[20

[21]

[22

[23]

[24

[25]

Joshua Achiam, Harrison Edwards, Dario Amodei, and Pieter Abbeel. 2018. Vari-
ational option discovery algorithms. arXiv preprint arXiv:1807.10299 (2018).
Pierre Luc Bacon, Jean Harb, and Doina Precup. 2017. The option-critic architec-
ture. 31st AAAI Conference on Artificial Intelligence, AAAI 2017 (2017), 1726-1734.
arXiv:arXiv:1609.05140v2

André Barreto, Will Dabney, Rémi Munos, Jonathan J Hunt, Tom Schaul, Hado
Van Hasselt, and David Silver. 2017. Successor features for transfer in reinforce-
ment learning. In Advances in Neural Information Processing Systems, Vol. 2017-
Decem. 4056-4066. arXiv:1606.05312

Caswell Barry, Colin Lever, Robin Hayman, Tom Hartley, Stephen Burton, John
O’Keefe, Kate Jeffery, and Neil Burgess. 2006. The boundary vector cell model
of place cell firing and spatial memory. , 71-97 pages. https://doi.org/10.1515/
REVNEURO.2006.17.1-2.71

Timothy EJ Behrens, Timothy H Muller, James CR Whittington, Shirley Mark,
Alon B Baram, Kimberly L Stachenfeld, and Zeb Kurth-Nelson. 2018. What is a
cognitive map? Organizing knowledge for flexible behavior. Neuron 100, 2 (2018),
490-509.

Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. 2013. The
arcade learning environment: An evaluation platform for general agents. Journal
of Artificial Intelligence Research 47 (2013), 253-279.

Andrej Bicanski and Neil Burgess. 2020. Neuronal vector coding in spatial
cognition. Nature Reviews Neuroscience 21, 9 (2020), 453-470.

Victor Campos, Alexander Trott, Caiming Xiong, Richard Socher, Xavier Gir6-i
Nieto, and Jordi Torres. 2020. Explore, discover and learn: Unsupervised discovery
of state-covering skills. In International Conference on Machine Learning. PMLR,
1317-1327.

Peter Dayan. 1993. Improving Generalisation for Temporal Difference Learning:
The Successor Representation. Neural Computation 5, 4 (1993), 613-624.

Chris Ding and Xiaofeng He. 2004. K-means clustering via principal compo-
nent analysis. In Proceedings, Twenty-First International Conference on Machine
Learning, ICML 2004. 225-232. https://doi.org/10.1145/1015330.1015408
Benjamin Eysenbach, Abhishek Gupta, Julian Ibarz, and Sergey Levine. 2018.
Diversity is all you need: Learning skills without a reward function. arXiv preprint
arXiv:1802.06070 (2018).

James R. Hinman, G. William Chapman, and Michael E. Hasselmo. 2019. Neuronal
representation of environmental boundaries in egocentric coordinates. Nature
Communications 10, 1 (dec 2019), 1-8. https://doi.org/10.1038/s41467-019-10722-
y

Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Mohammadamin
Barekatain, Simon Schmitt, and David Silver. 2021. Learning and Planning in
Complex Action Spaces. arXiv preprint arXiv:2104.06303 (2021).

Yuu Jinnai, Jee Won Park, Marlos C Machado, and George Konidaris. 2019. Ex-
ploration in reinforcement learning with deep covering options. In International
Conference on Learning Representations.

Nicholas K Jong, Todd Hester, and Peter Stone. 2008. The utility of temporal
abstraction in reinforcement learning.. In AAMAS (1). Citeseer, 299-306.

Tejas D. Kulkarni, Karthik R. Narasimhan, Ardavan Saeedi, and Joshua B. Tenen-
baum. 2016. Hierarchical deep reinforcement learning: Integrating temporal
abstraction and intrinsic motivation. Advances in Neural Information Processing
Systems Nips (2016), 3682-3690.

Tejas D Kulkarni, Ardavan Saeedi, Simanta Gautam, and Samuel] Gershman.
2016. Deep Successor Reinforcement Learning. (2016). arXiv:1606.02396

Lucas Lehnert and Michael L Littman. 2020. Successor Features Combine Ele-
ments of Model-Free and Model-based Reinforcement Learning. J. Mach. Learn.
Res. 21 (2020), 196-1.

Libin Liu and Jessica Hodgins. 2017. Learning to schedule control fragments for
physics-based characters using deep Q-learning. ACM Transactions on Graphics
36,3 (2017). https://doi.org/10.1145/3083723

Miao Liu, Marlos C. Machado, Gerald Tesauro, and Murray Campbell. 2017. The
Eigenoption-Critic Framework. (2017). arXiv:1712.04065 http://arxiv.org/abs/
1712.04065

Marlos C Machado, Marc G Bellemare, and Michael Bowling. 2017. A lapla-
cian framework for option discovery in reinforcement learning. In International
Conference on Machine Learning. PMLR, 2295-2304.

Marlos C. Machado, Clemens Rosenbaum, Xiaoxiao Guo, Miao Liu, Gerald
Tesauro, and Murray Campbell. 2017. Eigenoption discovery through the deep
successor representation. arXiv:1710.11089

1. Momennejad, E. M. Russek, J. H. Cheong, M. M. Botvinick, N. D. Daw, and S. J.
Gershman. 2017. The successor representation in human reinforcement learning.
Nature Human Behaviour 1,9 (sep 2017), 680-692. https://doi.org/10.1038/s41562-
017-0180-8

N. Van Stralen, S. Kim, H. T. Tran and G. Chowdhary. 2020. Evaluating Adaptation
Performance of Hierarchical Deep Reinforcement Learning. In 2020 International
Conference on Robotics and Automation (ICRA).

Xue Bin Peng, Glen Berseth, Kangkang Yin, and Michiel Van De Panne. 2017.
DeepLoco: Dynamic locomotion skills using hierarchical deep reinforcement

[26

[27

[28

[29

[30

[31

[32

[34

[35

[36

[38

]

]

]

learning. ACM Transactions on Graphics 36, 4 (2017). https://doi.org/10.1145/
3072959.3073602

Kaspar Podgorski, Derek Dunfield, and Kurt Haas. 2012. Functional Clustering
Drives Encoding Improvement in a Developing Brain Network during Awake
Visual Learning. PLoS Biology 10, 1 (jan 2012), €1001236. https://doi.org/10.1371/
journal.pbio.1001236

Rahul Ramesh, Manan Tomar, and Balaraman Ravindran. 2019. Successor options:
An option discovery framework for reinforcement learning. Proceedings of the
Twenty-Eighth International Joint Conference on Artificial Intelligence (2019).
John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.
2017. Proximal Policy Optimization Algorithms. (2017), 1-12. arXiv:1707.06347
http://arxiv.org/abs/1707.06347

Jianbo Shi and Jitendra Malik. 2000. Normalized Cuts and Image Segmentation.
IEEE Transactions on pattern analysis and machine intelligence 22, 8 (2000), 888—
905.

Trygve Solstad, Charlotte N. Boccara, Emilio Kropff, May Britt Moser, and Ed-
vard I. Moser. 2008. Representation of geometric borders in the entorhinal cortex.
Science 322, 5909 (dec 2008), 1865-1868. https://doi.org/10.1126/science.1166466
Kimberly L. Stachenfeld, Matthew M. Botvinick, and Samuel J. Gershman. 2017.
The hippocampus as a predictive map. Nature Neuroscience 20, 11 (oct 2017),
1643-1653. https://doi.org/10.1038/nn.4650

Richard S Sutton, Doina Precup, and Satinder Singh. 1999. Between MDPs and semi-
MDPs: A framework for temporal abstraction in reinforcement learning. Technical
Report. 181-211 pages.

Marcin Szwed, Stanislas Dehaene, Andreas Kleinschmidt, Evelyn Eger, Romain
Valabrégue, Alexis Amadon, and Laurent Cohen. 2011. Specialization for written
words over objects in the visual cortex. NeuroImage 56, 1 (may 2011), 330-344.
https://doi.org/10.1016/j.neuroimage.2011.01.073

Albert Tsao, May Britt Moser, and Edvard I. Moser. 2013. Traces of experience in
the lateral entorhinal cortex. Current Biology 23, 5 (mar 2013), 399-405. https:
//doi.org/10.1016/j.cub.2013.01.036

Danhong Wang, Randy L. Buckner, Hesheng Liu, Danhong Wang, Randy L.
Buckner, and Randy L. Buckner. 2014. Functional specialization in the human
brain estimated by intrinsic hemispheric interaction. Journal of Neuroscience 34,
37 (sep 2014), 12341-12352. https://doi.org/10.1523/JNEUROSCI.0787-14.2014
Ziyu Wang, Tom Schaul, Matteo Hessel, Hado Van Hasselt, Marc Lanctot, and
Nando De Frcitas. 2016. Dueling Network Architectures for Deep Reinforcement
Learning. In 33rd International Conference on Machine Learning, ICML 2016, Vol. 4.
2939-2947. arXiv:1511.06581 https://www.youtube.com/playlist?list=

Yifan Wu, George Tucker, and Ofir Nachum. 2019. The Laplacian in RL: Learning
Representations with Efficient Approximations. Seventh International Conference
on Learning Representations (2019).

Jingwei Zhang, Jost Tobias Springenberg, Joschka Boedecker, and Wolfram Bur-
gard. 2017. Deep reinforcement learning with successor features for naviga-
tion across similar environments. In IEEE International Conference on Intelligent
Robots and Systems, Vol. 2017-Septe. 2371-2378. https://doi.org/10.1109/IROS.
2017.8206049 arXiv:1612.05533

https://arxiv.org/abs/arXiv:1609.05140v2
https://arxiv.org/abs/1606.05312
https://doi.org/10.1515/REVNEURO.2006.17.1-2.71
https://doi.org/10.1515/REVNEURO.2006.17.1-2.71
https://doi.org/10.1145/1015330.1015408
https://doi.org/10.1038/s41467-019-10722-y
https://doi.org/10.1038/s41467-019-10722-y
https://arxiv.org/abs/1606.02396
https://doi.org/10.1145/3083723
https://arxiv.org/abs/1712.04065
http://arxiv.org/abs/1712.04065
http://arxiv.org/abs/1712.04065
https://arxiv.org/abs/1710.11089
https://doi.org/10.1038/s41562-017-0180-8
https://doi.org/10.1038/s41562-017-0180-8
https://doi.org/10.1145/3072959.3073602
https://doi.org/10.1145/3072959.3073602
https://doi.org/10.1371/journal.pbio.1001236
https://doi.org/10.1371/journal.pbio.1001236
https://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1707.06347
https://doi.org/10.1126/science.1166466
https://doi.org/10.1038/nn.4650
https://doi.org/10.1016/j.neuroimage.2011.01.073
https://doi.org/10.1016/j.cub.2013.01.036
https://doi.org/10.1016/j.cub.2013.01.036
https://doi.org/10.1523/JNEUROSCI.0787-14.2014
https://arxiv.org/abs/1511.06581
https://www.youtube.com/playlist?list=
https://doi.org/10.1109/IROS.2017.8206049
https://doi.org/10.1109/IROS.2017.8206049
https://arxiv.org/abs/1612.05533

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Successor Features
	2.2 Option Discovery

	3 Our Approach
	3.1 Bioinspired Feature Specialization through Split Successor Features
	3.2 Decomposing Environments into a Task Subspace with PCA
	3.3 Improving SF Learning with Dueling SFs

	4 Results
	4.1 Grid-world Navigation
	4.2 Adversarial Grid-world
	4.3 Adversarial Grid-world Ablation Study
	4.4 Atari

	5 Conclusions
	Acknowledgments
	References

