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ABSTRACT
The topic of communication networks has gained recent interest

in the field of multi-agent learning (MAL) with many players. It

is known that, in certain classes of games, learning agents can

converge to an equilibrium. However, with a larger number of

players, learning can become increasingly unpredictable.

To make progress on this front, we study the behaviour of learn-

ing on Network Aggregative (NA) games, in which each player’s

reward depends only on their own strategy and that of their neigh-

bours. In particular, we present a continuous time analysis of the

Fictitious Play (FP) learning dynamic on NA games. We first show

that the NA model allows FP to equilibriate when the game is

zero-sum. We find that this occurs regardless of the existence of

self-loops in the network and provide conditions under which the

fixed point corresponds to a Nash equilibrium.

We then advance recent results in network games by consider-

ing FP in arbitrary NA games. Specifically, we show that agents

learning through Fictitious Play achieve no-regret, regardless of the

type of game being played or the number of agents in the system.

Finally, we present experimental evidence of a family of games for

which Fictitious Play reaches a limit cycle and evidence that the in-

troduction of noise has the potential to break this cyclic behaviour

and allow agents to eventually reach the Nash equilibrium.
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1 INTRODUCTION
Multi-agent learning (MAL) requires a number of agents to adapt in

an environment, where each agent responds to the behaviour of the

other agents. This feature leads to a fundamentally non-stationary

problem, which presents a challenge to designing effective learning

policies. Even for a small number of agents in the game, learning has

been shown to lead to non-stationary, and even chaotic behaviour

[28], a problem that becomes even more pronounced as the number

of agents increases [27]. Despite this challenge, it is clear that, in

order to achieve complex applications, such as self-driving cars, it

is essential to understand the long term behaviour of interacting

and learning agents [8]. Such applications motivate the need to

develop a deeper understanding of MAL.

To resolve the problem of chaos in games with many players, a

promising approach is to reduce the many-player game to some-

thing that is tractable. To this end, recent advances consider the

case in which each agent does not individually consider every one

of their opponents, but rather responds to some representation of
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the aggregate population state. This allows for a many-player game

to be reduced to a set of two-player games. Such approaches have

been the object of rigorous study, which has shown that agents

reach an equilibriumwhen learning on such games (cf. [4, 11, 24, 25]

for Aggregative Games).

Despite the successes of these approaches, they present a funda-

mental limitation. Namely, they require that agents have access to

the strategy profiles of the entire population. This could be through

communication with all other agents, or through the intervention

of a central coordinator who is able access the entire population.

Of course, for practical applications, this is a strong requirement.

Instead, it is more typical that agents are only able to interact with

a small subset of the population. These considerations motivate our

driving question:

What guarantees can be placed on the convergence of MAL with
agents who can only interact via a communication network? Will the
system always reach an equilibrium and, if not, is there any structure
to its limiting behaviour?

Model and Contributions. In this study, we investigate a variant

of aggregative games: Network Aggregative (NA) games. This frame-

work assumes that each agent updates their strategy according only

to those agents with whom they are connected on an underlying

network. This assumption significantly relaxes the communication

load on each agent and lifts the need for a central coordinator. Re-

cent work on NA games has shown that it is also possible for agents

to reach an equilibrium strategy in an entirely distributed manner

[13, 23, 31, 32] (i.e. without a coordinator).

We contribute in this direction by analysing the long-term be-

haviour of multi-agent learning on NA games. In particular, we

analyse the Fictitious Play learning algorithm [2, 9], in which agents

are assumed to be myopic, in that they react solely to the past be-

haviour of the others.

Recent advances in FP [5] have considered its action on specific

classes of network games which are purely competitive (i.e. zero-

sum). We first show that NA games are strictly contained within

the set of network games via a transformation of payoffs. Applying

this transformation, therefore, allows for convergence results to be

extended to zero-sum NA games, even for networks with self loop

(i.e., agents consider their own current state during the update).

In our main contribution (Theorem 2), we extend beyond the

class of zero-sum games and consider arbitrary NA games. We find

that, regardless of the type of game being played, and regardless of

the number of agents in the system, Fictitious Play always achieves

zero regret in the long term. Theorem 2 therefore takes a step

towards expanding an understanding of MAL in arbitrary games

with restricted communication between agents. In particular, even

if the learning behaviour is complex, or indeed chaotic, guarantees
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can still be placed on the regret structure of the algorithm. We

validate this result in numerical experiments which show that FP

will achieve no regret in the long run, even when the dynamics

never settle to an equilibrium. Finally, our experiments document

how noise affects the convergence of FP, suggesting that, under

the presence of noise, the algorithm still reaches a fixed point, but

perhaps not the Nash equilibrium. This presents an interesting

avenue for future research.

To the best of our knowledge, this contribution is the first time

that a learning algorithm, which stems from game-theoretic liter-

ature, has been studied on Network Aggregative games, typically

considered in the context of control and optimisation.

RelatedWork. NetworkAggregativeGames are a recent exten-
sion [23] of aggregative games, obtained by adding an underlying

structure to the population. Since its introduction, distributed al-

gorithms have been built with the aim of finding NE in NA games.

In particular, [23, 24] consider the case in which payoffs are given

by Lipschitz functions with unique minimisers and apply standard

topological fixed-point arguments towards designing algorithms

that converge to the NE. Another approach for searching for dis-

tributed NE the projected gradient (resp. subgradient) dynamics,

which is explored in [35] (resp. [31, 32]). In all these works, the

cost function is assumed to be convex, and therefore has a unique

minimiser. In fact, this is a common assumption in works about

NA games [14, 35] which, we believe, is due to its ubiquity in con-

trol settings. We have not yet come across works which consider

NA games from the point of view of payoff matrices, which are

more common in multi-agent learning settings. Furthermore, to the

best of our knowledge, this is the first work which introduces the

application of a learning algorithm in NA games.

Fictitious Play was introduced as a ‘natural’ way to approxi-

mate Nash equilibria in zero-sum games [2] and as a corollary to

the well-known best response dynamics [7]. Since then, a number

of results on convergence have been proved for two-player games

[1, 17–20, 26]. However, works looking at FP with more than two

agents is sparse. In [29] multi-player games are decomposed in

two-plpayer games between each pair of players in the game. Each

agent’s payoff is given by the sum of payoffs in all of these subgames.

It was found that, if this game is zero-sum, then FP converges. Sim-

ilar results for more than two players were found for games where

all agents share the same payoff in [20]. In [25], the action of FP was

considered in a Mean Field game, with convergence in zero-sum

games. The most general result, and the one most similar to our

own, appears in [5], in which the authors show that FP converges

in network games, where each agent is engaged in a two-player

game with each of their neighbours. Our work extends the analysis

of FP in multi-player games by considering its action in NA games,

so that the agents do not play individual games against each of

their neighbours, but rather a single game against the aggregate of

their neighbours. We also go beyond the zero-sum requirement by

exteding a result for two-player games in [22] which showed that

FP achieves no-regret in the multi-player setting.

2 PRELIMINARIES
In this section we describe the Network Aggregative game frame-

work (introduced in [23]), as well as define Fictitious Play on such

games.

2.1 Network Aggregative Games
The model we consider consists of a set N = {1, . . . , 𝑁 } of agents,
who are connected through an underlying interaction graph. More

formally:

Definition 1 (Interaction Graph). Given a set N of agents,
an interaction graph 𝐼 = (N , (E,𝑊 )) is such that
• E ⊆ N × N is the set of edges that connect the agents. Then,
the set of neighbours of agent 𝜇 is denoted as 𝑁 𝜇 = {𝜈 ∈ N |
(𝜇, 𝜈) ∈ E}.

• 𝑊 ∈ 𝑀𝑁 ( [0, 1]) is the weight adjacency matrix, whose elements
𝑤𝜇𝜈 ∈ [0, 1] express the importance that agent 𝜇 places on agent
𝜈 . If (𝜇, 𝜈) ∉ E then𝑤𝜇𝜈 = 0;𝑤𝜇𝜈 ∈ (0, 1] otherwise.

With the above definition, we can introduce the network ag-

gregative (NA) games:

Definition 2 (NA Game). A Network Aggregative game is a
tuple Γ = (𝐼 , (𝑆𝜇 , 𝑢𝜇 )𝜇∈N), where

• 𝐼 is an interaction graph, and
• for every agent 𝜇 ∈ N , 𝑆𝜇 is 𝜇’s set of actions (with cardinality
|𝑆𝜇 | = 𝑛), and 𝑢𝜇 : ×𝜇′𝑆

𝜇′ → R is 𝜇’s utility function, which
denotes the payoff they receive for playing some action given
their opponents’ actions.

We define the strategy of agent 𝜇 to be the probability vector

𝑥𝜇 ∈ R𝑛+, where 𝑥
𝜇

𝑖
is the probability with which agent 𝜇 plays

action 𝑖 ≤ 𝑛. This probability vector is often referred to as 𝜇’s

mixed strategy. With this in mind, we can construct, as their state

space, the unit simplex Δ𝜇 := {𝑥𝜇 ∈ R𝑛+ | ∑𝑖 𝑥
𝜇

𝑖
= 1} on agent 𝜇’s

action set.

Also associated with each agent is a utility function. For each

agent 𝜇 and strategy profile (𝑥𝜇 , 𝑥−𝜇 ), the utility is denoted𝑢𝜇 (𝑥𝜇 , 𝑥−𝜇 )
in which we use the standard notation −𝜇 to refer to all agents other
than 𝜇. Notice that this requires that each agent simultaneously

plays the same strategy against all of their neighbours.

What is unique about NA games is the structure of the payoffs

themselves. Each agent 𝜇 receives a reference 𝜎𝜇 =
∑

𝜈∈𝑁 𝜇 𝑤𝜇𝜈𝑥𝜈 ,

which is a convex combination of each of their neighbours’ state.

Agents must optimise their payoff with respect to this reference

vector. Thus, instead of considering the strategies of the entire

population, or playing individual games against each of their neigh-

bours, the agent only considers 𝜎𝜇 as a ‘measurement’ of the local

aggregate state and optimises with respect to this measurement.

This allows us to make the reduction 𝑢𝜇 (𝑥𝜇 , 𝑥−𝜇 ) = 𝑢𝜇 (𝑥𝜇 , 𝜎𝜇 ).
A point to note regarding the reference vector𝜎𝜇 is how itmay be

acquired. This may be provided by a central coordinator who takes

in the positions of all agents and then relays the reference vector to

each agent. However, the advantage of the NA framework is that it

can be achieved in an entirely distributedmanner. In particular, each

agent may take direct measurements of their neighbours’ states

and calculate 𝜎𝜇 online. In this way, the NA game accommodates

both centralised and decentralised designs.



The agent’s goal is to maximise their payoff 𝑢𝜇 with respect to

their reference vector𝜎𝜇 . As such, we define the best response corre-

spondence𝐵𝑅𝜇 , whichmaps every𝜎𝜇 to the set arg max𝑦∈Δ𝜇
𝑢𝜇 (𝑦, 𝜎𝜇 )

[22]. Through the best response function, we can define the Nash

equilibrium (NE), a central concept of game theory. The NE condi-

tion requires that no rational agent has an incentive to deviate from

their current state, as long as the other agents continue to play the

NE strategy. This can be formalised by saying that all agents are

playing their best response to each other. This leads naturally to

the definition of a Nash equilibrium in an NA game as

Definition 3. (NE) The set of vectors {𝑥𝜇 }𝜇∈N is a Nash equi-

librium if, for all agents 𝜇,

𝑥𝜇 ∈ 𝐵𝑅𝜇 (𝜎𝜇 ) = arg max

𝑥 ∈Δ𝜇

𝑢𝜇 (𝑥,𝑤𝜇𝜇𝑥 +
∑

𝜈∈𝑁 𝜇\{𝜇 }
𝑤𝜇𝜈𝑥𝜈 ).

Remark 1. This notion of Nash equilibrium in NA games is a natural

extension of the NE in bimatrix games. In particular, if we consider

an NA game with only two players and no self-loops, then Def. 3

yields that 𝑥1
is an NE iff 𝑥1 ∈ 𝐵𝑅1 (𝜎1) = arg max𝑥 ∈Δ1

𝑢1 (𝑥, 𝑥2),
and similarly for 𝑥2

. This is precisely the definition of NE in a

two-player game [9]. □

In Section 3 we show that NE exist for NA games where the pay-

offs 𝑢𝜇 are bilinear functions, which may have multiple maximisers.

In [23] it has been shown that the NE exists in the case that the

payoffs have unique minimisers (e.g., for convex functions).

Example 1. We consider the Shapley family of games [30]. In

[34] this family was shown to contain games for which FP gives

periodic and even chaotic behaviour.

As an adaptation, we take the example of a three-player chain,

in which player 2 is connected to 1 and 3. The aggregation matrix

can be given as

𝑊 =


0 1 0

𝑤 0 1 −𝑤

0 1 0

 , 𝑤 ∈ (0, 1).

We will fix 𝐵 as

𝐵 =


−𝛽 1 0

0 −𝛽 1

1 0 −𝛽

 (1)

and choose

𝐴 = −𝑤𝐵𝑇

𝐶 = −(1 −𝑤)𝐵𝑇 . (2)

By construction, is such that the sum of the rewards to each

player is zero. This example will be revisited in Sec. 5.1.

2.2 Continuous Time Fictitious Play
Fictitious Play requires that, at the current time, each agent consid-

ers the average state of their opponent in the past, and responds

optimally (i.e., plays a best response) to the current state. In the

case of an NA game, each agent considers their reference vector 𝜎𝜇

to be their ‘opponent’. As such, each agent 𝜇 must update their state

according to the time-average of 𝜎𝜇 . To formalise this we define

𝛼
𝜇
𝜎 as the time average of agent 𝜇’s reference 𝜎𝜇 up until time 𝑡 .

𝛼
𝜇
𝜎 =

1

𝑡

∫ 𝑡

0

𝜎𝜇 (𝑠) 𝑑𝑠.

Using this idea, we follow in the footsteps of [5] and [9] to define

Fictitious Play in continuous time, but with a slight adaptation for

NA games.

Definition 4 (Fictitious Play on Network Aggregative

Games). We define Continuous Time Fictitious Play (CTFP) on NA
games as a measurable map𝑚 with components𝑚𝜇 such that for all
agents 𝜇,𝑚𝜇

: [0,∞) → Δ𝜇 satisfies𝑚𝜇 (𝑡) ∈ 𝐵𝑅𝜇 (𝛼𝜇𝜎 ) for almost
all times 𝑡 ≥ 1. Henceforth,𝑚 will be called an NA-CTFP.

We can think of Def. 4 as saying that the player plays some

arbitrary strategy before 𝑡 = 1, but beyond this they must play a

best response to the time average of its reference signal. We also

refer to this measurable map as a ‘path’. In Section 3, we prove that

a path𝑚 satisfying Def. 4 exists.

Remark 2. As an illustration, consider NA games with two players,

in which E = {(1, 2), (2, 1)} and𝑊 is a 2 × 2 matrix with zeros

on its leading diagonal and ones on the off diagonal. We write the

time-average of both agents’ state as

𝛼𝜇 (𝑡 ;𝑥) = 1

𝑡

∫ 𝑡

0

𝑥𝜇 (𝑠) 𝑑𝑠 for 𝜇 ∈ {1, 2}

In this manner, 𝛼𝜇 (𝑡 ;𝑚) denotes the time average of the strategies

played by agent 𝜇 up to time 𝑡 when the strategies are given by𝑥𝜇 (𝑡).
Note that we often reduce the notation to𝛼𝜇 (𝑡). Then, fictitious play
requires that the agents update their strategy as 𝑥1 (𝑡) ∈ 𝐵𝑅1 (𝛼2 (𝑡))
and 𝑥2 (𝑡) ∈ 𝐵𝑅2 (𝛼1 (𝑡)). It can be seen, therefore, that NA-CTFP

is a natural extension of CTFP in the classic two-player setting

[12]. □

2.3 Assumptions
With the above preliminaries in place, we can state explicitly the

assumptions that we make in this study.

Assumption 1. The weighted adjacency matrix𝑊 is constant

and row stochastic, meaning that the sum of elements in each row

of𝑊 is equal to one. This assumption is made to ensure that the

analysis of NA games can be derived as a natural extension of

the classic setting of two-player games. We can think of the row

stochastic condition as the ability of each agent to prioritise the

state information it receives from each of its neighbours. It is also

a standard assumption made in the analysis of networks and is

straightforward to implement [15].

Assumption 2. The payoffs are given through matrix games and,

therefore, are bilinear. Payoff matrices have a rich history in game

theory and allow for the design of multi-agent systems in compu-

tational settings, particularly in the context of task and resource

allocation [21]. It should be noted, however, that game-theoretic

analysis is starting to consider various other forms of utility func-

tions, including monotone and convex [24]. We believe that the

analysis of Fictitious Play should follow in these developments and

we consider it as an important area for future work.

Assumption 3. The cardinality of each action set |𝑆𝜇 | is equal
for all agents. This is another standard assumption that is made in

most game-theoretic settings. However, it should be noted that, in

[5], CTFP is analysed without this assumption.



3 CONVERGENCE OF FICTITIOUS PLAY IN
NETWORK AGGREGATIVE GAMES

In this section, we build the technical machinery required to analyse

CTFP in NA games. First, we establish the existence of a Nash

equilibrium in NA games, as defined in Def. 3. Then we show that

an NA-CTFP (i.e. a path𝑚 which satisfies Def. 4) exists. Finally, we

show that any NA-CTFP reaches a fixed point when NA Games

are zero-sum and that, when the network has no self-loops (i.e.,

𝑤𝜇𝜇 = 0 for all agents 𝜇), NA-CTFP reaches a Nash Equilibrium.

For the sake of brevity, we defer the proofs of our statements, as

well as the standard topological arguments used to derive them, to

the supplementary material (Sections (S4 - S6)).

As a reminder, Def. 3 states that 𝑥𝜇 is an NE iff

𝑥𝜇 ∈ arg max

𝑥 ∈Δ𝜇

𝑢𝜇 (𝑥,
∑

𝜈∈𝑁 𝜇∪{𝜇 }
𝑤𝜇𝜈𝑥𝜈 ) = arg max

𝑥 ∈Δ𝑖

𝑢𝜇 (𝑥,
∑
𝜈∈𝑁 𝜇

𝑤𝜇𝜈𝑥𝜈 )

where we have introduced the surrogate function 𝑢 which keeps

𝑥 in the first argument and all other agent states 𝑥𝜈 in the second

argument. We can find 𝑢𝑖 through the following argument

𝑢𝜇 (𝑥,𝑤𝜇𝜇𝑥 +
∑
𝜈∈𝑁 𝜈

𝑤𝜇𝜈𝑥𝜈 ) = 𝑥 · 𝐴𝜇 (𝑤𝜇𝜇𝑥 +
∑
𝜈∈𝑁 𝜇

𝑤𝜇𝜈𝑥𝜈 ) (3)

= 𝑥 · (𝑤𝜇𝜇𝐴𝜇 )𝑥 +
∑
𝜈∈𝑁 𝜇

𝑢𝜇𝜈 (𝑥, 𝑥𝜈 )

(4)

def

= 𝑢𝜇 (𝑥,
∑
𝜈∈𝑁 𝜇

𝑤𝜇𝜈𝑥𝜈 ),

where 𝑢𝜇𝜈 (𝑥𝜇 , 𝑥𝜈 ) = 𝑥𝜇 · (𝑤𝜇𝜈𝐴𝜇 )𝑥𝜈 .
Note that, in order to get this formulation, we had to use As-

sumption 2 to move from (3) to (4).

Lemma 1 (Existence of NE). Under Assumption (II), namely that
the payoff function achieves a bilinear property, a Nash equilibrium
{𝑥𝜇 }𝜇∈N exists.

Lemma 2 (Existence of a CTFP). There exists a path𝑚(𝑡) which
satisfies the property that, for all agents 𝜇,𝑚𝜇 (𝑡) ∈ 𝐵𝑅𝜇 (𝛼𝜇𝜎 (𝑡)) for
almost all times 𝑡 ≥ 1.

With these results in place, we can show that NA-CTFP con-

verges to a fixed point. A NA-CTFP path is said to converge if the
limit points of (𝛼 (𝑡))𝑡 ∈[0,∞) is contained within the set of Nash

Equilibria of the game. With these results in place, we relate the

NA format to the network game setting explored in [5]. Specifically,

we wish to extend to the case in which the network allows for

self-loops, so that the agents own current state is considered in its

state update.

Lemma 3. Any NA game can be reformulated as an equivalent
network game (as defined in [5]). As such, the set of NA games is
contained within the set of network games.

Proof. We begin by noticing,

𝑚𝜇 (𝑡) ∈ 𝐵𝑅𝜇
(

1

𝑡

∫ 𝑡

0

𝜎𝜇 (𝑡 ′)𝑑𝑡 ′
)

⇐⇒𝑚𝜇 ∈ 𝐵𝑅𝜇

(
1

𝑡

∫ 𝑡

0

[𝑤𝜇𝜇𝑚𝜇 (𝑠) +
∑
𝜈∈𝑁 𝜇

𝑤𝜇𝜈𝑚𝜈 (𝑠)] 𝑑𝑠
)

Let us assume that 𝑢𝜇 takes the form 𝑥 · 𝐴𝜇𝜎𝜇 where 𝐴𝜇
is the

payoff matrix associated with agent 𝜇. Then,

𝑚𝜇 ∈ arg max

𝑥 ∈Δ𝜇
𝑢𝜇 (𝑥, 1

𝑡

∫ 𝑡

0

[𝑤𝜇𝜇𝑚𝜇 (𝑡 ′) +
∑
𝜈∈𝑁 𝜇

𝑤𝜇𝜈𝑚𝜈 (𝑠)] 𝑑𝑠)

⇐⇒𝑚𝜇 ∈ arg max

𝑥 ∈Δ𝜇

𝑥 · 𝐴𝜇

(
1

𝑡

∫ 𝑡

0

[𝑤𝜇𝜇𝑚𝜇 (𝑡 ′) +
∑
𝜈∈𝑁 𝜇

𝑤𝜇𝜈𝑚𝜈 (𝑠)] 𝑑𝑠
)

⇐⇒𝑚𝜇 ∈ arg max

𝑥 ∈Δ𝑖

𝑥 · 𝐴𝜇𝜇𝛼𝜇 (𝑡 ;𝑚) +
∑
𝜈∈𝑁 𝜇

𝑥 · 𝐴𝜇𝜈𝛼𝜈 (𝑡 ;𝑚) . (5)

where each 𝐴𝜇𝜈 = 𝑤𝜇𝜈𝐴𝜇
and 𝛼𝜇 (𝑡 ;𝑚) = 1

𝑡

∫ 𝑡

0
𝑚𝜇 (𝑠)𝑑𝑠 as de-

fined in [5]. We can, therefore, reformulate the NA game into an

equivalent network game in which each agent plays the same strat-

egy against each of its neighbours, itself included. □

We note that this containment is strict. Namely, there are net-

work games which cannot be written as an NA game. This fact will

play an important role in our main regret result.

Making this connection allows for known convergence results of

FP in network games to be transferred to the case where there are

self-loops. As such, convergence to Nash thus becomes a special

case for when there are no self-loops in the network. In particu-

lar we can use Lemma 3 to study zero-sum NA games, in which∑
𝜇 𝑢

𝜇 (𝑥𝜇 ,∑𝜈∈𝑁 𝜇 𝑤𝜇𝜈𝑥𝜈 ) = 0 for every set (𝑥𝜇 )𝜇∈N of states. We

find that the convergence of FP in this class of games is maintained.

Corollary 1. Any zero-sum NA game has the property that, for
any NA-CTFP path𝑚, 𝛼 (𝑡 ;𝑚) (i.e. the time-averaged state) converges
to a set of fixed points.

With the additional assumption that 𝑤𝜇𝜇 = 0 for all agents 𝜇,
all zero-sum NA games have the property that any NA-CTFP path
converges to the set of Nash Equilibria.

4 NA-CTFP ACHIEVES NO REGRET
In this section, we aim to depart the familiar land of zero-sum games

and analyse the long term behaviour of NA-CTFP for the games

with both co-operative and competitive elements. In this light, we

establish our main result which holds in arbitrary NA games.

To do this, we first introduce the coarse correlated equilibria

(CCE) [21] in the context of NA games as a natural extension of

the two-player case. Then, we show that the NA-CTFP process

converges to the set of CCE.

Definition 5 (CCE). A distribution D over the set 𝑆 = ×𝜇𝑆
𝜇 of

joint actions is a coarse correlated equilibrium if, for all agents 𝜇 and
all actions 𝑗 ∈ 𝑆𝜇 , we have E𝑠∼D [𝑢𝜇 (𝑠𝜇 , 𝑠−𝜇 )] ≥ E𝑠∼D [𝑢𝜇 ( 𝑗, 𝑠−𝜇 )].

In words, the above definition says that, if the agents are given a

probability distribution with which they can play their actions, then

the expected payoff, for all agents, is greater than or equal to the

payoff that they would get by playing any of their other available

actions, assuming that the other agents keep to the distribution.

For an NA game, a set of actions 𝑠 = (𝑠1, . . . , 𝑠𝑁 ) which is

drawn from a joint probability distribution D, also generates a

corresponding set of reference vectors 𝜎 = (𝜎1, . . . , 𝜎𝑁 ), where
𝜎𝜇 =

∑
𝜈∈𝑁 𝜇 𝑤𝜇𝜈𝑠𝜈 . That is, if we draw action 𝑠 from D, then we

have also drawn 𝜎 , which means our CCE condition, Def. 5, can be



written as E𝑠∼D [𝑢𝜇 (𝑠𝜇 , 𝜎𝜇 )] ≥ E𝑠∼D [𝑢𝜇 ( 𝑗, 𝜎𝜇 )], for all agents 𝜇
and actions 𝑗 ∈ 𝑆𝜇 .

Now, if by playing with NA-CTFP, the agents reach state (𝑥𝜇 )𝑁
𝑖=1

with references (𝜎𝜇 )𝑁
𝑖=1

, then we can define a distribution D =

(D1, . . . ,D𝑁 ) such that (D𝜇 )𝑖 𝑗 = 𝑥
𝜇

𝑖
𝜎
𝜇

𝑗
. Then, the expected payoff

that the agent would receive for playing this strategy is

E𝑠∼D [𝑢𝜇 (𝑠𝜇 , 𝜎𝜇 )] = 𝑢𝜇 (𝑥𝜇 , 𝜎𝜇 ) = 𝑥𝜇 · 𝐴𝜇𝜎𝜇 =
∑
𝑖, 𝑗

(𝐴𝜇 )𝑖 𝑗𝑥𝜇𝑖 𝜎
𝜇

𝑗

As such, we would say that NA-CTFP has converged to the set

of CCE if, in the limit of 𝑡 → ∞, we have that, for all agents 𝜇 and

all actions 𝑗 ∈ 𝑆𝜇 , 𝑢𝜇 (𝑥𝜇 , 𝜎𝜇 ) ≥ 𝑢𝜇 ( 𝑗, 𝜎𝜇 )
Remark 3. The notion of CCE in an NA game is a natural extension

of the CCE for two-player games. In fact, if we consider the NA

game to be a two-player game with no self-loops, then we recover

exactly the definition of the CCE set in two-player games. □

Remark 4. The notion of the CCE set is related to the idea of average
regret [21]. Here, we will present what is meant by average regret

and state that if at some time 𝑡 all agents’ average regret is non-

positive, then the game is said to have reached the CCE set. The

reader should consult [22] for an excellent exposition regarding the

link between the CCE set and average regret in two-player games

which, in the usual manner, extends to NA Games.

Average regret, for agent 𝜇 is defined as

𝑅𝜇 (𝑡) = max

𝑖′∈𝑆𝜇

{
1

𝑡

∫ 𝑡

0

𝑢𝜇 (𝑒𝜇
𝑖′, 𝜎 (𝑠)) − 𝑢𝜇 (𝑚𝜇 (𝑠), 𝜎 (𝑠)) 𝑑𝑠

}
,

where 𝑒
𝜇

𝑖
denotes the probability vector in Δ𝜇 with 1 in the slot

𝑖 ′ and 0 everywhere else. Note, this is the average regret for the
agent 𝜇 and, of course, can be related to the cumulative regret which
is used for analysis in [3]. To illustrate the average regret, let us

consider the case where each agent has only two actions. Then

𝑢𝜇 (𝑥𝜇 (𝑡), 𝜎 (𝑡)) is given by

𝑢𝜇 (𝑥𝜇 (𝑡 ), 𝜎 (𝑡 )) =
∑
𝑖 𝑗

𝑎𝑖 𝑗𝑥
𝜇

𝑖
𝜎
𝜇

𝑗
= 𝑎11𝑥

𝜇

1
𝜎
𝜇

1
+𝑎12𝑥

𝜇

1
𝜎
𝜇

2
+𝑎21𝑥

𝜇

2
𝜎
𝜇

1
+𝑎22𝑥

𝜇

2
𝜎
𝜇

2

(6)

On the other hand, let us consider that agent 𝜇’s first action

maximises 𝑢𝜇 (𝑒𝜇
1
, 𝜎 (𝑡)), then

𝑢𝜇 (𝑒𝜇
1
, 𝜎 (𝑡)) =

∑
𝑖 𝑗

𝑎1𝑗𝑥
𝜇

𝑖
𝜎
𝜇

𝑗
= 𝑎11𝑥

𝜇

1
𝜎
𝜇

1
+𝑎12𝑥

𝜇

1
𝜎
𝜇

2
+𝑎11𝑥

𝜇

2
𝜎
𝜇

1
+𝑎12𝑥

𝜇

2
𝜎
𝜇

2

(7)

By comparing equations (6) and (7), we can see that the latter gives

the reward that agent 𝜇 would have received had they played action

𝑎1 throughout the entire play, assuming that the behaviour of the

other agents (encoded in 𝜎) does not change. As such, this is a

measure of agent 𝜇’s regret, in hindsight, for not playing action 𝑎1

the entire time. An agent achieves no regret if𝑅𝜇 is non-positive. □

Theorem 2. Assuming that𝑤𝜇𝜇 = 0, then for any choice of payoff
matrix, agents following NA-CTFP achieve no regret in the limit
𝑡 → ∞, i.e.,

lim

𝑡→∞
max

𝑥
𝜇

𝑖′ ∈𝑆
𝜇

{
1

𝑡

∫ 𝑡

0

𝑢𝜇 (𝑥𝜇
𝑖′ (𝑠), 𝜎 (𝑠)) − 𝑢𝜇 (𝑚𝜇 (𝑠), 𝜎 (𝑠)) 𝑑𝑠

}
= 0 (8)

In particular, due to the relation between regret and CCE (Remark
4), NA-CTFP converges to the set of CCE.

We note at this point that a related result was found in [5]. In

particular, the authors showed that, when playing on a zero-sum

network game, agents learning through Fictitious Play achieve non-

positive regret, regardless of the behaviour of the other agents.

This is a slightly stronger condition than the CCE, in which agents

achieve non-positive regret if all other agents do not deviate from

the distributionD. However, the result in [5] applies only under the

zero-sum condition, whereas Theorem 2 applies in all NA games.

5 EXPERIMENTAL EVALUATION
In this section, we investigate NA-CTFP through numerical experi-

ments. In particular, we look beyond zero-sum NA games and show

that learning on an NA game can lead to periodic behaviour, rather

than convergence to a fixed point. In addition, we aim to under-

stand the behaviour of agents learning through NA-CTFP, when

the measurements on their reference signal 𝜎𝜇 is corrupted with

noise. The code required to reproduce these simulations is provided

in the Supplementary Material.

5.1 Non-convergence of General Two-player
Games under NA-CTFP

The purpose of this section is to show that, whilst we proved in

Sec. 3 that it converges in zero-sum games, NA-CTFP is not guar-

anteed to converge in general games, and can in fact give rise to a

rich variety of dynamics.

As an example of non-convergence we return to the variation

on the Shapley family of games from Example 1.

We first consider the zero-sum case to show that it does indeed

converge to an equilibrium as expected. Note that the zero-sum

condition given for the three-player chain is given as

𝑥 ·𝐴𝑦+𝑦 ·𝐵(𝑤𝑥+(1−𝑤)𝑧)+𝑧 ·𝐶𝑦 = 0. ∀𝑥,𝑦, 𝑧 ∈ Δ1×Δ2×Δ3 (9)

in which we use the notation that 𝑥,𝑦, 𝑧 (resp. 𝐴, 𝐵,𝐶) denote the

strategies (resp. payoffs) of agents 1, 2 and 3 respectively. This

condition is satisfied if we fix the payoff matrices as in Example 1.

In our experiments, we set 𝐵 with the choice 𝛽 ≈ 0.576 and set

𝐴 and 𝐶 according to the above with the choice𝑤 ≈ 0.288. These

choices are arbitrary and, as we discuss below, the results of this

Section were found to hold for a range of choices of 𝛽 and𝑤 . The

resulting orbits can be seen in Figure 1a, in which, for each player,

they converge to the Nash Equilibrium which lies in the centre of

the simplex.

Let us now make the slight modification in the definition of 𝐶

so that 𝐶 = −(1 −𝑤)𝐵, with no alteration to 𝐴. The modification

itself is small, however it results in the zero-sum assumption being

violated. With the same choices of 𝛽 and 𝑤 , this results in the

periodic orbit seen in Figure 1b. Here, the orbits reach a stable limit

cycle which to be centred around the interior NE.

As such, we can see that convergent behaviour is not necessarily

the norm in the NA-CTFP dynamics. In fact, for the family of games

discussed above, we were unable to find non-periodic behaviour for

any choice of 𝛽 strictly between 0.5 and 1 for any𝑤 between 0.2 and

0.8 (so that the influence of player 1 and player 3 on player 2 is not

negligible). This suggests that, far from being rare, in fact NA-CTFP

lends itself to an incredibly rich variety of dynamics which can be

explored as future work.



(a) (b)

Figure 1: Orbits of the Fictitious Play in the Three-Player Chain for which the NE lies at the centre of the simplex. (a) Payoffs
are given by (2). The plot shows NA-CTFP yields convergence to the NE (b) NA-CTFP showing cycles around the NE when
payoffs are modified slightly (c.f. Sec. 5.1).

5.2 Convergence under the Addition of Noise
Fictitious Play in NA games requires that, at each time step, an

agent takes a ‘measurement’ of the aggregate strategy of their

neighbours. It is on this measurement that they update their own

strategy. It stands to reason then, that in real environments this

measurement may be corrupted by noise. As such, we investigate

the effect that introducing additive noise has on NA-CTFP in a

zero-sum NA game. We do this in the following manner: at each

time step, the reference signal 𝜎𝜇 (𝑡) is adjusted to 𝜎𝜇 + 𝛾𝜉 where
𝜉 is drawn from the standard normal distribution (zero mean and

unit variance). By varying 𝛾 , we vary the strength of the noise.

In Figure 2, we consider a zero-sum NA game with 20 players.

When there is no noise, it can be seen that FP reaches a fixed point

which, since we set𝑤𝜇𝜇 = 0, corresponds to an NE. After increasing

𝛾 , however, we find that the agents no longer converge to this NE,

but rather shift away from it. What is interesting, however, is that

the orbits do still reach a stationary state in the long run which

suggests that FP is still able to converge with the introduction of

noise.

In Figure 3 we revisit the Three-Player Chain of Section 5.1,

now under the influence of additive noise. For the sake of brevity,

we only display the distance to the Nash Equilibrium of the first

player’s strategy, since the other agents behave in the same way. It

can be seen that a small amount of noise has the effect of decreasing

the size of the periodic orbit. However, as 𝛾 is increased to 0.5, the

algorithm seems to exhibit convergence to the NE. The implication

is that the addition of noise may cause periodic behaviour to break

and lead to the Nash Equilibrium. An interesting point to note is

that this behaviour is in stark contrast to the replicator dynamic

(RD) [33], another adaptive algorithm linked tomulti-agent learning

[16]. In [10] and [6], it was found that the introduction of random

mutations can remove convergent behaviour and instead lead to

periodicity.

We explore the movement of the equilibrium under noise further

in Fig. 4. In this, we take three examples of three-player NA games,

for which Fictitious Play converges. In Fig. 4c, we plot, for each of

these games, the trajectories of Fictitious Play for all three agents on

the simplex under varying choices of 𝛾 . We see that, in the absence

of noise, the NE lies on the boundary of the simplex. However, as

noise is introduced, the fixed point shifts and eventually moves

into the interior of the simplex. In Fig. 4b, we plot the movement

of the fixed point as 𝛾 is varied from 0 to 20. We see that these

trajectories do indeed move into the interior of the simplex. Finally,

in Fig. 4a, we plot the distance of the fixed point for varying 𝛾 to the

fixed point in the absence of noise. We find that, whilst the fixed

initially moves away from the NE of the game, as noise continues

to be added, this movement eventually subsides. In other words, the

location of the fixed point itself eventually arrives at an equilibrium

beyond which the introduction of any new noise has no effect.

6 CONCLUDING REMARKS
In this work, we have considered the action of the Fictitious Play

learning algorithm in Network Aggregative Games and investigated

its long term behaviour through a continuous time analysis. We

find that, under a zero-sum condition, NA-CTFP converges to a

fixed point (Corollary 1). However, we find experimentally that this

is necessarily true for non-zero sum games. In fact, we find a family

of NA games, based on the Shapley family, for which FP cycles

about the NE. For these cases, we also perform a regret analysis

which shows that, regardless of the type of game, the FP algorithm

achieves no regret. We also investigate the influence of noise on

the algorithm and find that even with the introduction of additive

noise, FP converges to a fixed point. In fact, for our cyclic family of

games, we find that the introduction of noise can actually remove

the periodicity, resulting in FP converging to a fixed point.



Figure 2: Trajectories of NA-CTFP in a 20-player game with
additive noise (Top) No noise is introduced and learning con-
verges directly to an NE. (Bottom) 𝛾 = 0.1, the trajectories
converge to a fixed point which is even further away from
the NE.

Our work opens a number of lines for future work. Most notable

is the effect of noise. It would be prudent to analyse this theoreti-

cally, as was done in [25], and consider the conditions under which

FP will still converge to a fixed point. Furthermore, it would be

interesting to investigate the phenomenon we report experimen-

tally in a theoretical framework. Namely, the question of why noise

breaks periodicity in FP and results in convergence to an NE should

be investigated. Furthermore, our experiments have shown that

the addition of noise moves the equilibrium up to a certain point.

Beyond this limit, any new noise has no effect on the location of the

fixed point. A pertinent question to ask, then, is on the nature of

these fixed points. Do these fixed points always exist, and do they

exhibit any structure (e.g. 𝜖−Nash)? Does the limit as 𝛾 is increased

always exist? Finally, we note that in recent years FP in two-player

games has shown a remarkable variety of dynamical behaviours,

including periodicity and chaos. In our work we have shown con-

vergence to a fixed point and, through experiments, periodicity.

It stands to reason, therefore, that a greater variety of dynamical

behaviours exist for NA-CTFP for certain classes of games. It would

be important to determine what these classes are. Short from being

Figure 3: Trajectories of NA-CTFP on the Three Player
Chain of Section 5.1 with additive noise. (Top) 𝛾 = 0.1 leads
to a decrease in the size of the cyclic orbit (Bottom) 𝛾 = 0.75,
NA-CTFP still converges, though after a greater amount of
time has elapsed.

merely a curiosity, this would allow for the identification of games

in which NA-CTFP leads to inherently unpredictable behaviour,

an important question from the point of view of building Safe and

Trusted AI.
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Figure 4: Results of the application of noise on three examples of NA Games. (a) The distance of the fixed point from the NE
plotted against varying values of 𝛾 . (b) Trajectories on the simplex showing the movement of the fixed point as 𝛾 is increased.
(c) Trajectories of Fictitious Play arriving at a fixed point for 𝛾 = 0, 0.1, 1.0.
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