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ABSTRACT

The topic of communication networks has gained recent interest
in the field of multi-agent learning (MAL) with many players. It
is known that, in certain classes of games, learning agents can
converge to an equilibrium. However, with a larger number of
players, learning can become increasingly unpredictable.

To make progress on this front, we study the behaviour of learn-
ing on Network Aggregative (NA) games, in which each player’s
reward depends only on their own strategy and that of their neigh-
bours. In particular, we present a continuous time analysis of the
Fictitious Play (FP) learning dynamic on NA games. We first show
that the NA model allows FP to equilibriate when the game is
zero-sum. We find that this occurs regardless of the existence of
self-loops in the network and provide conditions under which the
fixed point corresponds to a Nash equilibrium.

We then advance recent results in network games by consider-
ing FP in arbitrary NA games. Specifically, we show that agents
learning through Fictitious Play achieve no-regret, regardless of the
type of game being played or the number of agents in the system.
Finally, we present experimental evidence of a family of games for
which Fictitious Play reaches a limit cycle and evidence that the in-
troduction of noise has the potential to break this cyclic behaviour
and allow agents to eventually reach the Nash equilibrium.
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1 INTRODUCTION

Multi-agent learning (MAL) requires a number of agents to adapt in
an environment, where each agent responds to the behaviour of the
other agents. This feature leads to a fundamentally non-stationary
problem, which presents a challenge to designing effective learning
policies. Even for a small number of agents in the game, learning has
been shown to lead to non-stationary, and even chaotic behaviour
[28], a problem that becomes even more pronounced as the number
of agents increases [27]. Despite this challenge, it is clear that, in
order to achieve complex applications, such as self-driving cars, it
is essential to understand the long term behaviour of interacting
and learning agents [8]. Such applications motivate the need to
develop a deeper understanding of MAL.

To resolve the problem of chaos in games with many players, a
promising approach is to reduce the many-player game to some-
thing that is tractable. To this end, recent advances consider the
case in which each agent does not individually consider every one
of their opponents, but rather responds to some representation of
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the aggregate population state. This allows for a many-player game
to be reduced to a set of two-player games. Such approaches have
been the object of rigorous study, which has shown that agents
reach an equilibrium when learning on such games (cf. [4, 11, 24, 25]
for Aggregative Games).

Despite the successes of these approaches, they present a funda-
mental limitation. Namely, they require that agents have access to
the strategy profiles of the entire population. This could be through
communication with all other agents, or through the intervention
of a central coordinator who is able access the entire population.
Of course, for practical applications, this is a strong requirement.
Instead, it is more typical that agents are only able to interact with
a small subset of the population. These considerations motivate our
driving question:

What guarantees can be placed on the convergence of MAL with
agents who can only interact via a communication network? Will the
system always reach an equilibrium and, if not, is there any structure
to its limiting behaviour?

Model and Contributions. In this study, we investigate a variant
of aggregative games: Network Aggregative (NA) games. This frame-
work assumes that each agent updates their strategy according only
to those agents with whom they are connected on an underlying
network. This assumption significantly relaxes the communication
load on each agent and lifts the need for a central coordinator. Re-
cent work on NA games has shown that it is also possible for agents
to reach an equilibrium strategy in an entirely distributed manner
[13, 23, 31, 32] (i.e. without a coordinator).

We contribute in this direction by analysing the long-term be-
haviour of multi-agent learning on NA games. In particular, we
analyse the Fictitious Play learning algorithm [2, 9], in which agents
are assumed to be myopic, in that they react solely to the past be-
haviour of the others.

Recent advances in FP [5] have considered its action on specific
classes of network games which are purely competitive (i.e. zero-
sum). We first show that NA games are strictly contained within
the set of network games via a transformation of payoffs. Applying
this transformation, therefore, allows for convergence results to be
extended to zero-sum NA games, even for networks with self loop
(i.e., agents consider their own current state during the update).

In our main contribution (Theorem 2), we extend beyond the
class of zero-sum games and consider arbitrary NA games. We find
that, regardless of the type of game being played, and regardless of
the number of agents in the system, Fictitious Play always achieves
zero regret in the long term. Theorem 2 therefore takes a step
towards expanding an understanding of MAL in arbitrary games
with restricted communication between agents. In particular, even
if the learning behaviour is complex, or indeed chaotic, guarantees
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can still be placed on the regret structure of the algorithm. We
validate this result in numerical experiments which show that FP
will achieve no regret in the long run, even when the dynamics
never settle to an equilibrium. Finally, our experiments document
how noise affects the convergence of FP, suggesting that, under
the presence of noise, the algorithm still reaches a fixed point, but
perhaps not the Nash equilibrium. This presents an interesting
avenue for future research.

To the best of our knowledge, this contribution is the first time
that a learning algorithm, which stems from game-theoretic liter-
ature, has been studied on Network Aggregative games, typically
considered in the context of control and optimisation.

Related Work. Network Aggregative Games are a recent exten-
sion [23] of aggregative games, obtained by adding an underlying
structure to the population. Since its introduction, distributed al-
gorithms have been built with the aim of finding NE in NA games.
In particular, [23, 24] consider the case in which payoffs are given
by Lipschitz functions with unique minimisers and apply standard
topological fixed-point arguments towards designing algorithms
that converge to the NE. Another approach for searching for dis-
tributed NE the projected gradient (resp. subgradient) dynamics,
which is explored in [35] (resp. [31, 32]). In all these works, the
cost function is assumed to be convex, and therefore has a unique
minimiser. In fact, this is a common assumption in works about
NA games [14, 35] which, we believe, is due to its ubiquity in con-
trol settings. We have not yet come across works which consider
NA games from the point of view of payoff matrices, which are
more common in multi-agent learning settings. Furthermore, to the
best of our knowledge, this is the first work which introduces the
application of a learning algorithm in NA games.

Fictitious Play was introduced as a ‘natural’ way to approxi-
mate Nash equilibria in zero-sum games [2] and as a corollary to
the well-known best response dynamics [7]. Since then, a number
of results on convergence have been proved for two-player games
[1, 17-20, 26]. However, works looking at FP with more than two
agents is sparse. In [29] multi-player games are decomposed in
two-plpayer games between each pair of players in the game. Each
agent’s payoff is given by the sum of payoffs in all of these subgames.
It was found that, if this game is zero-sum, then FP converges. Sim-
ilar results for more than two players were found for games where
all agents share the same payoff in [20]. In [25], the action of FP was
considered in a Mean Field game, with convergence in zero-sum
games. The most general result, and the one most similar to our
own, appears in [5], in which the authors show that FP converges
in network games, where each agent is engaged in a two-player
game with each of their neighbours. Our work extends the analysis
of FP in multi-player games by considering its action in NA games,
so that the agents do not play individual games against each of
their neighbours, but rather a single game against the aggregate of
their neighbours. We also go beyond the zero-sum requirement by
exteding a result for two-player games in [22] which showed that
FP achieves no-regret in the multi-player setting.

2 PRELIMINARIES

In this section we describe the Network Aggregative game frame-
work (introduced in [23]), as well as define Fictitious Play on such
games.

2.1 Network Aggregative Games

The model we consider consists of a set N = {1,..., N} of agents,
who are connected through an underlying interaction graph. More
formally:

DEFINITION 1 (INTERACTION GRAPH). Given a set N of agents,
an interaction graph I = (N, (8, W)) is such that
o & C N X N is the set of edges that connect the agents. Then,
the set of neighbours of agent y is denoted as N* = {v € N |
(p,v) € 8}
o W e Mn([0,1]) is the weight adjacency matrix, whose elements
wHY € [0,1] express the importance that agent j1 places on agent
v. If (1, v) ¢ & then wHY = 0; wH¥ € (0, 1] otherwise.

With the above definition, we can introduce the network ag-
gregative (NA) games:

DEFINITION 2 (NA GAME). A Network Aggregative game is a
tupleT = (I, (S*,ut) e N), where
o [ is an interaction graph, and
o forevery agent i € N, SF is ui’s set of actions (with cardinality
|SH| = n), and ut : XH/S”/ — R is p’s utility function, which
denotes the payoff they receive for playing some action given
their opponents’ actions.

We define the strategy of agent ;i to be the probability vector
x# e R, where xf is the probability with which agent y plays
action i < n. This probability vector is often referred to as y’s
mixed strategy. With this in mind, we can construct, as their state
space, the unit simplex A, == {x! € R} | ¥; xf = 1} on agent y’s
action set.

Also associated with each agent is a utility function. For each

agent p and strategy profile (x#, x™#), the utility is denoted u* (x*, x™#)

in which we use the standard notation —p to refer to all agents other
than p. Notice that this requires that each agent simultaneously
plays the same strategy against all of their neighbours.

What is unique about NA games is the structure of the payoffs
themselves. Each agent y receives a reference o = 3, enu wH'x",
which is a convex combination of each of their neighbours’ state.
Agents must optimise their payoff with respect to this reference
vector. Thus, instead of considering the strategies of the entire
population, or playing individual games against each of their neigh-
bours, the agent only considers o# as a ‘measurement’ of the local
aggregate state and optimises with respect to this measurement.
This allows us to make the reduction u# (x#, x™H) = ut (x*, o#).

A point to note regarding the reference vector o* is how it may be
acquired. This may be provided by a central coordinator who takes
in the positions of all agents and then relays the reference vector to
each agent. However, the advantage of the NA framework is that it
can be achieved in an entirely distributed manner. In particular, each
agent may take direct measurements of their neighbours’ states
and calculate o, online. In this way, the NA game accommodates
both centralised and decentralised designs.



The agent’s goal is to maximise their payoff u# with respect to
their reference vector o#. As such, we define the best response corre-

spondence BR¥, which maps every o* to the set arg maxye,, ut(y, ot)

[22]. Through the best response function, we can define the Nash
equilibrium (NE), a central concept of game theory. The NE condi-
tion requires that no rational agent has an incentive to deviate from
their current state, as long as the other agents continue to play the
NE strategy. This can be formalised by saying that all agents are
playing their best response to each other. This leads naturally to
the definition of a Nash equilibrium in an NA game as

DErINITION 3. (NE) The set of vectors {X#},,c 5 is a Nash equi-
librium if; for all agents y,
)

' € BR¥(o") = arg max u* (x, w*'x +
x€A, _
veNH\{ji}

Remark 1. This notion of Nash equilibrium in NA games is a natural
extension of the NE in bimatrix games. In particular, if we consider
an NA game with only two players and no self-loops, then Def. 3
yields that %! is an NE iff #! € BR'(¢') = arg maxyep, ul (x, %2),
and similarly for #2. This is precisely the definition of NE in a
two-player game [9]. ]
In Section 3 we show that NE exist for NA games where the pay-
offs u# are bilinear functions, which may have multiple maximisers.
In [23] it has been shown that the NE exists in the case that the
payoffs have unique minimisers (e.g., for convex functions).

Example 1. We consider the Shapley family of games [30]. In
[34] this family was shown to contain games for which FP gives
periodic and even chaotic behaviour.

As an adaptation, we take the example of a three-player chain,
in which player 2 is connected to 1 and 3. The aggregation matrix
can be given as

0 1 0
W=|w 0 1-w|, we(0,1).
0 1 0
We will fix B as
-5 1 0
B=|0o - 1 (1)
1 0 -p
and choose
A=-wBT
C=-(1-w)B". ()

By construction, is such that the sum of the rewards to each
player is zero. This example will be revisited in Sec. 5.1.

2.2 Continuous Time Fictitious Play

Fictitious Play requires that, at the current time, each agent consid-
ers the average state of their opponent in the past, and responds
optimally (i.e., plays a best response) to the current state. In the
case of an NA game, each agent considers their reference vector o#
to be their ‘opponent’. As such, each agent y must update their state
according to the time-average of o#. To formalise this we define

al as the time average of agent j1’s reference o# up until time ¢.

1t
ab = —/ o (s) ds.
tJo

Using this idea, we follow in the footsteps of [5] and [9] to define
Fictitious Play in continuous time, but with a slight adaptation for
NA games.

DEFINITION 4 (FICTITIOUS PLAY ON NETWORK AGGREGATIVE
GAMES). We define Continuous Time Fictitious Play (CTFP) on NA
games as a measurable map m with components m* such that for all
agents j1, m# : [0,00) — A, satisfies m#(t) € BRA(al}) for almost
all times t > 1. Henceforth, m will be called an NA-CTFP.

We can think of Def. 4 as saying that the player plays some
arbitrary strategy before ¢t = 1, but beyond this they must play a
best response to the time average of its reference signal. We also
refer to this measurable map as a ‘path’. In Section 3, we prove that
a path m satisfying Def. 4 exists.

Remark 2. As an illustration, consider NA games with two players,
in which & = {(1,2),(2,1)} and W is a 2 X 2 matrix with zeros
on its leading diagonal and ones on the off diagonal. We write the
time-average of both agents’ state as

¢
at(t;x) = %‘/ xH(s)ds for p € {1,2}
0

In this manner, a#(t; m) denotes the time average of the strategies
played by agent y up to time t when the strategies are given by x#(t).
Note that we often reduce the notation to o (¢). Then, fictitious play
requires that the agents update their strategy as x' () € BR! (a?(t))
and x2(t) € BR?(a!(t)). It can be seen, therefore, that NA-CTFP
is a natural extension of CTFP in the classic two-player setting
[12]. m]

2.3 Assumptions

With the above preliminaries in place, we can state explicitly the
assumptions that we make in this study.

Assumption 1. The weighted adjacency matrix W is constant
and row stochastic, meaning that the sum of elements in each row
of W is equal to one. This assumption is made to ensure that the
analysis of NA games can be derived as a natural extension of
the classic setting of two-player games. We can think of the row
stochastic condition as the ability of each agent to prioritise the
state information it receives from each of its neighbours. It is also
a standard assumption made in the analysis of networks and is
straightforward to implement [15].

Assumption 2. The payoffs are given through matrix games and,
therefore, are bilinear. Payoff matrices have a rich history in game
theory and allow for the design of multi-agent systems in compu-
tational settings, particularly in the context of task and resource
allocation [21]. It should be noted, however, that game-theoretic
analysis is starting to consider various other forms of utility func-
tions, including monotone and convex [24]. We believe that the
analysis of Fictitious Play should follow in these developments and
we consider it as an important area for future work.

Assumption 3. The cardinality of each action set |S#| is equal
for all agents. This is another standard assumption that is made in
most game-theoretic settings. However, it should be noted that, in
[5], CTFP is analysed without this assumption.



3 CONVERGENCE OF FICTITIOUS PLAY IN
NETWORK AGGREGATIVE GAMES

In this section, we build the technical machinery required to analyse
CTFP in NA games. First, we establish the existence of a Nash
equilibrium in NA games, as defined in Def. 3. Then we show that
an NA-CTFP (i.e. a path m which satisfies Def. 4) exists. Finally, we
show that any NA-CTFP reaches a fixed point when NA Games
are zero-sum and that, when the network has no self-loops (i.e.,
wHHt = 0 for all agents y), NA-CTFP reaches a Nash Equilibrium.
For the sake of brevity, we defer the proofs of our statements, as
well as the standard topological arguments used to derive them, to
the supplementary material (Sections (S4 - S6)).
As a reminder, Def. 3 states that ¥# is an NE iff
wHV%") = arg max @ (x, Z whVx")
xX€N; e

i € arg mzzx uH (x,
€
*EBu veNIU{u}

where we have introduced the surrogate function @ which keeps

x in the first argument and all other agent states xV in the second
argument. We can find 4; through the following argument

u (x, wHHx + Z wHE") = x - AH (whhx + Z whEY)  (3)
VvENY VENH
=x- (WﬂﬂAﬂ)x+ Z uﬂV(x’JEV)
veNH
(4)

d§f a(x, Z wHYEY),
veNH
where uHV (x#, xV) = xH - (WHVAH)xV.
Note that, in order to get this formulation, we had to use As-
sumption 2 to move from (3) to (4).

LEMMA 1 (EXISTENCE OF NE). Under Assumption (II), namely that
the payoff function achieves a bilinear property, a Nash equilibrium
{%H} e n exists.

LEMMA 2 (EXISTENCE OF A CTEP). There exists a path m(t) which
satisfies the property that, for all agents i, m*(t) € BRH(ab (1)) for
almost all timest > 1.

With these results in place, we can show that NA-CTFP con-
verges to a fixed point. A NA-CTFP path is said to converge if the
limit points of (a(t));e[0,00) is contained within the set of Nash
Equilibria of the game. With these results in place, we relate the
NA format to the network game setting explored in [5]. Specifically,
we wish to extend to the case in which the network allows for
self-loops, so that the agents own current state is considered in its
state update.

LEMMA 3. Any NA game can be reformulated as an equivalent
network game (as defined in [5]). As such, the set of NA games is
contained within the set of network games.

Proor. We begin by noticing,

m#(t) € BRH (% /Ot o“(t')dt’)

= m* € BR* (% '/Ot[w””m"(s) + Z wtVmV (s)] ds)

veENH

Let us assume that u# takes the form x - A¥o# where A* is the
payoff matrix associated with agent y. Then,

1t
mt € arg max ut (x, 7 / [wHEm* (') + Z wHmV (s)] ds)
xe 0

veNH
1 rt
& m* € arg max x - A# —/ [wHHm* (") + E wh'mV (s)] ds
XEAﬂ t 0
veENH

— m* € argmax x - A¥at (t;m) + Z x- A" (t;m).  (5)
xeh veNH

where each A#YV = wHVAH and ot (t;m) = % fot mH(s)ds as de-
fined in [5]. We can, therefore, reformulate the NA game into an
equivalent network game in which each agent plays the same strat-
egy against each of its neighbours, itself included. O

We note that this containment is strict. Namely, there are net-
work games which cannot be written as an NA game. This fact will
play an important role in our main regret result.

Making this connection allows for known convergence results of
FP in network games to be transferred to the case where there are
self-loops. As such, convergence to Nash thus becomes a special
case for when there are no self-loops in the network. In particu-
lar we can use Lemma 3 to study zero-sum NA games, in which
2w (H, Xy enn wHVx") = 0 for every set (x#) e v of states. We
find that the convergence of FP in this class of games is maintained.

COROLLARY 1. Any zero-sum NA game has the property that, for
any NA-CTFP path m, a(t; m) (i.e. the time-averaged state) converges
to a set of fixed points.

With the additional assumption that wi* = 0 for all agents y,
all zero-sum NA games have the property that any NA-CTFP path
converges to the set of Nash Equilibria.

4 NA-CTFP ACHIEVES NO REGRET

In this section, we aim to depart the familiar land of zero-sum games
and analyse the long term behaviour of NA-CTFP for the games
with both co-operative and competitive elements. In this light, we
establish our main result which holds in arbitrary NA games.

To do this, we first introduce the coarse correlated equilibria
(CCE) [21] in the context of NA games as a natural extension of
the two-player case. Then, we show that the NA-CTFP process
converges to the set of CCE.

DEerFINITION 5 (CCE). A distribution D over the set S = x,,S# of
Jjoint actions is a coarse correlated equilibrium if; for all agents pi and
all actions j € SH, we have Bg.. py [ut (sH,s7H)] = Bgop [uH(j,s™H)].

In words, the above definition says that, if the agents are given a
probability distribution with which they can play their actions, then
the expected payoff, for all agents, is greater than or equal to the
payoff that they would get by playing any of their other available
actions, assuming that the other agents keep to the distribution.

For an NA game, a set of actions s = (s},...,sN) which is
drawn from a joint probability distribution D, also generates a
corresponding set of reference vectors o = (0'1, ., O'N), where
ot =3 ,enn wHs. That is, if we draw action s from D, then we
have also drawn o, which means our CCE condition, Def. 5, can be



written as Eg.p [u# (sH, 0H)] = Eg.p[u(j, oH)], for all agents p
and actions j € SH.

Now, if by playing with NA-CTFP, the agents reach state (x”)f\:[ 1
with references (o”){i 1> then we can define a distribution D =
(Dl, el DN) such that (D#);; = xflajl Then, the expected payoff
that the agent would receive for playing this strategy is

Egop [u” (s*, ") = u(x", o) = xH - AloH = Z(Aﬂ)ijxf’a;‘
ij

As such, we would say that NA-CTFP has converged to the set
of CCE if; in the limit of t — oo, we have that, for all agents y; and
all actions j € S¥, u# (x#, o*) > u#(j, o)
Remark 3. The notion of CCE in an NA game is a natural extension
of the CCE for two-player games. In fact, if we consider the NA
game to be a two-player game with no self-loops, then we recover
exactly the definition of the CCE set in two-player games. O

Remark 4. The notion of the CCE set is related to the idea of average
regret [21]. Here, we will present what is meant by average regret
and state that if at some time ¢ all agents’ average regret is non-
positive, then the game is said to have reached the CCE set. The
reader should consult [22] for an excellent exposition regarding the
link between the CCE set and average regret in two-player games
which, in the usual manner, extends to NA Games.
Average regret, for agent y is defined as

t
R{(t) = max {1 / ul (e, o(s)) — ut (mH(s), o (s)) ds},
iresSt Lt Jo !

where e‘lfl denotes the probability vector in A;, with 1 in the slot
i’ and 0 everywhere else. Note, this is the average regret for the
agent p and, of course, can be related to the cumulative regret which
is used for analysis in [3]. To illustrate the average regret, let us
consider the case where each agent has only two actions. Then
uH (x# (1), o(t)) is given by

ut (xH(t),0(t)) = Z aijxflo’j.l = a11xfUf+a12xfaél+a21xgaf+azzx5cff

ij

(©)

On the other hand, let us consider that agent y’s first action
maximises u"(e‘f, o(t)), then

u“(elll, o(t)) = Z aljxfo’{ = a11xpaf+a12xlllag+a11xgaf+a1zx50y

- Jj 1 2
ij
™)
By comparing equations (6) and (7), we can see that the latter gives
the reward that agent y would have received had they played action
aj throughout the entire play, assuming that the behaviour of the
other agents (encoded in o) does not change. As such, this is a
measure of agent i’s regret, in hindsight, for not playing action a;
the entire time. An agent achieves no regret if R* is non-positive. O

THEOREM 2. Assuming that wHt = 0, then for any choice of payoff
matrix, agents following NA-CTFP achieve no regret in the limit
t— oo, ie.,

lim max {% /t u'”(xﬁf (s), a(s)) — u" (m*(s), o (s)) ds} =0 (8)
0

t—o00 xlﬁ esH

In particular, due to the relation between regret and CCE (Remark
4), NA-CTFP converges to the set of CCE.

We note at this point that a related result was found in [5]. In
particular, the authors showed that, when playing on a zero-sum
network game, agents learning through Fictitious Play achieve non-
positive regret, regardless of the behaviour of the other agents.
This is a slightly stronger condition than the CCE, in which agents
achieve non-positive regret if all other agents do not deviate from
the distribution 9. However, the result in [5] applies only under the
zero-sum condition, whereas Theorem 2 applies in all NA games.

5 EXPERIMENTAL EVALUATION

In this section, we investigate NA-CTFP through numerical experi-
ments. In particular, we look beyond zero-sum NA games and show
that learning on an NA game can lead to periodic behaviour, rather
than convergence to a fixed point. In addition, we aim to under-
stand the behaviour of agents learning through NA-CTFP, when
the measurements on their reference signal o# is corrupted with
noise. The code required to reproduce these simulations is provided
in the Supplementary Material.

5.1 Non-convergence of General Two-player
Games under NA-CTFP

The purpose of this section is to show that, whilst we proved in
Sec. 3 that it converges in zero-sum games, NA-CTFP is not guar-
anteed to converge in general games, and can in fact give rise to a
rich variety of dynamics.

As an example of non-convergence we return to the variation
on the Shapley family of games from Example 1.

We first consider the zero-sum case to show that it does indeed
converge to an equilibrium as expected. Note that the zero-sum
condition given for the three-player chain is given as

x-Ay+y-B(wx+(1-w)z)+z-:Cy = 0.  Vx,y,z € A;xAy3xA3z (9)

in which we use the notation that x, y, z (resp. A, B, C) denote the
strategies (resp. payoffs) of agents 1, 2 and 3 respectively. This
condition is satisfied if we fix the payoff matrices as in Example 1.

In our experiments, we set B with the choice f = 0.576 and set
A and C according to the above with the choice w ~ 0.288. These
choices are arbitrary and, as we discuss below, the results of this
Section were found to hold for a range of choices of § and w. The
resulting orbits can be seen in Figure 1a, in which, for each player,
they converge to the Nash Equilibrium which lies in the centre of
the simplex.

Let us now make the slight modification in the definition of C
so that C = —(1 — w)B, with no alteration to A. The modification
itself is small, however it results in the zero-sum assumption being
violated. With the same choices of f and w, this results in the
periodic orbit seen in Figure 1b. Here, the orbits reach a stable limit
cycle which to be centred around the interior NE.

As such, we can see that convergent behaviour is not necessarily
the norm in the NA-CTFP dynamics. In fact, for the family of games
discussed above, we were unable to find non-periodic behaviour for
any choice of f strictly between 0.5 and 1 for any w between 0.2 and
0.8 (so that the influence of player 1 and player 3 on player 2 is not
negligible). This suggests that, far from being rare, in fact NA-CTFP
lends itself to an incredibly rich variety of dynamics which can be
explored as future work.



(a)

(b)

Figure 1: Orbits of the Fictitious Play in the Three-Player Chain for which the NE lies at the centre of the simplex. (a) Payoffs
are given by (2). The plot shows NA-CTFP yields convergence to the NE (b) NA-CTFP showing cycles around the NE when

payoffs are modified slightly (c.f. Sec. 5.1).

5.2 Convergence under the Addition of Noise

Fictitious Play in NA games requires that, at each time step, an
agent takes a ‘measurement’ of the aggregate strategy of their
neighbours. It is on this measurement that they update their own
strategy. It stands to reason then, that in real environments this
measurement may be corrupted by noise. As such, we investigate
the effect that introducing additive noise has on NA-CTFP in a
zero-sum NA game. We do this in the following manner: at each
time step, the reference signal o#(t) is adjusted to o# + y& where
& is drawn from the standard normal distribution (zero mean and
unit variance). By varying y, we vary the strength of the noise.

In Figure 2, we consider a zero-sum NA game with 20 players.
When there is no noise, it can be seen that FP reaches a fixed point
which, since we set wH# = 0, corresponds to an NE. After increasing
v, however, we find that the agents no longer converge to this NE,
but rather shift away from it. What is interesting, however, is that
the orbits do still reach a stationary state in the long run which
suggests that FP is still able to converge with the introduction of
noise.

In Figure 3 we revisit the Three-Player Chain of Section 5.1,
now under the influence of additive noise. For the sake of brevity,
we only display the distance to the Nash Equilibrium of the first
player’s strategy, since the other agents behave in the same way. It
can be seen that a small amount of noise has the effect of decreasing
the size of the periodic orbit. However, as y is increased to 0.5, the
algorithm seems to exhibit convergence to the NE. The implication
is that the addition of noise may cause periodic behaviour to break
and lead to the Nash Equilibrium. An interesting point to note is
that this behaviour is in stark contrast to the replicator dynamic
(RD) [33], another adaptive algorithm linked to multi-agent learning
[16]. In [10] and [6], it was found that the introduction of random
mutations can remove convergent behaviour and instead lead to
periodicity.

We explore the movement of the equilibrium under noise further
in Fig. 4. In this, we take three examples of three-player NA games,
for which Fictitious Play converges. In Fig. 4c, we plot, for each of
these games, the trajectories of Fictitious Play for all three agents on
the simplex under varying choices of y. We see that, in the absence
of noise, the NE lies on the boundary of the simplex. However, as
noise is introduced, the fixed point shifts and eventually moves
into the interior of the simplex. In Fig. 4b, we plot the movement
of the fixed point as y is varied from 0 to 20. We see that these
trajectories do indeed move into the interior of the simplex. Finally,
in Fig. 4a, we plot the distance of the fixed point for varying y to the
fixed point in the absence of noise. We find that, whilst the fixed
initially moves away from the NE of the game, as noise continues
to be added, this movement eventually subsides. In other words, the
location of the fixed point itself eventually arrives at an equilibrium
beyond which the introduction of any new noise has no effect.

6 CONCLUDING REMARKS

In this work, we have considered the action of the Fictitious Play
learning algorithm in Network Aggregative Games and investigated
its long term behaviour through a continuous time analysis. We
find that, under a zero-sum condition, NA-CTFP converges to a
fixed point (Corollary 1). However, we find experimentally that this
is necessarily true for non-zero sum games. In fact, we find a family
of NA games, based on the Shapley family, for which FP cycles
about the NE. For these cases, we also perform a regret analysis
which shows that, regardless of the type of game, the FP algorithm
achieves no regret. We also investigate the influence of noise on
the algorithm and find that even with the introduction of additive
noise, FP converges to a fixed point. In fact, for our cyclic family of
games, we find that the introduction of noise can actually remove
the periodicity, resulting in FP converging to a fixed point.
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Figure 2: Trajectories of NA-CTFP in a 20-player game with
additive noise (Top) No noise is introduced and learning con-
verges directly to an NE. (Bottom) y = 0.1, the trajectories
converge to a fixed point which is even further away from
the NE.

Our work opens a number of lines for future work. Most notable
is the effect of noise. It would be prudent to analyse this theoreti-
cally, as was done in [25], and consider the conditions under which
FP will still converge to a fixed point. Furthermore, it would be
interesting to investigate the phenomenon we report experimen-
tally in a theoretical framework. Namely, the question of why noise
breaks periodicity in FP and results in convergence to an NE should
be investigated. Furthermore, our experiments have shown that
the addition of noise moves the equilibrium up to a certain point.
Beyond this limit, any new noise has no effect on the location of the
fixed point. A pertinent question to ask, then, is on the nature of
these fixed points. Do these fixed points always exist, and do they
exhibit any structure (e.g. e-Nash)? Does the limit as y is increased
always exist? Finally, we note that in recent years FP in two-player
games has shown a remarkable variety of dynamical behaviours,
including periodicity and chaos. In our work we have shown con-
vergence to a fixed point and, through experiments, periodicity.
It stands to reason, therefore, that a greater variety of dynamical
behaviours exist for NA-CTFP for certain classes of games. It would
be important to determine what these classes are. Short from being
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Figure 3: Trajectories of NA-CTFP on the Three Player
Chain of Section 5.1 with additive noise. (Top) y = 0.1 leads
to a decrease in the size of the cyclic orbit (Bottom) y = 0.75,
NA-CTFP still converges, though after a greater amount of
time has elapsed.

merely a curiosity, this would allow for the identification of games
in which NA-CTFP leads to inherently unpredictable behaviour,
an important question from the point of view of building Safe and
Trusted AL
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Figure 4: Results of the application of noise on three examples of NA Games. (a) The distance of the fixed point from the NE
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(c) Trajectories of Fictitious Play arriving at a fixed point for y = 0,0.1, 1.0.

REFERENCES

[1] Ulrich Berger. 2007. Brown’s original fictitious play. Journal of Economic Theory

[11]

[12

135, 1 (7 2007), 572-578. https://doi.org/10.1016/j.jet.2005.12.010

George W Brown P. 1949. Some Notes on the Computation of Games Solutions.
Technical Report.

Nicolo Cesa-Bianchi and Francesco Orabona. 2021. Online Learning Algorithms.
Annual Review of Statistics and Its Application 8, 1 (2021), 165-190. https://doi.org/
10.1146/annurev-statistics-040620-035329 arXiv:https://doi.org/10.1146/annurev-
statistics-040620-035329

Claudio De Persis and Sergio Grammatico. 2020. Continuous-Time Integral
Dynamics for a Class of Aggregative Games with Coupling Constraints. IEEE
Trans. Automat. Control 65, 5 (5 2020), 2171-2176. https://doi.org/10.1109/TAC.
2019.2939639

Christian Ewerhart and Kremena Valkanova. 2020. Fictitious play in networks.
Games and Economic Behavior 123 (9 2020), 182-206. https://doi.org/10.1016/j.
£€eb.2020.06.006

Tobias Galla. 2011. Cycles of cooperation and defection in imperfect learning.
Journal of Statistical Mechanics: Theory and Experiment 2011, 8 (8 2011). https:
//doi.org/10.1088/1742-5468/2011/08/P08007

Itzhak Gilboa and Akihiko Matsui. 1991. Social Stability and Equilibrium. Econo-
metrica 59, 3 (1991), 859-867. http://www.jstor.org/stable/2938230

Heiko Hamann. 2018. Swarm Robotics: A Formal Approach. https://doi.org/10.
1007/978-3-319-74528-2

Christopher Harris. 1998. On the Rate of Convergence of Continuous-Time
Fictitious Play. Games and Economic Behavior 22, 2 (2 1998), 238-259. https:
//doi.org/10.1006/game.1997.0582

Lorens A. Imhof, Drew Fudenberg, and Martin A. Nowak. 2005. Evolutionary
cycles of cooperation and defection. In Proceedings of the National Academy of
Sciences of the United States of America. Vol. 102. 10797-10800. https://doi.org/
10.1073/pnas.0502589102

Martin Kaae Jensen. 2010. Aggregative games and best-reply potentials. Econ
Theory 43 (2010), 45-66.

Sylvain Sorin Josef Hofbauer. 2006. Best response dynamics for continuous
zero—sum games. Discrete and Continuous Dynamical Systems - B 6, 1 (2006),

(13

[14

[15

[16

[23

]

]

]

215-224.

Jayash Koshal, Angelia Nedie, and Uday V Shanbhag. 2016. Distributed algo-
rithms for aggregative games on graphs. Operations Research 64, 3 (2016), 680-704.
https://doi.org/10.1287/opre.2016.1501

Jinlong Lei, Uday V. Shanbhag, and Jie Chen. 2020. Distributed Computation of
Nash Equilibria for Monotone Aggregative Games via Iterative Regularization. In
Proceedings of the IEEE Conference on Decision and Control, Vol. 2020-December.
Institute of Electrical and Electronics Engineers Inc., 2285-2290. https://doi.org/
10.1109/CDC42340.2020.9303804

Van Sy Mai and Eyad H. Abed. 2019. Distributed optimization over directed
graphs with row stochasticity and constraint regularity. Automatica 102 (4 2019),
94-104. https://doi.org/10.1016/j.automatica.2018.07.020

Panayotis Mertikopoulos, Christos Papadimitriou, and Georgios Piliouras. 2018.
Cycles in adversarial regularized learning. (2018), 2703-2717. https://doi.org/10.
1137/1.9781611975031.172

Andrew Metrick and Ben Polak. 1994. Fictitious play in 2x2 games: A geometric
proof of convergence. Economic Theory 4, 6 (11 1994), 923-933. https://doi.org/
10.1007/BF01213819

K. Miyasawa. 1961. On the Convergence of the Learning Process in a 2x2 Non-
Zero-Sum Two Person Game.

Dov Monderer, Dov Samet, and Aner Sela. 1997. Belief affirming in learning
processes. Journal of Economic Theory 73, 2 (4 1997), 438-452. https://doi.org/
10.1006/jeth.1996.2245

Dov Monderer and Lloyd S. Shapley. 1996. Potential games. Games and Economic
Behavior 14, 1 (5 1996), 124-143. https://doi.org/10.1006/game.1996.0044
Noam Nisan, Tim Roughgarden, Eva Tardos, and Vijay V. Vazirani. 2007. Algo-
rithmic game theory. Vol. 9780521872829. Cambridge University Press. 1-754
pages. https://doi.org/10.1017/CBO9780511800481

Georg Ostrovski and Sebastian van Strien. 2014. Payoff performance of fictitious
play. Journal of Dynamics and Games 1, 4 (8 2014), 621-638. https://doi.org/10.
3934/jdg.2014.1.621

Francesca Parise, Basilio Gentile, Sergio Grammatico, and John Lygeros. 2015.
Network aggregative games: Distributed convergence to Nash equilibria. In
2015 54th IEEE Conference on Decision and Control (CDC). 2295-2300. https:
//doi.org/10.1109/CDC.2015.7402549


https://doi.org/10.1016/j.jet.2005.12.010
https://doi.org/10.1146/annurev-statistics-040620-035329
https://doi.org/10.1146/annurev-statistics-040620-035329
https://arxiv.org/abs/https://doi.org/10.1146/annurev-statistics-040620-035329
https://arxiv.org/abs/https://doi.org/10.1146/annurev-statistics-040620-035329
https://doi.org/10.1109/TAC.2019.2939639
https://doi.org/10.1109/TAC.2019.2939639
https://doi.org/10.1016/j.geb.2020.06.006
https://doi.org/10.1016/j.geb.2020.06.006
https://doi.org/10.1088/1742-5468/2011/08/P08007
https://doi.org/10.1088/1742-5468/2011/08/P08007
http://www.jstor.org/stable/2938230
https://doi.org/10.1007/978-3-319-74528-2
https://doi.org/10.1007/978-3-319-74528-2
https://doi.org/10.1006/game.1997.0582
https://doi.org/10.1006/game.1997.0582
https://doi.org/10.1073/pnas.0502589102
https://doi.org/10.1073/pnas.0502589102
https://doi.org/10.1287/opre.2016.1501
https://doi.org/10.1109/CDC42340.2020.9303804
https://doi.org/10.1109/CDC42340.2020.9303804
https://doi.org/10.1016/j.automatica.2018.07.020
https://doi.org/10.1137/1.9781611975031.172
https://doi.org/10.1137/1.9781611975031.172
https://doi.org/10.1007/BF01213819
https://doi.org/10.1007/BF01213819
https://doi.org/10.1006/jeth.1996.2245
https://doi.org/10.1006/jeth.1996.2245
https://doi.org/10.1006/game.1996.0044
https://doi.org/10.1017/CBO9780511800481
https://doi.org/10.3934/jdg.2014.1.621
https://doi.org/10.3934/jdg.2014.1.621
https://doi.org/10.1109/CDC.2015.7402549
https://doi.org/10.1109/CDC.2015.7402549

[24] Francesca Parise, Sergio Grammatico, Basilio Gentile, and John Lygeros. 2020. [29] Aner Sela. 1999. Fictitious play in ‘one-against-all’ multi-player games. Technical
Distributed convergence to Nash equilibria in network and average aggregative Report. 635-651 pages.
games. Automatica 117 (2020), 108959. https://doi.org/10.1016/j.automatica.2020. [30] L.S. Shapley. 2016. Some Topics in Two-Person Games. In Advances in Game
108959 Theory. (AM-52). Princeton University Press, 1-28.  https://doi.org/10.1515/
[25] Sarah Perrin, Julien Perolat, Mathieu Lauriere, Matthieu Geist, Romuald Elie, 9781400882014-002
and Olivier Pietquin. 2020. Fictitious Play for Mean Field Games: Continuous [31] Mohammad Shokri and Hamed Kebriaei. 2020. Leader-Follower Network Ag-
Time Analysis and Applications. In Advances in Neural Information Processing gregative Game with Stochastic Agents’ Communication and Activeness. [EEE
Systems, H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin (Eds.), Trans. Automat. Control 65, 12 (12 2020), 5496-5502. https://doi.org/10.1109/
Vol. 33. Curran Associates, Inc., 13199-13213. https://proceedings.neurips.cc/ TAC.2020.2973807
paper/2020/file/995ca733e3657ff9f5f3¢823d73371e1-Paper.pdf [32] Mohammad Shokri and Hamed Kebriaei. 2021. Network Aggregative Game in
[26] Julia Robinson. 1951. An Iterative Method of Solving a Game. The Annals of Unknown Dynamic Environment with Myopic Agents and Delay. IEEE Trans.
Mathematics 54, 2 (9 1951), 296. https://doi.org/10.2307/1969530 Automat. Control (2021). https://doi.org/10.1109/TAC.2021.3071017
[27] James B T Sanders, ] Doyne Farmer, and Tobias Galla. 2018. The prevalence of [33] John Maynard Smith. 1982. Evolution and the Theory of Games. Cambridge
chaotic dynamics in games with many players. Scientific Reports 8, 1 (2018), 4902. University Press. https://doi.org/10.1017/CB09780511806292
https://doi.org/10.1038/s41598-018-22013-5 [34] Sebastian van Strien and Colin Sparrow. 2011. Fictitious play in 3x3 games: Chaos
[28] Yuzuru Sato, Eizo Akiyama, and J. Doyne Farmer. 2002. Chaos in learning a and dithering behaviour. Games and Economic Behavior 73, 1 (2011), 262-286.
simple two-person game. Proceedings of the National Academy of Sciences of the https://doi.org/10.1016/j.geb.2010.12.004
United States of America 99, 7 (4 2002), 4748-4751. https://doi.org/10.1073/pnas. [35] Rongping Zhu, Jiaqi Zhang, Keyou You, and Tamer Basar. 2021. Asynchronous

032086299 Networked Aggregative Games. (2021). arXiv:2101.08973 [math.OC]


https://doi.org/10.1016/j.automatica.2020.108959
https://doi.org/10.1016/j.automatica.2020.108959
https://proceedings.neurips.cc/paper/2020/file/995ca733e3657ff9f5f3c823d73371e1-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/995ca733e3657ff9f5f3c823d73371e1-Paper.pdf
https://doi.org/10.2307/1969530
https://doi.org/10.1038/s41598-018-22013-5
https://doi.org/10.1073/pnas.032086299
https://doi.org/10.1073/pnas.032086299
https://doi.org/10.1515/9781400882014-002
https://doi.org/10.1515/9781400882014-002
https://doi.org/10.1109/TAC.2020.2973807
https://doi.org/10.1109/TAC.2020.2973807
https://doi.org/10.1109/TAC.2021.3071017
https://doi.org/10.1017/CBO9780511806292
https://doi.org/10.1016/j.geb.2010.12.004
https://arxiv.org/abs/2101.08973

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Network Aggregative Games
	2.2 Continuous Time Fictitious Play
	2.3 Assumptions

	3 Convergence of Fictitious Play in Network Aggregative Games
	4 NA-CTFP Achieves No Regret
	5 Experimental Evaluation
	5.1 Non-convergence of General Two-player Games under NA-CTFP
	5.2 Convergence under the Addition of Noise

	6 Concluding Remarks
	Acknowledgments
	References

