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ABSTRACT
Reinforcement learning (RL) has shown great success in solving
many challenging tasks via use of deep neural networks. Although
using deep learning for RL brings immense representational power,
it also causes a well-known sample-inefficiency problem. This
means that the algorithms are data-hungry and require millions
of training samples to converge to an adequate policy. One way
to combat this issue is to use action advising in a teacher-student
framework, where a knowledgeable teacher provides action advice
to help the student. This work considers how to better leverage
uncertainties about when a student should ask for advice and if
the student can model the teacher to ask for less advice. The stu-
dent could decide to ask for advice when it is uncertain or when
both it and its model of the teacher are uncertain. In addition to
this investigation, this paper introduces a new method to compute
uncertainty for a deep RL agent using a secondary neural network.
Our empirical results show that using dual uncertainties to drive
advice collection and reuse may improve learning performance
across several Atari games.

KEYWORDS
Reinforcement Learning, Action Advising, Teacher-Student Frame-
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1 INTRODUCTION
Deep RL has shown promising results in many challenging prob-
lems, ranging from the game of Go [22] to Atari video games [16].
While these problems have opened up avenues for applying RL
research to a wide variety of important problems like drug discov-
ery [10], molecular optimization [26] and healthcare [15], current
Deep RL algorithms are sample-inefficient and require millions of in-
teractions with the environment to converge. This restricts deploy-
ing Deep RL systems in real-world applications where acquiring
training samples incur cost.

A number of well-known techniques like reward shaping [17],
policy shaping [11] and imitation learning [20] have been studied to
address the sample-efficiency problem by using expert knowledge
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to better guide the agent. A popular paradigm for providing expert
advice is a teacher-student framework [6] where a teacher is an
experienced agent, trained on the same or related task, who provides
advice to a naive student agent to help the student learn quickly.
We assume the teacher cannot directly transfer its knowledge into
the student, but instead must use a limited advice budget to tell
the student what action to take in a given state. Our work takes a
step in this direction where we propose a dual uncertainty based
framework to drive advice collection and reuse. On the one hand,
the proposed framework allows the student to seek advice from
the teacher only when required. On the other hand, the framework
reuses teacher’s advicewisely by building amodel of the teacher and
querying it whenever applicable based on the model’s confidence.
Much of the existing work in action-advising has focused on either
student initiated [8] or teacher initiated [7] criteria to seek advice
effectively. Ilhan et al. [12, 13] more effectively use an advice budget
by having the student build a model of the teacher and use it when
possible once the budget has been exhausted. Inspired by these
directions, we propose a flexible and systematic uncertainty based
framework of effectively seeking and providing advice by using the
model of the teacher. Our framework is motivated by real-world
teacher-student interaction, where the student directly asks for
advice only if he/she is uncertain about a problem. The teacher’s
prior advice is used by the student to build a mental model of the
teacher. Furthermore, when the teacher is unavailable (e.g., the
budget is exhausted), the student uses this model of the teacher to
solve a problem if it seems familiar or tries to do it on their own
otherwise. Our proposed approach is based on such interactions,
where the student seeks advice in uncertain regions and the model
of the teacher provides advice when its uncertainty is low (states
that seem familiar).

This work-in-progress paper has three contributions, introduc-
ing and evaluating: (1) An action-advising framework that allows
the student to have flexibility in following either its own policy,
reusing advice from the model of the teacher, or asking the teacher
directly for advice; (2) a methodical uncertainty-based advice reuse
approach that leverages the uncertainty of both the student and/or
the student’s model of the teacher; and (3) a new method of comput-
ing the uncertainty for the student agent using a secondary neural
network. To the authors’ surprise, while our new methods perform
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well, they do not outperform state-of-the-art advice reuse methods.
Our hope is that this paper will encourage additional work in this
area, as we believe there are still many opportunities for significant
improvement in how to ask for and reuse, advice from a teacher.
Additional details such as pseudocode, experimental, and hyper-
parameter settings, are available in the appendix of the archived
version of this paper.

2 RELATEDWORK
Learning from Demonstration (LfD) [2] and Action Advising [25] are
two widely accepted solutions to the sample inefficiency problem
in RL algorithms. The sample inefficiency refers to the need of
numerous amount of samples to learn a policy for solving a task
at hand. This problem is more evident in deep RL where neural
networks are used as function approximators and require a large
amount of data to converge. LfD is a technique that uses expert
demonstrations to bootstrap the learning of agents. LfD is usually
an offline process where the expert demonstrations, spanning as
long as full trajectories, are provided to the learning agent prior to
the start of actual training. Action advising however, is an online
technique where an RL agent is provided with actions as advice
via another teacher agent or human expert who is optimal or sub-
optimal.

Action advising. Action advising paradigm is used extensively
in student-teacher framework [1, 6, 8, 12, 13, 24, 25]. Typically, the
student agent is considered a novice that could potentially perform
better in the presence of a teacher agent that is pre-trained and
known to perform well in the given task. The teacher is available
for a limited number of interactions which is usually referred to as
the advising budget. Torrey et al. [25] introduced action advising
along with multiple heuristics for deciding how to provide advice.
They mainly introduced teacher-driven advising methods such as
Early Advising and Importance Advising, among others. Student-
driven advising is also explored in the literature where heuristics
like epistemic uncertainty of the student agent [8, 18] and advice
novelty [14] are used to decide when to ask for advice. To reduce
the overhead of the teacher, jointly-initiated action advising
was investigated by Amir et al. [1], where a student could seek
advice and the teacher could provide advice to the student’s queries.
Moreover, the student-teacher framework has also been extended by
Da Silva et al. [7] to accommodate multiple agents, without having
to fix roles of being a student or teacher, and training simultaneously
using advice from each other. Lastly, Omidshafiei et al. [19] used a
similar extension of the framework to propose multiple objective
functions to learn when and what to advise instead of relying on
heuristics.

Advice reuse. Given the vast literature on action advising, there
exists limited work that aims to collect advice for later reuse. This
is particularly useful because it allows the student to spend the
teacher’s budget wisely by not asking redundant or similar queries.
The idea of reusing collected advice was introduced by Zhu et
al. [27] in a student-teacher framework where advice were reused
based on different heuristics such as QChange, Budget reuse, and
Decay Reusing Probability in tabular RL algorithms. Due to the
tabular nature, they store the action advice in a fixed size buffer

for reuse. Our work is heavily inspired by the deep RL compatible
work of Ilhan et al. [12, 13], where supervised learning is used to
train a model of the teacher from previously collected advice. This
model would then predict an action (similar to the teacher) which
could be reused if the predetermined probability threshold is met.
The limitation of their work includes the student’s dependency on
the model of the teacher for advice collection. As the student would
continue to experience more states in the environment, its measure
of uncertainty would account for a larger subset of the state space.
We propose a principled framework to address these issues.

3 BACKGROUND
Reinforcement learning. We follow the standard RL framework [23]

which is modelled as a Markov Decision Process (MDP). It is repre-
sented by the tuple (S,A, 𝑅, 𝑃,𝛾) where S is the state space, A is
the action space, 𝑅 is the reward function, 𝑃 is the state-transition
probability and 𝛾 ∈ [0, 1) is the discount factor for infinite horizon
problems. At time-step 𝑡 , an RL agent starts in a state 𝑠𝑡 , takes an
action 𝑎𝑡 , receives a reward 𝑟𝑡+1 after interacting with the environ-
ment and transitions to the next state 𝑠𝑡+1. At each time-step, the
agent tries maximizing the expected return R𝑡 = E[

∑𝑇
𝑘=0 𝛾

𝑘𝑟𝑡+𝑘+1],
which is the discounted sum of rewards that an agent receives when
starting from time-step t and following a policy 𝜋 until time step𝑇 .

Deep Q-Networks. Deep Q-Networks (DQN) [16] is a state-of-
the-art off-policy deep RL algorithm to approximate the Q-function
for high dimensional tasks with continuous state-space and dis-
crete actions. An underlying neural network is used as a function
approximator and the loss function for the iteration 𝑖 is 𝐿𝑖 (𝜃𝑖 ) =
E𝑠,𝑎∼𝑃 [𝑦𝑖 − 𝑄 (𝑠, 𝑎;𝜃𝑖 )]2 which is the squared error between the
target 𝑦𝑖 and the Q-value output by the current model parameter-
ized by 𝜃𝑖 . The Bellman equation is used to approximate the target
value 𝑦𝑖 = 𝑟 + 𝛾 max𝑎′ 𝑄 (𝑠 ′, 𝑎′;𝜃𝑖−1) where 𝑠 ′ and 𝑎′ refers to the
next state-action pair, respectively. An experience replay buffer is
used to store all the agent interactions. At every training step, a
mini-batch of experience is sampled from this buffer to update the
parameters of the Q-function.

Advice reuse using behavior cloning. Imitation learning [21] aims
at learning the policy of an expert by collecting demonstrations.
Behavior Cloning [20] is a specific approach under Imitation learn-
ing that uses supervised learning to approximate the conditional
distributions of actions given the state. Deep neural networks have
been used for behavior cloning where the objective is to minimize
the negative log-likelihood,L(𝜂) = ∑

(𝑠,𝑎) ∈T − log𝑀 (𝑎 |𝑠, 𝜂) where
L(𝜂) is the loss-function, T refers to the demonstration data and
𝜂 is the parameter of the supervised learning model 𝑀 . Ilhan et
al. [12] used a behavior cloning module to train a neural network
using the advice collected from a teacher agent which was referred
to as Advice Imitation. It was done to enable the student to replicate
the teacher’s action decisions without needing to query it. Further-
more, epistemic uncertainty via employing dropout regularization
in this imitation model lets the student to avoid using the advising
budget for similar states for which prior advice had already been
taken. We use a similar behavior cloning module for advice reuse
in our proposed framework.



4 UNCERTAINTY-DRIVEN
STUDENT-TEACHER FRAMEWORK FOR
ADVICE COLLECTION AND REUSE

This section discusses the problem formulation, introduces the
proposed algorithms, and introduces the new way of estimating
epistemic uncertainty.

4.1 Problem formulation
We propose a methodical student-teacher framework for action
advising that aims to wisely reuse advice and minimize redundant
advice requests made to the teacher. The focus of this work is to
compute and use uncertainty as a metric to decide whether to
ask for advice from the teacher, reuse advice from the model of
the teacher, or simply let the student continue following its own
policy. However, the framework is meant to be general, and any
valid metric like value of information [4] can be used to drive this
decision making To formalize the proposed problem:
Given: A student agent with its own policy 𝜋𝑆 , a skilled teacher
agent 𝜋𝑇 , advice budget 𝑏 which specifies the number of times the
teacher 𝑇 can be queried by the student for action-advice
To-do: learn optimal student policy 𝜋∗

𝑆
by leveraging advice from

the teacher following 𝜋𝑇 , reusing the model of the teacher build
from prior advice𝑀𝜂 or following its own policy 𝜋𝑆 subject to the
budget 𝑏

4.2 Student Uncertainty driven action-advice
and reuse

We propose two algorithms that use uncertainties to drive decision
making. In all algorithms, there are two ways to leverage the com-
puted uncertainty. One way is to use a fixed uncertainty threshold
to decide whether the student or model of the teacher is uncer-
tain. The other way is to have a dynamically changing threshold
based on the previously observed uncertainty values. We keep dy-
namic uncertainty thresholds for our experiments. The proposed
algorithms are as below:

(1) Student’s Uncertainty-driven Advising (SUA)
(2) Student’s Uncertainty-driven Advising with Advice Imita-

tion & Reuse (SUA-AIR)

SUA and SUA-AIR, use the student’s uncertainty estimates to
drive the advice collection process. Student agent’s uncertainty to
drive action advising has been explored previously in literature,
as mentioned in Section 2. To the best of our knowledge, student
uncertainty driven advice collection in an advice-reuse framework
hasn’t been explored previously. In addition, the process we use to
compute the student’s uncertainty is novel, which has its advan-
tages, discussed in more detail in Section 4.3.

The flow of decision-making involved in SUA is shown in Figure
1. At any state, the student agent can ask the teacher agent for
advice if its uncertainty 𝑢𝑠 is greater than the student’s adaptive
uncertainty threshold 𝑐1. In other words, the student can ask the
teacher for advice when it is uncertain. The teacher agent can then
provide action advice 𝑎𝑡 if the teaching budget is not consumed
(𝑏 > 0). Lastly, the student agent would continue to follow its own
policy if no advice is received (𝑎𝑡 is None). This is possible if either

the student agent is certain in the given state 𝑢𝑠 ≤ 𝑐1, or if the
teaching budget is consumed (𝑏 = 0).

SUA-AIR, on the other hand, uses the uncertainty of the student
for advice collection and the uncertainty of the model of the teacher
for advice reuse. The extent of flexibility available in SUA-AIR and
the conditions that trigger those choices are shown in Figure 2. At
any state, the student agent can ask the teacher agent for advice if
its uncertainty 𝑢𝑠 is greater than the student’s adaptive uncertainty
threshold 𝑐1. The teacher agent will then provide action advice 𝑎𝑡
for the queried state if the teaching budget is not consumed (𝑏 > 0).
The student agent can ask for advice reuse from the model of the
teacher if action advice 𝑎𝑡 is not received (budget exhausted). The
model of the teacher would provide advice if the model uncertainty
𝑢𝑚 is less than its uncertainty threshold 𝑐2, or simply if the model
is certain, and if advice reuse is enabled (𝑟𝑒𝑢𝑠𝑒_𝑒𝑛𝑎𝑏𝑙𝑒𝑑 = 𝑇𝑟𝑢𝑒).
At any step, advice reuse would be enabled if reuse probability 𝜌 is
greater than a random probability. Lastly, the student agent would
follow its own policy if action 𝑎𝑡 is not determined.

Figure 1: Flow of SUA.

Figure 2: Flow of SUA-AIR.

The pseudocode for SUA and SUA-AIR are shown in the appendix
of the archived version of this paper. SUA serves as a baseline
advising method for our experiments. SUA-AIR builds upon SUA
and AIR to leverage advice reuse with our proposed method of
student’s uncertainty-driven advising. This allows the student agent
to be more independent in asking the teacher for advice, instead of
random advice collection or relying on the model of the teacher to
get advice as in [12, 13]. Moreover, the uncertainty estimates of the
student agent would account for a larger subset of the state-space,
enabling more accurate estimates.



4.3 Computing Student’s Epistemic Uncertainty
The computation of uncertainty occurs at two distinct places, one
within the student agent and the other within the model of the
teacher. This is evident in Figure 2, where𝑢𝑠 denotes the uncertainty
of the student and 𝑢𝑚 denotes the uncertainty of the model of the
teacher.

The way of computing uncertainty is different at each place. As
done in [13], the model of the teacher that is trained in a super-
vised fashion includes dropout to compute the uncertainty over
the action probabilities. However, using this strategy to compute
student agent’s uncertainty would come at a cost. Unless there is a
generalisation goal, simply adding a dropout layer in an RL agent
can potentially hurt the performance of the learning agent due
to the introduction of extra variance that is already plentiful in
RL [9]. Thus, we propose a new way of computing the RL model’s
uncertainty by using a secondary neural network with dropout that
mimics its learning.

The secondary neural network is trained simultaneously using
the samples and targets of the student agent’s RL algorithm. Since
this network is updated over the same data seen by the learning
agent, it can be assumed that its uncertainty estimations can serve
as a good proxy to the student agent’s uncertainty. Another benefit
of having this secondary network approach is that it is easy to
decouple. For example, if the student does not require advising
(No Advising) or if the uncertainty estimates are not needed, the
secondary network can simply be turned off.

Formally, the uncertainty is computed from the secondary neural
network by conducting the following steps. First, 𝑁 forward passes
are performed for a given state 𝑠 . This would give us the matrix F ∈
R 𝑁×𝐴 , which contains Q-values for each action 𝑎 ∈ [𝑎1, 𝑎2, ..., 𝑎𝐴],
for each forward pass 𝑖 ∈ [1, 2, ..., 𝑁 ]:

F =


𝑄1 (𝑠, 𝑎1) 𝑄1 (𝑠, 𝑎2) . . . 𝑄1 (𝑠, 𝑎𝐴)
𝑄2 (𝑠, 𝑎1) 𝑄2 (𝑠, 𝑎2) . . . 𝑄2 (𝑠, 𝑎𝐴)

.

.

.

𝑄𝑁 (𝑠, 𝑎1) 𝑄𝑁 (𝑠, 𝑎2) . . . 𝑄𝑁 (𝑠, 𝑎𝐴)


where 𝐴 is the total number of possible actions. The matrix F

is then used to compute the variance across each column or the
Q-values 𝑄𝑖 (𝑠, 𝑎) for each action 𝑎. This results in a row matrix
Q ∈ R: 1×𝐴 :

Q =
[
𝑣𝑎𝑟 (𝑄 (𝑠, 𝑎1)) 𝑣𝑎𝑟 (𝑄 (𝑠, 𝑎2)) . . . 𝑣𝑎𝑟 (𝑄 (𝑠, 𝑎𝐴))

]
The average of the values in matrix Q then gives us the uncer-

tainty 𝑢𝑠 :

𝑢𝑠 =

∑𝐴
𝑗=1 𝑣𝑎𝑟 (𝑄 (𝑠, 𝑎 𝑗 ))

𝐴

Computing uncertainty in this manner does not restrict the archi-
tecture of the student RL agent to have built in modifications such
as dropout or multiple heads. The secondary network, equipped
with dropout, is separate from the student RL agent architecture.
Moreover, we use adaptive uncertainty thresholds to avoid tuning
domain-specific uncertainty thresholds to enable scalability of our
methods.

5 EXPERIMENTS
The proposed experiments were designed to answer the following
research questions:

RQ1 Does adding uncertainties of both the student and the
model of the teacher help improve student learning?

RQ2 How do the proposed algorithms perform against the
baselines?

RQ3 Do the proposed algorithms effect the way teacher advice
is requested or reused?

5.1 Testing Environments
To evaluate our proposed algorithms against some baseline heuris-
tics in action advising, we have selected five popular domains from
the Arcade Learning Environment [3]: Pong, Freeway, Seaquest,
Enduro, and Q*bert.

Each environment operates in an RGB pixel space with an obser-
vation dimension of 160× 120× 3. To reduce the complexities, these
observations are pre-processed by converting them to grayscale and
shrinking the dimensions to 80× 80× 1 via interpolation. Moreover,
frames are skipped by repeating the agent actions for 4 consecutive
frames to account for the high frame rate. Four resulting frames (or
16 in total) are then stacked upon each other to remove the effect
of partial observability, making the final observation dimension to
be 80 × 80 × 4.

5.2 Experimental Setup
All agents are trained for 5 million training frames and evaluated
every 50,000 steps for 10 trials each. The following agents were
tested on each domain for 10 independent runs:

No Advising (NA): A student agentwith no advising (no teacher).
Early Advising (EA): A student agent with advising provided

in early phase of training until the the teaching budget ex-
hausts.

Random Advising (RA): A student agent advised with 0.5
probability at every step until the budget runs out.

Advice Imitation & Reuse (AIR): Previous state-of-the-art
baseline [13] that uses the uncertainty of the model of the
teacher to drive advice collection and reuse.

Student’s Uncertainty-driven Advising (SUA): A student agent
that uses its adaptive uncertainty estimates to drive advice
collection; no advice reuse.

Student’s Uncertainty-driven Advising with Advice Imi-
tation & Reuse (SUA-AIR): A student agent that uses its
adaptive uncertainty estimates to drive advice collection;
paired with a teacher imitation model that uses its adaptive
uncertainty thresholds for advice reuse.

All student agents use the same architecture, Double DQN with
3 convolutional layers followed by a fully-connected hidden layer
and a dueling output. All agents use the 𝜖-greedy strategy for ex-
ploration where 𝜖 is decayed over time. The secondary network’s
structure is similar to student DQN with two added differences.
First, the secondary network is a supervised learning model, and
second, has a dropout layer.1 Dropout rate controls the percentage

1Following the literature [5], the dropout rate is set to 0.2 so that it does not hamper
the learning progress.



Figure 3: Evaluation rewards for all agents tested on Enduro, Freeway, Pong, Q*bert, and Seaquest.

Figure 4: Advice reuse (actions taken from the model of the teacher) and advice taken (actions taken directly from the teacher
agent) in every 100 steps taken by the student in all domains.

of units that are dropped at every training step and the number of
forward passes performed to compute the epistemic uncertainty is
set to 100.

The supervised learning model of teacher (or imitation model),
trained with the student-teacher interaction data, is equipped with
the network structure identical to the student agent’s secondary
network. Here, the model of teacher predicts action probabilities
(instead of Q-values in the secondary network). A dropout layer
is also added to the model. Following AIR [13], the dropout rate is
0.35. Again, the number of forward passes to compute the epistemic
uncertainty is set to 100. The list of all the hyperparamters for the
student agents, and the model of the teacher (or imitation model)
are shown in the appendix of the archived version of this paper.

For each game, a teacher agent is pre-trained and has a fixed
policy. The teacher agents have the same network structure and
algorithm as the student agent. The teacher agents can be consid-
ered competent, as compared to results in the literature, and obtain
average evaluation scores of 1556 for Enduro, 28.8 for Freeway, 12
for Pong, 3705 for Q*bert, and 8178 for Seaquest.

6 RESULTS
The evaluation performance of all the agents in Pong, Freeway,
Seaquest, Enduro, and Q*bert is reported in Figure 3. All advised
agents (except RA) performed better than no advising agent (NA)
during the early training phases, with statistically significant dif-
ferences as they are more than twice the standard error in the re-
spective means (for 95% confidence), in all domains except Q*bert,
where the benefits of advising appear in later stages of training.

In Enduro, the performance of all advised agents during the early
phases of training was better than NA agent with statistically signif-
icant differences. The benefits of advice reuse become slightly more
apparent when we look at the performance of agents in Freeway.
Students with advice reuse, SUA-AIR and AIR, showed a statistically
significant boost in performance during early-to-mid training, as
compared to other agents. Advising methods such as EA, RA, and
SUA took more time to catch up to the policies of students using
advice reuse in Freeway. The difference of performance between
students with and without advice reuse becomes more evident in
Pong. Students with advice reuse (SUA-AIR and AIR) showed a



statistically significant boost in performance throughout the ma-
jority of training (other than the end of training). Advised agents
without advice reuse (EA, SUA, and RA) failed to keep up with the
performance of advice reuse students in Pong. In Q*bert, the advice
reuse agents (SUA-AIR and AIR) performed statistically better than
all other agents towards the end of training. In Seaquest, most of
the advised agents (except RA) took the lead over the NA agent
throughout the majority of training (other than the end of training)
with statistically significant differences.

In general, SUA-AIR and AIR performed in a similar fashion.
The differences in performance between SUA-AIR and AIR are
not statistically significant. Thus, the answer to RQ1 is inconclu-
sive. However, SUA-AIR does perform statistically better in various
phases of training (e.g. early, later phases) across different domains
(e.g. Pong, Q*bert), as compared to other agents (except AIR). A
table reporting the evaluation scores of the student agents across
all domains is shown in the archived version of this paper.

The advice taken and the reuse schedule are shown in Figure 4.
The number of advice reused (top row) for AIR is higher than SUA
and SUA-AIR in almost all steps. However, having a higher advice
reuse rate does not necessarily correspond to a better evaluation
performance. The amount of advice taken (bottom row) for SUA
and SUA-AIR is, in general, spread in an erratic fashion across the
environment steps. AIR seeks to consume most of the training
budget early on due to the higher uncertainty of the model of the
teacher. Whereas the proposed algorithms do a better job of asking
the teacher as and when needed. Thus, to answer RQ3, the proposed
algorithms do bring a change in the way advice is taken directly
from the teacher.

Evaluating Model Performance
To further investigate the similar evaluation performance of SUA-
AIR and AIR, we evaluate the accuracy of the model of teacher by
comparing the actions of the teacher and the model for the states
that the student visits. This evaluation is shown in Figure 5.

Figure 5: Percentage of correct actions taken by the model
of the teacher for SUA-AIR and AIR across training steps in
Pong averaged over 3 independent runs.

The percentage of correct actions taken by the model (y-axis), cor-
rect actions are actions that are the same as teacher’s, over the
course of millions of environment steps (x-axis) taken by the stu-
dent agent in Pong are reported. It is evident from Figure 5 that the

model of the teacher for SUA-AIR and AIR show similar accuracies
across training. Since AIR uses the model of the teacher to collect
advice, it is natural to see it slightly more accurate than the model
of SUA-AIR. However, this does not impact the evaluation perfor-
mance of SUA-AIR. We expected SUA-AIR to be better than AIR, but
it is not, and we intend to understand why in the future work. Due
to the similar performance of these models of the teacher, SUA and
SUA-AIR showed similar evaluation performance across all games.

7 CONCLUSION AND FUTUREWORK
We proposed two new methods, Student’s Uncertainty-driven Ad-
vising (SUA) and Student’s Uncertainty-driven Advising with Ad-
vice Imitation & Reuse (SUA-AIR). Both SUA and SUA-AIR use our
proposed method for computing student’s uncertainty to drive the
advice collection process. This uncertainty of the student agent
and the uncertainty of the model of teacher were then used for the
advice collection (in SUA and SUA-AIR) and advice reuse processes
(in SUA-AIR), respectively. The model of teacher was trained using
advice interaction data between the student and teacher agents.
Using this framework, the student agent can decide when to ask the
teacher agent for direct advice, or the model of teacher for advice
reuse, or when to follow the student’s own policy. We hoped that
SUA-AIR would outperform AIR, but we found that the differences
were not statistically significant. Moreover, the results show that us-
ing advice reuse, in action advising RL agents, provides a significant
boost in performance in different stages of training.

There are multiple avenues for future work. Currently, the stu-
dent agent in SUA-AIR considerably leverages the model of the
teacher for advice reuse after the teaching budget is consumed.
This can be further extended to add more flexibility where the stu-
dent agent could start asking the model of the teacher for reuse
during the consumption of the teaching budget to use the teach-
ing budget efficiently. Moreover, the decision to reuse advice in
SUA-AIR precedes the decision of the student agent. This can be
extended to account for the student agent’s uncertainty before
reusing advice from the model of the teacher. Furthermore, a more
thorough study could be conducted to test different advice reuse
schedules by modifying the initial reuse probability, final reuse
probability, and the total decaying steps. For example, the final
reuse probability could be set to 0 to allow the student agent to
become independent from the model of the teacher towards the
later stages of training. Lastly, we currently use fixed percentile
values to compute the uncertainties for the student agent and the
model of teacher. This could be better extended to follow a dynamic
schedule where the percentile values start closer to 50 in early train-
ing and then restricted to values closer to 100 in the later stages of
training. This change would be better suited for advice reuse since
a lower percentile value for the student agent’s uncertainty would
not capture the states for which the student is genuinely uncertain.
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