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ABSTRACT
Reinforcement Learning (RL) can benefit from a warm-start where
the agent is initialized with a pretrained behavioral policy. However,
when transitioning to RL updates, degradation in performance can
occur, which may compromise the agent’s safety. This degradation,
which constitutes an inability to properly utilize the pretrained
policy, is attributed to extrapolation error in the value function, a
result of high values being assigned to Out-Of-Distribution actions
not present in the behavioral policy’s data. We investigate why
the magnitude of degradation varies across policies and why the
policy fails to quickly return to behavioral performance. We present
visual confirmation of our analysis and draw comparisons to the
Offline RL setting which suffers from similar difficulties. We pro-
pose a novel method, Confidence Constrained Learning (CCL) for
Warm-Start RL, that reduces degradation by balancing between the
policy gradient and constrained learning according to a confidence
measure of the 𝑄-values. For the constrained learning component
we propose a novel objective, Positive𝑄-value Distance (CCL-PQD).
We investigate a variety of constraint-based methods that aim to
overcome the degradation, and find they constitute solutions for a
multi-objective optimization problem between maximimal perfor-
mance and miniminal degradation. Our results demonstrate that
hyperparameter tuning for CCL-PQD produces solutions on the
Pareto Front of this multi-objective problem, allowing the user to
balance between performance and tolerable compromises to the
agent’s safety.

KEYWORDS
Reinforcement Learning, Warm Start, Degradation, Extrapolation
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1 INTRODUCTION
Reinforcement Learning (RL) has demonstrated success in simulated
environments [4, 22, 28]. However, RL is challenging to implement
in real-life applications due to hard-to-define reward functions and
the high rate of exploration required in limited time [35]. Unfortu-
nately, RL agents struggle to understand the transition dynamics of
environments as intuitively as humans and have difficulty applying
prior knowledge in an effective manner.

For example, consider the classic problem in robotics where a
robot arm must pick up an object and place it in a goal location
while receiving feedback from a sparse reward function (i.e., 1
if the object was picked up and placed at the goal and 0 other-
wise). Modern RL algorithms fall short in this seemingly simple
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Figure 1: WSRL initialized with a ∼4K reward expert over
4 seeds in 4 environments. WSRL Degradation in average
episodic reward can be seen in the drop at 50K steps when
the policy is first updated. Degradation is less severe when𝑄-
net and/or buffer is loaded along with the actor (red, orange)
versus when only the actor is loaded (blue). Similar results
are found in the Fetch robotic environments.

task because large amounts of interaction are required to acquire a
positive feedback signal [2]. Furthermore, without a sophisticated
reward shaping function the probability of stumbling upon the goal
through naive exploration alone may be extremely small. Addi-
tionally, in real-world environments, where interactions are costly,
such a computationally-intensive algorithm becomes unrealistic.
Excessive exploration using actions with uncertain outcomes can
impact safety within the environment and inflict wear and tear on
the robot as well.

To overcome these issues, many approaches suggest leveraging
expert data. These involve using expert demonstrations in RL: to
guide and regularize exploration [8]; as ground-truth to recover
a reward function [1]; as examples in the replay buffer [32]; or
as targets for a Behavior Cloning loss. In the latter, this term is
combined with the RL objective [23], or with the RL objective and
L2 Regularization [13].

Another approach is Warm-Start RL (WSRL) [7, 34] where learn-
ing consists of initializing the agent with a pretrained behavioral
policy and improving upon its already achieved moderate perfor-
mance through RL. These initial policies can be created using Imita-
tion Learning on expert demonstrations or by obtaining a previouly
trained RL policy. This approach to incorporating expert knowledge
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into RL can overcome the problem of sparse rewards, increase the
sample efficiency, reduce the training time, and improve the safety
of RL policies. Initializing RL with a pretrained behavioral policy
should also ensure better and more robust performance of the agent
and allow for safe widespread deployment of self-learning agents
in varied and dynamic environments.

In our problem formulation, we assume no previous knowledge
of the value function and are required to train a Neural Network
to approximate it from scratch. In practice, however, we find that
initializing off-policy algorithms like DDPG [21], SAC [15], or TD3
[12] with a policy that achieves moderate-to-expert performance
results in an initial severe degradation of the policy. We refer to this
phenomenon as WSRL Degradation. This problem is intrinsically
linked to known complications associated with Offline RL, first
described in [10]. Our proposed method to overcome WSRL Degra-
dation is inspired by some of the recent Offline RL algorithms: Batch-
Constrained [11], Behavior-Regularized [33], Rerouted-Behavior-
Improvement [26], Policy-Constraint [20], KL-Control [17], and
Critic Regularization [18]. Like our solution, these algorithms share
the core idea that the learned policy should be constrained to the
behavioral policy.

The contributions of our paper are as follows:

(1) We demonstrate thatWSRL Degradation is a common phe-
nomenon by running WSRL across several environments
and experts that attain various levels of reward.

(2) We analyze why degradation occurs, where it is more severe,
and pinpoint the specific causes.

(3) We implement several constraint methods, including Offline
RL and Online RL solutions and find that all methods intro-
duce a trade-off between degradation and final performance.

(4) We propose CCL-PQD which constrains updates based on a
confidence measure of the value function. We demonstrate
that hyperparameter selection results in solutions that lie on
the Pareto Front that balances maximimal performance and
miniminal initial drop.

2 BACKGROUND
Imitation Learning (IL) involves producing policies that imitate an
expert by training an agent on trajectory roll-outs of the expert.
Various IL algorithms have been developed: Generative Adversarial
Imitation Learning (GAIL) [16] which trains a discriminator to
distinguish between expert actions and a generator that creates
new expert actions; Inverse Reinforcement Learning (IRL) [1] that
learns a reward function from expert demonstrations to train an
RL agent; and Behaviour Cloning (BC) where supervised learning
trains a policy to output actions close to the expert’s in that state.

Our experiments employ BC since it is effective, and simpler be-
cause it does not need online interaction with the environment (un-
like GAIL and IRL). Deterministic policies 𝜋 with parameters𝜃 clone
expert behavior by sampling 𝑛 state-action pairs (𝑠, 𝑎) from the ex-
pert policy’s replay buffer 𝐵𝐸 and then updating the parameters 𝜃
with the following objective: min𝜃 1

𝑛

∑
(𝑠,𝑎)∼𝐵𝐸 (∥𝜋𝜃 (𝑠) − 𝑎 + 𝜖 ∥)
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where 𝜖 ∼ 𝑐𝑙𝑖𝑝 (N (0, 𝜎),−𝑐, 𝑐) for the environment action range
[−𝑐, 𝑐]. We assume a stochastic robust behavioral policy and 𝜖-noise
acts as the effective ’variance’ of the distribution.

Reinforcement Learning involves training and improving an
agent’s performance in an environment modelled as a Markov
Decision Process (MDP). 𝑄-Learning is an RL method that trains
a value function 𝑄𝜋 (𝑠, 𝑎) to output the average expected return
𝑄𝜋 (𝑠, 𝑎) = 𝐸𝜏∼𝜋 [𝑅(𝜏) |𝑠0 = 𝑠, 𝑎0 = 𝑎] of a state while following
a policy 𝜋 . The 𝑄-function can be trained with TD-Learning by
iteratively minimizing the Bellman Backup |𝑄 − T𝑄 | where the
target T𝑄 (𝑠, 𝑎) := 𝑅(𝑠, 𝑎) + 𝛾𝑄 (𝑠 ′, 𝜋 (𝑠 ′)).

Deep Deterministic Policy Gradient (DDPG) [21] is an RL algo-
rithm for continuous action environments that uses a deep neural
network to learn the deterministic policy 𝜋 with parameters 𝜃
and the state-action value function 𝑄 with parameters 𝜙 . At each
step, trajectories (𝑠, 𝑎, 𝑟, 𝑠 ′) are sampled from the replay buffer and
used to update the 𝑄-net with 𝑄-Learning and improve the pol-
icy by optimizing max𝜃 E

[
𝑄𝜙 (𝑠, 𝜋𝜃 (𝑠))

]
. To avoid the problem of

moving targets, network updates are lagged by a proportion 𝜏 s.t.
𝜃𝑡𝑎𝑟𝑔𝑒𝑡 ← 𝜏𝜃𝑡𝑎𝑟𝑔𝑒𝑡 + (1 − 𝜏)𝜃 .

Twin Delayed DDPG (TD3) is a modification of DDPG that learns
two 𝑄-nets to minimize overestimation bias [12]. Other variants of
RL include: introducing an entropy term to minimize over-fitting
[15], restricting policy updates to a trusted region [29, 30], and
running multiple actors in parallel to maximize exploration [27].

3 ANALYZINGWSRL DEGRADATION
We demonstrate WSRL Degradation in four continuous control
environments: Ant-v3, HalfCheetah-v3, Hopper-v3, and Humanoid-
v3 [5]. We begin by training a TD3 agent and halting once the agent
achieves a set level of performance but with room for improvement.
We then copy the policy into a new TD3 agent without the value
function, roll out 50K steps to initially train the 𝑄-net, and then
begin updating the policy. We observe the degradation after the
policy updates begin [fig. 1]. This process of isolating the RL policy
by discarding the value function and replay buffer simulates the
scenario where there is access to an expert policy through IL. We
use TD3 as the off-policy RL algorithm for our experiments but
other methods built on the same fundamental core, like SAC and
DDPG, exhibit similar degradation.

While the policy ultimately recovers, this degradation is still un-
desirable because ideally the agent would maintain its performance
to avoid damage to itself and the surrounding environment. We
note that for some policies, there is no large dip in performance.
For example, when testing a range of various reward experts, runs
initialized with ∼2K discounted reward experts in the HalfCheetah
environment often experience lower degradation [fig. 2]. However,
for the majority of runs in most environments there is severeWSRL
Degradation.

We also observe that it takes many iterations before the policy
recovers to the original behavioral performance. However, WSRL
does converge faster than vanilla off-policy RL [fig. 3]. Finally, we
do not observe the same degradation in Warm-Start on-policy RL
using methods such as VPG [31], PPO [9], and PPG [30].

To better understand WSRL Degradation we need to address
three key questions:

(1) What causes the initial degradation?
(2) Why is the degradation smaller for some lower reward be-

havioral policies?



Figure 2: WSOPRL in the HalfCheetah environment where
∼2K reward initialization (red, dotted) has lower degradation.

Figure 3: WSOPRL learns faster than vanilla Off-Policy RL

(3) Why does it take so long for the agent to recover to the initial
behavioral performance?

3.1 Comparing WSRL to Offline RL
Results from WSRL where the 𝑄-net is loaded compared to vanilla
WSRL[fig. 1] indicate that the degradation of the policy is related to
the initial training of the𝑄-net. Training the𝑄-net on an essentially
static dataset (because the policy is not updated) is reminiscent of
the Offline RL setting; we compare the two and identify common
issues and solutions. In Offline RL, an agent is trained using a buffer
of offline trajectories (produced by a behavioral agent) while being
unable to interact with the environment. Rather than simply cloning
the actions with highest expected discounted reward, the agent is
expected to optimize the policy by maximizing a value function
trained on this offline dataset. It is observed that off-policy RL
algorithms fail when deployed on static datasets without online
interaction. Two key papers, BCQ [10] and BEAR [19], provide
explanations for the inability of off-policy RL to learn on a static
dataset offline and propose solutions to overcoming the problem.

3.2 Extrapolation Error
Both BCQ and BEAR identify Extrapolation Error (EE) as the source
of off-policy RL’s inability to learn offline [19] [11]. EE is described
as the error induced by the mismatch between state-action pairs in
the behavioral dataset and state-action pairs that have no reward
data. We refer to the latter as Out-of-Distribution (OOD) data. The
value function 𝑄 (𝑠, 𝑎) where action 𝑎 was never taken should be
undefined. However, because there is no notion of undefined values
in value functions modelled as a neural network approximators,
𝑄 (𝑠, 𝑎) outputs defined values even though there are no data for
such state-action pairs. These errant values negatively impact the
off-policy RL algorithm, biasing the model when calculating the

Figure 4: Top: Output of𝑄𝑁𝐿 on behavioral actions (green) vs.
random actions (blue) over one sampled episode. Both classes
of actions tend to have large 𝑄-values under the same state
distribution despite the agent never taking these random
actions. Bottom: Output of 𝑄𝛽 on behavioral actions (green)
vs. random actions (blue) over one sampled episode. Similar
to the output of 𝑄𝑁𝐿 , both classes of actions tend to have
large 𝑄-values under the same state distribution.

Bellman-Backup |𝑄 − T𝑄 | and the policy gradient ∇𝑎𝑄 (𝑠, 𝑎). We
attribute the error to OOD actions rather than OOD states, because
all network updates use fixed states 𝑠𝛽 (i.e., only states seen in the
behavioral policy data).

3.3 Analyzing Extrapolation Error in
Warm-Start RL

InWSRL, the behavioral policy is pre-loaded but the𝑄-net (denoted
𝑄𝑁𝐿) is not loaded and is instead initialized with random param-
eters and then pre-trained offline on behavioral data during the
initial phase. We analyze1 𝑄𝑁𝐿 ’s performance on a static dataset by
comparing its output on behavioral actions 𝑎𝛽 against its output
on random actions 𝑎𝑟 under the state distribution induced by the
behavioral policy 𝜋𝛽 over one sampled episode.

We can see that random actions generally have unusually high
𝑄-values [fig. 4, top] suggesting that the 𝑄-net extrapolates high
values to most actions, even if they have never been taken. This
generalization can be attributed to state 𝑠𝛽 being consistent across
inputs𝑄𝑁𝐿 (𝑠𝛽 , 𝑎𝛽 ) and𝑄𝑁𝐿 (𝑠𝛽 , 𝑎𝑟 ). This generalization can cause
problems during training and is the source of EE. [24] explain that
EE is a common phenomenon that affects Neural Networks citing
[3] who describe how an insufficient data distribution can drive
over-generalization.

1Our analysis of WSRL uses a HalfCheetah expert of ∼10K cumulative episodic reward
where WSRL Degradation is most severe; however, results are consistent for ∼4K
HalfCheetah reward experts as well as other environments.



Figure 5: Top: 𝑄𝑁𝐿 (𝑠𝛽 , 𝑎𝛽 ) (circled, center) vs. 𝑄𝑁𝐿 (𝑠𝛽 , 𝑎𝛽 + 𝜖),
where the behavioral policy action has lower 𝑄-value than
some OOD actions (shown as lighter-colored points on the
right). Bottom: 𝑄𝛽 (𝑠𝛽 , 𝑎𝛽 ) (circled, center) vs. 𝑄𝛽 (𝑠𝛽 , 𝑎𝛽 + 𝜖)
where the behavioral policy action still has slightly lower
𝑄-value than some OOD actions (to the left).

As a baseline, we visualize [fig. 4, bottom] the properly trained
original behavioral 𝑄𝛽 ’s performance on a static dataset by com-
paring its output on behavioral actions 𝑎𝛽 against its output on
random actions 𝑎𝑟 under the same state distribution induced by the
behavioral policy 𝜋𝛽 over one sampled episode.

To visualize EE in 𝑄𝑁𝐿 we sample a fixed behavioral state 𝑠𝛽
with action 𝑎𝛽 , and plot the output 𝑄𝑁𝐿 (𝑠𝛽 , 𝑎𝛽 + 𝜖) where 𝜖 ∼
𝑈 (0, 1). Actions are reduced from a six-dimensional vector to two
dimensions through Principal Component Analysis (PCA). These
results [fig. 5, top] demonstrate EEwhere𝑄𝑁𝐿 assigns higher values
for manyOOD actions in a given state than for the behavioral action.
Ultimately, the policy will be updated in the direction of those OOD
actions with higher 𝑄-values.

As a baseline, we fix the behavioral state and plot the output
𝑄𝛽 (𝑠𝛽 , 𝑎𝛽 + 𝜖) [fig. 5, bottom]. We first remark that the output
range is lower for 𝑄𝑁𝐿 and rises as training continues but it is
the relative values that are the most important. We then note the
presence of high 𝑄-values in OOD actions for both 𝑄𝑁𝐿 and 𝑄𝛽 .
This similarity suggests that EE should also be present in the loaded
behavioral value function𝑄𝛽 . Why then does training with𝑄𝛽 lead
to stable policy updates whereas𝑄𝑁𝐿 results in severe degeneration
in policy performance?

We analyze the relative values of 𝑄𝑁𝐿 (𝑠𝛽 , 𝑎𝛽 ) and 𝑄𝛽 (𝑠𝛽 , 𝑎𝛽 )
compared to 𝑄𝑁𝐿 (𝑠𝛽 , 𝑎𝛽 + 𝜖) and 𝑄𝛽 (𝑠𝛽 , 𝑎𝛽 + 𝜖). We find that
𝑄𝑁𝐿 (𝑠𝛽 , 𝑎𝛽 ) usually plots near the center of the 𝑄𝑁𝐿 (𝑠𝛽 , 𝑎𝛽 + 𝜖)
distribution [fig. 6, top] (note that the PCA graphs in fig. 5 corre-
sponds to the left-most histograms in fig. 6). In contrast,𝑄𝛽 (𝑠𝛽 , 𝑎𝛽 )
is generally higher than most 𝑄𝛽 (𝑠𝛽 , 𝑎𝛽 + 𝜖) [fig. 6, bottom]. This
difference is also manifest when loading a behavioral policy of ∼4K
cumulative reward where 𝑄𝑁𝐿 (𝑠𝛽 , 𝑎𝛽 ) is in the 46th percentile on
average versus 𝑄𝛽 (𝑠𝛽 , 𝑎𝛽 ) in the 66th percentile on average.

Figure 6: Top: Histogram (top left) corresponding to PCA
graph [fig. 5, bottom] with histograms of 3 other randomly
sampled states. 𝑄𝑁𝐿 (𝑠𝛽 , 𝑎𝛽 ) is in the 52nd percentile on aver-
age and is not maximal compared to 𝑄𝑁𝐿 (𝑠𝛽 , 𝑎𝛽 + 𝜖). Bottom:
Histogram (bottom left) corresponding to PCA graph [fig. 5,
top] with histograms of 3 other randomly sampled states.
𝑄𝛽 (𝑠𝛽 , 𝑎𝛽 ) are in the 95th percentile on average and are max-
imal compared to 𝑄𝛽 (𝑠𝛽 , 𝑎𝛽 + 𝜖).

That𝑄𝑁𝐿 (𝑠𝛽 , 𝑎𝛽 ) plots in the center of the distribution indicates
that the value-function is not well trained on OOD actions and
assigns them similar values that are normally distributed. In con-
trast, 𝑄𝛽 clusters the values of most OOD actions below that of 𝑎𝛽
reflecting higher knowledge of the surrounding action space likely
due to 𝑄𝛽 having been trained on a wide range of actions in the
same state distribution, as well as on actions in sub-optimal states.
𝑄𝛽 ’s wider range of knowledge mitigates EE and results in a policy
gradient ∇𝜃𝑄𝛽 (𝑠, 𝜋𝜃 (𝑠)) that is more robust.

We can now answer our first question as to why the policy
initially degrades. Due to OOD generalization, the 𝑄-net returns
higher values for some actions never taken by the partially trained
behavioral policy, i.e., 𝑄 (𝑠𝛽 , 𝑎𝛽 + 𝜖𝑎𝑐𝑡𝑖𝑜𝑛) > 𝑄 (𝑠𝛽 , 𝑎𝛽 ) for those
actions. The policy gradient ∇𝜃𝑄𝜙 (𝑠, 𝜋𝜃 (𝑠)) will therefore point
towards these OOD actions and the policy will be updated to take
unknown actions and degrade.

3.4 Gradient Error due to Extrapolation Error

Figure 7: Warm-Start RL ran over 5 seeds, ∼ 10𝐾 vs. ∼ 4𝐾 re-
ward expert. For the ∼ 10𝐾 Expert, the norm of the gradients
is higher and the degradation is more severe than for the
∼ 4𝐾 Expert.

To answer the second question as to why the degradation is
smaller for some lower reward behavioral policies we compare the



norm of the gradients | |∇𝑎𝑄 (𝑠, 𝑎) | | of WSRL for ∼4K versus ∼10K
cumulative reward in the HalfCheetah environment. When training
the 𝑄-net offline we observe that the average norm of the gradient
for the higher reward expert is larger than that of the lower reward
expert [fig. 7]. As 𝑄 (𝑠, 𝑎) is trained on higher reward trajectories,
the gradients ∇𝑄 (𝑠, 𝑎) will be larger. Formally, for 𝑐 > 1, if

𝑅10𝐾 =

𝑇∑︁
𝑖=𝑡

𝛾𝑖−𝑡𝑟10𝐾 = 𝑐 · 𝑅4𝐾 > 𝑅4𝐾 =

𝑇∑︁
𝑖=𝑡

𝛾𝑖−𝑡𝑟4𝐾 (1)

and the 𝑄-function is trained to output higher values for (𝑠, 𝑎) ∼ 𝜏
𝑄𝜋10𝐾 (𝑠, 𝑎) = 𝐸

𝜏∼𝜋10𝐾
[𝑅10𝐾 (𝜏)] = 𝑐 ·𝑄𝜋4𝐾 (𝑠, 𝑎) >

𝑄𝜋4𝐾 (𝑠, 𝑎) = 𝐸
𝜏∼𝜋4𝐾

[𝑅4𝐾 (𝜏)]
(2)

and the inequality holds under differentiation and under the norm
which is also positive:

| |∇𝑄𝜋10𝐾 (𝑠, 𝑎) | | = 𝑐 · | |∇𝑄𝜋4𝐾 (𝑠, 𝑎) | | > | |∇𝑄𝜋4𝐾 (𝑠, 𝑎) | | (3)

This explains why the degradation is less severe for the lower re-
ward expert since the lower gradient is itself a constraint on the
agent to not take large update steps. We can scale down the policy
gradient to some threshold by the norm s.t. for 𝑔 = ∇𝜃𝑄𝜙 (𝑠, 𝜋𝜃 (𝑠)) :
if ∥𝑔∥ > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 : then 𝑔 ← 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ·𝑔

| |𝑔 | | . This ensures that
the norm of the updated gradient will equal the threshold since 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ·𝑔| |𝑔 | |

 = 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑
| |𝑔 | | · | |𝑔| | = 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 . This results in re-

Figure 8: Scaling the policy gradient to lower norms reduces
the degradation for both ∼ 4𝐾 reward (left) and ∼ 10𝐾 reward
(right) Warm-Start RL in the HalfCheetah environment.

duced degradation [fig. 8], though the improvement in perfor-
mance over time is proportional to the threshold of the gradient
clipping. Scaling the gradient by lowering the learning rate 𝜂 s.t.
𝜃𝑡+1 = 𝜃𝑡 + 𝜂 · ∇𝜃𝑡𝑄𝜙 (𝑠, 𝜋𝜃𝑡 (𝑠)) also results in less degradation.
These methods are effective at overcoming degradation, but come
with the trade-off of slower learning and require tuning through
trial-and-error.

To answer the third question as to why it takes so long for the
agent to recover to its original performance, we freeze updates on
𝑄𝑁𝐿 after the Offline training phase and update the policy from 𝜋𝛽
to an updated version 𝜋𝑈 by training for one epoch. We examine
the output of𝑄𝑁𝐿 over a sampled episode of: behavioral states and
actions (𝑠𝛽 , 𝜋𝛽 (𝑠𝛽 )); behavioral states and updated policy actions
(𝑠𝛽 , 𝜋𝑈 (𝑠𝛽 )); updated states along with actions sampled from a
separate behavioral trajectory (𝑠𝑈 , 𝜋𝛽 (𝑠𝛽 )); and updated policy
states and actions (𝑠𝑈 , 𝜋𝑈 (𝑠𝑈 )).

Figure 9: Histogram of the output of frozen 𝑄𝑁𝐿 .

We first observe that only behavioral state input to the 𝑄-net re-
sults in EE [fig. 9, right] in contrast to behavioral action input which
is assigned significantly lower value [fig. 9, left]. We then note the
large magnitude of the update by considering that the same 𝑄-net
used for updating the policy gave lower evaluation for policies af-
ter being updated, i.e., 𝑄 (𝑠𝛽 , 𝑎𝛽 ) > 𝑄 (𝑠𝛽 , 𝜋𝑈=𝛽+𝜂 ·∇𝑎𝛽𝑄 (𝑠𝛽 ,𝑎𝛽 ) (𝑠𝛽 )).
This indicates that the update is so large that it shifts the policy
OOD, as confirmed by the 𝑄-net assigning these actions larger
values than if the policy had remained in the behavioral state distri-
bution. Instead, the values assigned are closer to the default random
values in the range [−1, 1] used to initialize the 𝑄-net. Once the
policy has radically deviated from the behavioral state distribution
to one where it has no prior knowledge, the policy gradient will
no longer be a reliable indicator. The agent will have no data re-
garding actions that can return it to the behavioral distribution and
the probability of re-encountering a behavioral state is low due
to the high dimensionality of the state space. To recover fully, the
policy will have to explore and learn 𝑄-values for the new state
distribution in order to find a reliable gradient towards a better
policy. Some gradient signal from behavioral policy data is retained
however, because performance converges faster than training from
scratch.

3.5 Bootstrapping Error due to Extrapolation
Error

The inability to recover behavioral performance is also related in
part to why off-policy algorithms fail to learn offline. We follow [20]
who explain that the issue lies with the calculation of the Bellman
Backup |𝑄 − T𝑄 |. When training the𝑄-net offline, the update step
utilizes an untrained policy’s predicted action 𝜋 (𝑠 ′

𝛽
) to bootstrap

onto 𝑄 (𝑠 ′
𝛽
, 𝜋 (𝑠 ′

𝛽
)) that is never directly updated via the Bellman

Backup since 𝜋 is a randomly initialized policy that returns an ac-
tion not in the behavioral distribution. As demonstrated in our work,
𝑄 (𝑠 ′

𝛽
, 𝜋 (𝑠 ′

𝛽
)) may be assigned a value close to 𝑄 (𝑠 ′

𝛽
, 𝑎′
𝛽
)) where 𝑎′

𝛽

is the action actually taken in the next state. However, maximizing
over an average𝑄-value for 𝑠 ′

𝛽
without discriminating between par-

ticular actions will result in a policy gradient ∇𝑎𝑄 (𝑠 ′𝛽 , 𝑎 = 𝜋 (𝑠 ′
𝛽
))

that updates the policy to take erroneous actions that can only
be corrected through online trial and reward feedback, a option
unavailable in off-policy RL.

WSRL also contains an offline phase where the 𝑄-net is trained
on behavioral trajectories (with added exploration noise) before the
policy is updated. However, Offline RL is initialized with a random



policy whereas WSRL is initialized with a behavioral policy where
𝜋 (𝑠 ′

𝛽
) = 𝑎′

𝛽
and therefore the value 𝑄 (𝑠 ′

𝛽
, 𝜋𝛽 (𝑠 ′𝛽 )) can properly

propagate through the Bellman Backup. Where Bootstrapping Er-
ror comes into play is in the online phase once the state distribution
has already shifted such that 𝑠 ′ is no longer in the behavioral distri-
bution resulting in a bootstrapped target 𝑄 (𝑠 ′, 𝜋 (𝑠 ′)) that has not
yet been updated through reward feedback. This generates a poor
𝑄-net estimate and therefore an unreliable policy gradient that pre-
vents the policy from quickly returning to behavioral performance.
Learning the true values of OOD trajectories is the only way of
returning to better performance, but this is constrained by the low
joint probability of selecting an OOD trajectory from the buffer
given that each prior trajectory has been sampled and propagated
via Bellman Backup.

4 OVERCOMINGWSRL DEGRADATION
After analyzing it’s source, we now aim to develop methods that
reduce WSRL Degradation and as a result guarantee the safety and
reliability of the agent. To achieve this we limit the probability
of the policy entering a shifted state distribution which reduces
the effect of EE by preventing the policy from becoming stranded
in a region where it has no prior knowledge and cannot return
to the behavioral distribution. We build upon solutions proposed
for Offline RL, which typically constrain agent updates to keep
the policy close to the behavioral policy. This can be achieved in
two ways: directly constraining the policy or introducing a penalty
during updates.

4.1 Offline RL Constraint Methods
One implementation of policy constraint is an agent that learns a
layer 𝜉𝜃 that perturbs behavioral actions and is constrained within
some bounds [−𝛼, 𝛼]. This is the approach in BCQ [10] where the
policy update is calculated as:

max
𝜃

𝐸
[
𝑄𝜙 (𝑠, 𝑎𝛽 + 𝜉𝜃 (𝑠, 𝑎𝛽 ))

]
(4)

Another approach is to constrain the policy updates:

max
𝜃

𝐸
[
𝑄𝜙 (𝑠, 𝜋𝜃 (𝑠))

]
𝑠 .𝑡 .[𝐷 (𝑎𝛽 , 𝜋𝜃 (𝑠))] ≤ 𝜖 (5)

where 𝐷 is a distribution distance metric. This method is used in
BEAR [19] where 𝐷 is Kernel-MMD [14].

4.2 Offline RL Penalty Methods
Another approach is to constrain updates by introducing a penalty
on values that lie further from the behavioral distribution. This
penalty, represented as a distribution distance 𝐷 between the agent
and behavioral policy, can be introduced in the 𝑄-net update by
minimizing 𝜙 over:

E
[���𝑟 + 𝛾 (

𝑄𝜙′ (𝑠 ′, 𝑎′𝛽 ) − 𝛼𝐷
(
𝑎′
𝛽
, 𝜋𝜃 (𝑠 ′)

))
−𝑄𝜙 (𝑠, 𝑎𝛽 )

���2]
or in the policy update objective:

max
𝜃

𝐸
[
𝑄𝜙 (𝑠, 𝜋𝜃 (𝑠)) − 𝛼𝐷 (𝑎𝛽 , 𝜋𝜃 (𝑠)

)
] (6)

This method is used in [17] and [33] which define 𝐷 as either KL-
divergence, Kernel-MMD, or Wasserstein Distance.

4.3 Online RL Constraint Methods
As a baseline, we implement online versions of Offline RL con-
straint and penalty methods across a range of hyperparameter val-
ues 𝛼 . These include a BC penalty on the policy update[fig. 10]; with
a learned perturbation policy; and with a BC penalty on the 𝑄-net
update. We found degradation was significantly reduced in the first
two methods but not in the latter for any 𝛼 ∈ [3𝑒-9, 3𝑒-8, ..., 3𝑒-1].
Lowering the learning rate or reducing the gradient are other ef-
fective online constraint methods. These methods, however, are
may still be subject to degradation, require arbitrary parameters
for tuning, and result in slower learning that is inversely related
to the constraint. In addition, WSRL differs from Offline RL in that

Figure 10: BC Policy Penalty for 4K (left) and 10K (right)
experts in the HalfCheetah environment.

the policy can interact with the environment and improve over
the behavioral policy. Rather than simply implementing an online
version of an Offline RL algorithm that maintains a constant con-
straint, we prefer a method that slowly relaxes the constraint over
time eventually reducing to vanilla off-policy RL.

5 CONFIDENCE CONSTRAINED LEARNING
FORWARM-START OFF-POLICY RL

We propose Confidence Constrained Learning (CCL) for WSRL
which uses a constrained Offline RL algorithm as a basis, and a
scheduler that relaxes the constraint over time according to an
appropriate metric, ultimately transitioning to vanilla off-policy RL.
For our base constrained algorithm we selected a form of Policy
Penalty defined as:

𝛼𝑄 (𝑠, 𝜋 (𝑠)) + (1 − 𝛼)𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑎𝛽 , 𝑎) (7)

where 𝛼 is the constraint factor that facilitates interpolation be-
tween the vanilla policy gradient (𝛼 = 1), where degradation com-
promises the agent’s safety, and imitating the behavioral policy
(𝛼 = 0), where safety is guaranteed but performance does not
increase.

The metric used by the scheduler to update 𝛼 is a confidence
measure of the 𝑄-net corresponding to the EE that allows for large
policy updates when the risk of EE is low and constrains the update
otherwise. This confidence measure 𝑃 is the percentile of the 𝑄-
net output on sampled trajectories 𝑄 (𝑠, 𝑎) compared to 𝑄 (𝑠, 𝑎 + 𝜖)
defined as:

𝑃 =
𝑁 (𝑄 (𝑠, 𝑎) > 𝑄 (𝑠, 𝑎 + 𝜖))

𝑁 (𝑄 (𝑠, 𝑎 + 𝜖)) (8)

We map the percentile, from the values between completely
random and full certainty [0.5, 1], to the range of 𝛼 values between



TABLE I: Comparing CCL-PQD to Warm-Start and vanilla TD3 in HalfCheetah with regards to safety and performance.

Env Method Expert 𝛼- Min Max Avg VaR VaR VaR CVaR CVaR CVaR
Rule Reward 𝑠𝑡𝑎𝑟𝑡 (95) (99) (99.9) (95) (99) (99.9)

Half TD3 0 -576.9 11171.0 7478.7 -4.3 -55.4 -156.0 -44.3 -155.5 -779.9
Cheetah WS-TD3 4K -589.2 9625.8 7180.2 -5.6 -49.7 -1611.2 -189.1 -886.0 -8056.2

CCL-PQD 4K 1e-2 2689.8 8520.6 6193.6 -4.2 -7.4 -8.6 -6.6 -11.9 -42.8

Half TD3 0 -576.9 11171.0 7478.7 -4.3 -55.4 -156.0 -44.3 -155.5 -779.9
Cheetah WS-TD3 10K -1084.4 11381.3 8864.9 -12.0 -41.9 -1775.1 -206.8 -959.3 -8875.5

CCL-PQD 10K 1e-4 7393.4 10875.4 10168.6 -3.5 -4.7 -5.3 -4.7 -7.6 -26.7

the minimal safe policy penalty and unconstrained vanilla policy
gradient [𝛼_𝑠𝑡𝑎𝑟𝑡, 1]. We found that a logarithmic scale is preferable
for the mapping where 𝛼 ranges from 10[log10 (𝛼_𝑠𝑡𝑎𝑟𝑡 ),0] .

5.1 Positive 𝑄-value Distance
There are many candidates when choosing a distance function;
we define the Positive 𝑄-value Distance (PQD) which modifies an
auxiliary distance function 𝐷 (𝑎𝛽 , 𝑎). The standard update vector
for the distance is:

v = -∇𝑎𝐷 (𝑎𝛽 , 𝑎) · ∇𝜙𝜋𝜙 (𝑎 |𝑠) (9)

For better results we want to reduce the distance to actions with the
highest 𝑄-return and ignore poor actions produced by exploration.
In particular, we utilize the components of the distance function
gradient that do not decrease the average 𝑄-value of the actions
and therefore our update will be v = q𝑃𝑄𝐷 · ∇𝜙𝜋𝜙 (𝑎 |𝑠) where

q𝑃𝑄𝐷 =

{
∇𝑎𝐷 (𝑎𝛽 , 𝑎) ⊥ -∇𝑎𝑄𝜋𝜃 (𝑠, 𝑎) ∇𝑎𝐷 · -∇𝑎𝑄 ≤ 0

∇𝑎𝐷 (𝑎𝛽 , 𝑎) ∇𝑎𝐷 · -∇𝑎𝑄 > 0 (10)

where ∇𝑎𝐷 · -∇𝑎𝑄 is a shorthand for ∇𝑎𝐷 (𝑎𝛽 , 𝑎) · -∇𝑎𝑄𝜋𝜃 (𝑠, 𝑎) and
∇𝑎𝐷 (𝑎𝛽 , 𝑎) ⊥ -∇𝑎𝑄𝜋𝜃 (𝑠, 𝑎) =

∇𝑎𝐷 (𝑎𝛽 , 𝑎) −
-∇𝑎𝑄𝜋𝜃 (𝑠, 𝑎)
∥-∇𝑎𝑄𝜋𝜃 (𝑠, 𝑎)∥

2∇𝑎𝐷 (𝑎𝛽 , 𝑎) · -∇𝑎𝑄
𝜋
𝜃
(𝑠, 𝑎) (11)

Intuitively, where ∇𝑎𝐷 · -∇𝑎𝑄 > 0, the distance gradient overlaps
with the policy gradient in the same direction for those components
of 𝑝𝑟𝑜 𝑗-∇𝑎𝑄∇𝑎𝐷 . This follows from the scalar projection where
( ®𝑎 · ®𝑏)/| | ®𝑏 | |2 > 0 ⇐⇒ ®𝑎 · ®𝑏 > 0. This implies that following
the distance gradient for those components will not decrease the
𝑄-value average of the policy. However, following distance gradient
components s.t. ∇𝑎𝐷 · -∇𝑎𝑄 ≤ 0, will decrease the𝑄-value average
of the policy. Therefore, we follow the vector rejection ∇𝑎𝐷 onto
-∇𝑎𝑄 defined as ®𝑎 − (®𝑎 · ®𝑏)/| | ®𝑏 | |2 · ®𝑏 which restricts the components
of the distance gradient to those that decrease the distance but do
not decrease the 𝑄-value average.

When integrating PQD into CCL we modify our original objec-
tive such that the final update vector is:

(1 − 𝛼)q𝑃𝑄𝐷 + 𝛼q𝑃𝑄𝐷 · ∇𝜙𝜋𝜙 (𝑎 |𝑠) (12)

where q𝑃𝑄𝐷 = ∇𝑎𝑄 (𝑠, 𝑎) − q𝑃𝑄𝐷 , the remaining policy gradient.

6 CCL-PQD EVALUATION
We evaluate CCL with PQD as the primary distance function (CCL-
PQD) and BC as the auxiliary distance function, and assess CCL-
PQD performance with respect to safety and performance. We

compare results against vanilla TD3 and its Warm-Start counter-
part in [fig. 11] and [Table I]. A higher Min value indicates less
degradation and a safer agent, and a higher Max value indicates
better overall performance. We also evaluate Value at Risk (VaR)
and Conditional Value at Risk (CVaR) as additional safety metrics
as proposed in [6]. We find CCL-PQD to be a powerful method
for maintaining agent safety while increasing performance since it
obtains the best results for VaR, CVaR, and highest minimal drop
(see bolded values) while remaining competitive with the other
methods in terms of average and maximum reward.

While CCL-PQD does not always achieve the highest maximum
and average reward, it still eliminates or significantly reduces degra-
dation. In constraint methods, it is common to expect a trade-off

Figure 11: CCL-PQD compared to Warm-Start and vanilla
TD3. CCL-PQD minimizes degradation and maintains safety
while increasing performance.



Figure 12: Comparing constraint methods with various constraint factors 𝛼 . CCL-PQD often spans the Pareto Front.

between degradation and learning over time. Selecting a constraint
method and tuning its constraint factor translates to solving a multi-
objective optimization problem where the set of best solutions lie
on the Pareto Front that best balances maximimal performance
and miniminal initial drop [fig. 12]. Our results, from many en-
vironments, indicate that CCL-PQD often spans the Pareto Front
across the possible values for the constraint factor, ensuring that
the permitted risk to the agent’s safety in favor of performance
gains is optimal. Other constraint methods usually plot behind the
Pareto Front with Warm-Start on-policy RL (PPO) producing less
degradation but lower final performance and Warm-Start off-policy
RL resulting in more degradation but higher performance in the
long run. We note that BC Policy Penalty appears at times on the
Pareto Front but not as consistently as CCL-PQD. We also observe
in our experiments in the Fetch Push environment that solutions
do not produce a visible Pareto Front since CCL-PQD is optimal
for both objectives. Finally, our results demonstrate that CCL-PQD
is an effective method for improving upon behavioral policies in a
safe manner without degradation, not only in dense reward envi-
ronments such as HalfCheetah and Humanoid, but in sparse reward
environments like Fetch as well.

7 IMPLEMENTATION
Links to the code (including hyperparameter choice), video demon-
stration, and supplementary material can be found after the bibli-
ography. Included in our code is a implementation of our agent in
the continuous Lunar-Lander environment using Cogment [25], a
framework built for continuously training agents with human feed-
back. Specifically, we ran human-in-the-loop RL using CCL-PQD
as the objective function in order to speed up training by imitating

human-generated corrective trajectories and improve upon their
performance with reduced risk of degradation due to EE.

8 FUTUREWORK
An exciting future direction would involve relaxing the constraint
using metrics besides the percentile to measure the confidence of
the𝑄-net. Various methods such as Ensembles, Bayesian Networks,
and Monte Carlo Dropout have been used to reduce EE in off-policy
learning and in theory are applicable here as well. Also worthy of
investigation is how effective our method is in overcoming the sim-
to-real gap by initializing a real-world agent with IL and updating
with CCL-PQD. Such experiments can be further extended into the
multi-agent domain where multiple uniformly-initialized agents
are deployed in diverse environments and updated with CCL-PQD.

9 CONCLUSION
The goal of our work was to study Warm-Start RL Degradation,
analyze its root cause, and develop a solution to overcome it in
various environments. We ascribed this degradation to Extrapo-
lation Error, demonstrated why degradation is worse for higher
reward environments due to Gradient Error, and explained why
the policy fails to return quickly to behavioral performance due
to Bootstrapping Error and distributional shift. We proposed CCL
combined with a novel metric PQD that does not always achieve the
highest reward but eliminates or significantly reduces degradation,
a critical component in real-world applications. We demonstrated
the trade-off that exists for many constraint methods where higher
performance is possible when more degradation is risked. CCL-
PQD often performs along the Pareto Front giving the user the
power to optimize this trade-off in a wide range of applications.
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