Systematic Generalisation of Temporal Tasks through Deep
Reinforcement Learning

Borja G. Leén
Imperial College London
London, United Kingdom

b.gonzalez-leon19 @imperial.ac.uk

ABSTRACT

This work addresses the problem of grounded agents learning sys-
tematically from formally specified instructions and generalising
their learning to execute zero-shot i.e., never-seen-before, specifi-
cations. To the best of our knowledge, we are the first to provide
evidence that systematic learning can emerge with abstract operators
(such as negation) when learning from a limited variety of training
examples, which previous research has struggled with. In particular,
we find that within a neural network, the particular architecture of
convolutional layers are key when grounded agents generalise to new
instructions. We also present a neuro-symbolic framework where
a symbolic module transforms temporal specifications into a form
that helps the training of a deep RL agent targeting generalisation,
while a neural module learns systematically to solve the given tasks.
Through this framework, we achieve agents that execute multi-task,
zero-shot instructions.

KEYWORDS

Systematic Generalisation, Convolutional Neural Networks, Rein-
forcement Learning, Temporal Logic

1 INTRODUCTION

Systematic generalisation (also called combinatorial generalisation
[29]) concerns the human capacity for compositional learning, that
is, the algebraic capacity to understand and execute novel utterances
by combining already known primitives [9, 15]. For instance, once a
human agent understands the instruction “get wood" and the meaning
of iron, they will understand the task “get iron". This is a desirable
feature for a computational model, as it suggests that once the model
is able to understand the components of a task, it should be able
to satisfy tasks with the same components in possibly different
combinations.

The ability of neural-based agents to learn systematically and gen-
eralise beyond the training environment is a recurrent point of debate
in machine learning (ML). In the context of autonomous agents solv-
ing human-given instructions, deep reinforcement learning (DRL)
holds considerable promise [10, 33]. Previous studies have shown
that DRL agents can exhibit some degree of systematic generalisa-
tion of natural language [4, 22, 45]. In parallel, frameworks based
on structured or formal languages to instruct DRL agents are also
gaining momentum [11, 44, 46]. Formal languages offer several
desirable properties for RL including unambiguous semantics, and
compact compositional syntax, which is particularly relevant when
targeting safety-aware applications [1, 25, 39]. However, works with
formal languages have traditionally focused on solving training tasks

Proc. of the Adaptive and Learning Agents Workshop (ALA 2022), Cruz, Hayes, Silva,
Santos (eds.), May 9-10, 2022, Online, https://ala2022.github.io/. 2022.

Murray Shanahan
Imperial College London
London, United Kingdom

m.shanahan @imperial.ac.uk

Francesco Belardinelli
Imperial College London
London, United Kingdom

francesco.belardinelli @imperial.ac.uk

[19, 20, 23] or rely on new policy networks when tackling novel
instructions [27], with its associated computational burden.

In order to progress towards agents that execute zero-shot, i.e.,
unseen, formal instructions it is desirable to design frameworks that
facilitate the emergence of systematic learning in DRL. There ex-
ists substantial evidence that DRL agents can learn systematically
only when the right drivers are present [29, 34]. Unfortunately, the
focus on learning from natural instructions has hindered the study of
drivers for systematicity with logic operators, e.g., negation or dis-
junction. Only Hill et al. [21] provides evidence of DRL agents with
some degree of systematicity facing negated zero-shot instructions.
This work suggests that systematic learning can emerge from as few
as six instructions when handling positive tasks, but that a much
larger number of instructions (~ 100) is a major requirement when
aiming abstract operators such as negation. This constraint would be
a strong burden for DRL agents, meaning they could only generalise
abstract concepts when rich and diverse environments are available.

Contributions. In this work we aim to answer the question: can
systematic learning emerge in DRL agents with abstract logic oper-
ators, e.g., disjunction, when learning from a limited variety (~ 6)
of examples? Specifically, we make the following contributions:

e We provide empirical evidence of emergent systematic gener-
alisation in DRL agents with abstract operators — including
negation, which previous works have struggled with — when
learning from as few as six training instructions. Note that
the previous latest research suggested that significantly larger
numbers (~ 100) were strongly required [21].

o We find that the architecture of the convolutional layers (c.l.) —
a background feature in previous literature — can be key when
generalising to zero-shot tasks.

e We also introduce a novel neuro-symbolic framework aimed
at agents that exhibit systematic generalisation. In this frame-
work, the formal language helps neural-based agents that
target zero-shot instructions, while the symbolic module fa-
cilitates generalisation to longer-than-training instructions.

The remaining of this document is structured as follows: Sec-
tion 2 introduces the key concepts needed to understand our research.
Section 3 presents the formal language we use to provide instruc-
tions, as well as our neuro-symbolic framework. Section 4 details
the experimental settings and results obtained. Finally, Sections 5
and 6 report on related works and discussion, respectively.

2 SYSTEMATIC GENERALISATION OF
FORMAL TASKS

Our situated agents operate with a fixed visual perspective and lim-
ited visual range. Thus, we work with partially observable (p.o.)

https://ala2022.github.io/

environments. Our target is to assess whether systematic learning is
emerging in such environments while stressing that the convolutional
neural network (CNN) architecture is key to facilitate generalisation
when the number of training examples is limited. This section briefly
introduces the concepts needed to present our work.

Reinforcement Learning. In RL p.o. environments are typically
modelled as a POMDP.

DEFINITION 1 (POMDP). A p.o. Markovian Reward Decision
Process is a tuple M = (S,A,P,R, Z,0,y) where (i) S is the set of
states {s,s’,...}. (ii) A is the set of actions {a, a’, .. .}. (iii) P (s’|s, a) :
SXAXS — [0,1] is the (probabilistic) transition function. (iv)
R(s,a,s) : SX AXS — R is the Markovian reward function. (v) Z is
the set of observations {z,z’,...}. (vi) O(s,a,s) : SXAXS — Z is
the observation function. (vii) y € [0, 1) is the discount factor.

At every timestep t, the agent chooses an action a; € A updating
the current state from sy to s;41 € S according to P. Then, R; =
R(st, a, st+1) provides the reward associated with the transition, and
O(s¢, ar, sp+1) generates an observation oy+1 that will be provided to
the agent. Intuitively, the goal of the learning agent is to choose the
policy 7 that maximizes the expected discounted reward from any
state s. Given the action-value function Q7 (s, a) = E [R¢|s; = s,a],
RL searches for an optimal policy whose actions are meant to max-
imise the action-value function Q* (s, a) = max,; Q” (s, a). For more
detail we refer to Sutton and Barto [42].

Convolutional neural network (CNN).. A CNN is a specialized
type of neural network model [30] designed for working with visual
data. Particularly, a CNN is a network with one or more convolu-
tional layers (c.l.). Relevant features of c.l. for this study include
kernels, a matrix of weights which is slid across an input image and
multiplied so that the output is enhanced in a desirable manner, and
stride, which measures the step-size of the kernel slid. After the
last convolutional layer, the output is a tensor that we refer to as
visual embedding. We point to Goodfellow et al. [18] for a complete
description of CNNs.

Evaluating the emergence of systematic generalisation. As antic-
ipated in Sec. 1, we aim to assess whether a neuro-symbolic DRL
agent is able to generalize systematically from temporal-logic (TL)
instructions. Consequently, we do not focus on the raw reward col-
lected by the agent, but rather on whether the agent is correctly
following new instructions. To evaluate this, we work in two pop-
ular settings involving procedural maps where agents need to fulfill
reachability goals, in line with previous literature [21, 24, 27]. In our
experiments agents are trained with instructions such as “get gold"
(reach gold) or “get something different from mud" (i.e., reach an
object that is not mud). Then, we evaluate the agents with unseen
instructions, e.g., “get something different from iron, then get iron".
It is evident that a learning agent achieving significantly better re-
wards than a random walker does not imply systematic learning, e.g.,
the agent could accumulate larger rewards just by navigating better
than a random walker and reaching all the objects promptly. For this
reason, after training, we evaluate generalisation in settings called
binary choice maps (BCMs). In these test maps, agents are evaluated
with zero-shot reliable instructions, i.e., unseen reliable instructions

that point to objects granting a positive reward, or zero-shot de-
ceptive instructions, i.e., instructions pointing to objects granting a
penalisation — a negative reward —. Since during training we always
provide reliable instructions, agents that show systematic learning
— not complete systematicity but at least similar to closely related
works [4, 21] — should accumulate significantly higher rewards with
zero-shot reliable instructions than with deceptive ones (we estimate
around two times higher or greater to be a good reference in our
settings, detailed in Sec. 4).

3 SOLVING ZERO-SHOT INSTRUCTIONS IN
TTL

In this section we present a framework to tackle complex (multi-
task) zero-shot temporal specifications that leverages a DRL agent
learning systematically to solve training tasks. Our framework relies
on 3 components detailed below: 1) a formal language, whose atoms
are designed to facilitate the systematic learning of a neural-based
module; 2) a symbolic module, whose role is to decompose specifica-
tions into sequences of simpler tasks, and provide the reward signal
for the neural module on the current task to execute; 3) a neural
module consisting of a DRL agent aimed to learn systematically
from the tasks fed by the symbolic module.

3.1 Task temporal logic

We start by defining a novel TL language whose atomic components
are used to train a DRL algorithm. Task temporal logic (TTL) is
an expressive, learning-oriented TL language interpreted over finite
traces, i.e, over finite episodes. Given a set AT of atomic tasks
a, B, ..., the syntax of TTL is defined as follows:

DEFINITION 2 (TTL). Every formula ¢ in TTL is built from
atomic tasks o € AT by using negation “~" (on atoms only), sequen-

tial composition ;" and non-deterministic choice of atoms “V" and
formulae “U":
T === ala~|aVa
9 Tlg:plpug

Intuitively, an atomic task a corresponds to a reachability goal in
the TL literature, in the sense that the fulfilment condition associated
with a will eventually hold. Task a ~ encapsulates a special form
of negation; informally it means that something different from «
will eventually hold. Choosing this form of negation allows us to
contrast our results with those of previous studies of this operator in
natural language [21]. Note that the negation symbol is intentionally
positioned after the atomic task. We found that this feature helps
during training with visual instructions, as it forces the neural module
(Sec. 3.3) to process the same number of symbols to distinguish
negative from positive tasks (we refer to Sec. E.1 in the supplemental
material for further detail). Formulae ¢; ¢’ intuitively express that ¢’
follows ¢ in sequential order; whereas ¢ U ¢’ means that either ¢ or
¢’ holds. We then also introduce an abbreviation for the concurrent
(non-sequential) composition N as follows: NP’ = (¢; ") U(P’; P).
We say that our language TTL is learning-oriented as its logical
operators and their positions in formulae are so chosen as to help the
training process of the learning agent.

TTL is interpreted over finite traces A, where |A| denotes the
length of the trace. We denote time steps, i.e., instants, on the trace

as A[j], for 0 < j < |A|; whereas A[i, j] is the (sub)trace between
instants i and j. In order to define the satisfaction relation for TTL,
we associate with every atomic task « an atomic proposition pg,
which represents «’s fulfilment condition. Note again that, in this
context, « is a reachability goal, typically expressed in TL as an
eventuality op,. Then, a model is a tuple N = (M, L), where M is
aPOMDP, and L : S — 24P is a labelling of states in S with truth
evaluations of atoms p,, in some set AP of atoms.

DEFINITION 3 (SATISFACTION). Let N be a model and A a finite
trace. We define the satisfaction relation = for tasks T and formulae
¢ on trace A inductively as follows:

NN Ea iff forsome0 < j < |A|, pa € L(AL[j])

NV EFa~ iff forsome0 < j < |A|, for some q #
Pa> q € L(ALj]) and pa ¢ L(A[j])

N, VD) Eava iff (NJA)Eaor(N,A)EQ

NN E ¢ ¢’ iff forsome0 < j < |A], (N,A[0,j])
|=,¢ and (N, A[j+1,1A-1[]) E

¢
N D EUP" iff (N EGor(N,A) ¢

By Def. 3.2, an atomic task « indeed corresponds to a formula
opq of temporal logic, where p, is the fulfilment condition associ-
ated with «. It can be immediately inferred that TTL is a fragment
of the widely-used Linear-time Temporal Logic over finite traces
(LTL f) [12]. We provide a translation of TTL into LTLf and the
corresponding proof of truth preservation in Sec. F in the appendix.
To better understand the language we present a toy example.

EXAMPLE 1. The specification “get something different from
grass, then collect grass and later use either the workbench or the
toolshed" can be expressed in TTL as:

¢ = (grass ~); grass; (workbench U toolshed)

TTL is designed to be expressive enough to encapsulate both the
tasks described in [2], a popular benchmark in the RL-TL literature
[11, 31, 43], and the negated instructions from studies about negation
in natural language [21], i.e., encapsulating “not wood" as “get
something different from wood".

REMARK. As a foundational work assessing the ability of learn-
ing agents to generalise abstract operators with unseen instructions,
we intentionally restricted TTL syntax with atomic operators to nega-
tion and disjunction. This allows to carefully study the ability of DRL
agents to generalise with these two important operators.

3.2 The Symbolic module

Given an instruction ¢ in TTL, the first task of the symbolic module
(SM), detailed in Algorithm 3.2, is to decompose ¢ into sequences of
atomic tasks for the neural module (NM). Intuitively, the SM reduces
the problem into a progression of POMDPs, which is a well-known
procedure in the literature on RL with TL specifications [6, 43]. In
particular, a task extractor & transforms ¢ into the set % of all se-
quences of tasks T that satisfy ¢. As standard in the literature [2, 27],
we assume that the SM has access to an internal labelling function
(a.k.a. event detectorl) Ly :Z — 24P which maps the agent’s ob-
servations into sets of atoms in AP. Note that £; might differ from

Note that RL literature and vanilla RL settings [42] also rely on these event detectors
to provide rewards to the agents although they are not formally defined.

Algorithm 1 The symbolic module (SM)

Input: Instruction ¢

Generate the accepted sequences of tasks K «— E(¢)

Retrieve the current observation: z

Get the true proposition: p «— Lj(z)

Get the first task: T < P (K, p)

repeat
Generate the extended observation: z¢*
Get the next action: a «— NM(z¢*%)
Execute a, new observation z’
New true proposition: p” «— Lj(z")
Provide the internal reward: NM « Ry (p’)
if p’ == p, for & € T then

13: Update K, T’ «— P(K,p’)

14: end if

15: until K == 0 or time limit

Lez+T

D A A o A

- — =
M =2

the labelling £ originally defined in Sec. 3.1, since £ is defined on
states. For our approach to be effective, observations have to contain
enough information to decide the truth of atoms, so that both the
agent’s internal and the model’s overall labelling functions remain
aligned. Given L and the sequences of tasks in K, a progression
function P selects the next task from % that the NM has to solve.
Once a task is solved, # updates K and selects the next task. This
process is repeated until ¢ is satisfied or the time limit is reached.
We include the pseudocode for £ and K subroutines in Appendix B.

When forwarding the current task T to the NM, the SM expands
observation z with the subformula corresponding to T. In the current
context, z is a square visual input with a fixed perspective. In our
empirical setting, this is expanded either by adding extra rows to
z containing T (see Figure 1 center) or providing T in a separated
"language" channel (see Figure 1 right). During the episode the SM
also provides the reward signal that guides the NM to solve T

d if p, =0, whered e Rand d < 0;

i if p; = pa, for a occurring in T and
R(p:) = T #a~,orif pr # pa, for a occurring in
TandT =a ~, wherei e Randi > 0;

¢ otherwise, where ¢ € R and ¢ < d.

where Lj(z;) = p; for any time step ¢. Intuitively, the NM is
rewarded when the event detector L fires a signal that satisfies the
current task, and penalised when L signals an event not related to
T. A small penalisation is also given at each time step to induce the
agent to promptly solve T. We now illustrate the inner working of
the SM.

EXAMPLE 2. Consider one of the complex specifications used in
Sec. 4: ¢1 = ((wood; grass) U (iron; axe)); workbench; (toolshed ~
). Given ¢y, the task extractor & outputs set K = {{[wood], [grass],

[workbench], [toolshed ~]), {[iron], [axe], [workbench], [toolshed ~

1)} with two available sequences of tasks. Set K is forwarded to the
progression function P and since we have two lists with different
initial elements, both positive, P selects [wood V iron] as task T
to extend the next observations of the NM. The NM iterates with
the environment using the extended observations as input. At each
iteration, functions L and R respectively evaluate the progression

of T and reward the NM until T is satisfied. In our example, if the
NM got wood, the second sequence and [wood] are discarded and
the next task becomes [grass|. This process is repeated until K is
empty or the time limit is reached.

3.3 The Neural module

The neural module consists of a DRL algorithm. We use A2C, a
popular synchronous version of the algorithm introduced by Mnih
et al. [36]. The NM is trained in procedurally generated maps, using
a fixed perspective which is known to help agents with generalisation
[34]. All the agents differ on the CNN architecture.

CNN architecture. We study architectures with convolutional lay-
ers followed by a fully connected (f.c.) layer [18] and a recurrent
layer (an LSTM from Gers et al. [17]). In preliminary studies, we
observed that agents with different f.c. and recurrent layer configura-
tions can exhibit similar generalisation abilities. However, as detailed
in Sec. 4, different convolutional configurations yield significantly
different results. Particularly, while all the convolutional architec-
tures we test achieve a similarly good performance with training
instructions, only specific configurations correctly execute zero-shot
tasks. We find that the ability to generalise is correlated to the degree
of alignment between the CNN architecture and the environment. In
our gridworld settings, we say that a CNN is weakly aligned (WA)
with an environment when the kernel dimensions and stride size
are factors of the tile resolution. If a CNN is WA and the two first
dimensions (length and width) of its visual embedding —the output
of the convolutional layers— correspond to the number of input tiles
in the original observation, we say that this CNN is strongly aligned
(SA). Note that the number of channels of the output, i.e., the third
dimension of the embedding, has no influence in the alignment. Last,
when a CNN is not WA or SA, we say it is not aligned (NA). When
aiming systematic learning from ~ 6 training instructions, we find
that only SA networks (when giving visual instructions) or SA and
WA networks (when instructions are given in a separated channel)
correctly execute zero-shot tasks.

4 EXPERIMENTS

We evaluate our framework in procedurally generated grid-worlds.
The first setting (Figure 1 left) is designed along the lines of a
Minecraft-inspired (Minecraft for sort) benchmark widely used in
RL-TL [2, 11, 43], which we adapt to match the 2D maps from Hill
et al. [21] (the last study about negation). The action set consists of
4 individual actions: Up, Down, Left, Right, that move the agent one
tile in the given direction. In this setting each tile has a resolution of
9x9x1 values. The DRL algorithm receives the observation extended
with visual instructions depicting the target objects (Figure 1 center).
We also evaluate the agents in the popular MiniGrid benchmark [8],
depicted in Figure 1 right. Here each tile has a resolution of 8x8x3
values, and the action set is Move forward, Turn left, Turn right. In
this benchmark instructions are given through a separated language
channel.

For each setting we test four different CNN configurations. The
first two are popular architectures from previous literature that we
use as baselines: Atari-CNN [36, 37] which is NA with Minecraft
and WA with MiniGrid, and ResNet [14, 21] WA with Minecraft
and NA with MiniGrid. We contrast these networks with different

architectures designed to be SA with each environment and that we
refer to as Env-CNN. Last, for each environment we also test the
performance of the same Env-CNNs, but when the c.l. are frozen
during training, i.e., the c.l. always use a set of randomly selected
parameters. We refer to these networks as Env-CNNRF, Figure 2
includes schemes of the neural network architectures from Section 4.
On the left, we see the general setting for Minecraft, where tasks
instructions are embedded within the observation, and MiniGrid,
where instructions are given in a separated channel. Note that we
intentionally use a significantly different number of channels in the
last layers with Env-CNNpinecrafe and Env-CNNipinigriq- We do this
to evidence that the number of channels in the visual embedding
does not affect the ability of SA architectures to generalise training
instructions. In Sec 4 we observed that both SA architectures show
good generalisation performance in their respective settings.

In every experimental setting we refer to the global set of objects
as X. X is split into training (Xj), validation (X2) and test sets
(X3) where X = X1 UXo UKX3, X1 N X =0, X1 N X3 =0, and
X2 N X3 = 0. We contrast the results of learning with training sets
of different size that we refer to as small (|X;| = 6) and large
(JX1| = 20). In Minecraft, where instructions are visual, agents
are trained with objects from X only. In MiniGrid, where agents
require to ground words to objects, we train the agents with positive
instructions from X, while instructions concerning the negation or
disjunction operators refer only to objects in X;. Agents are trained
with atomic tasks T. Tasks are procedurally generated with objects
from the corresponding set. For instance, with the small setting
we have six different objects, meaning that agents are learning the
negation operator from six training instructions. At each episode the
agent navigates receiving rewards according to T. The episode ends
when the agent receives a positive reward (meaning that T is satisfied)
or the time limit is reached. See Appendix B for the reward function.
During training we periodically evaluate the performance of the
agents with the corresponding validation set Xy, that we use to select
the best learning weights in each run, i.e., to perform early stopping
when necessary. Further details about object set generation, reward
values, hyperparameters, environment mechanics and training and
validation plots are included in Appendix A.

4.1 Empirical Results

Results about systematic learning. Table 1 presents the raw re-
ward results in X7 and X3 with the different CNNs. Note that “train”
refers to results with objects from the training set but with the
weights that achieve the best rewards in X». Therefore, all the net-
works can accumulate higher rewards in training if we let them
overfit (See Figure 3 in appendix for training and validation plots).
Note that results in Table 1 alone do not yield a strong correlation
between the alignment of the CNN and the generalisation ability.
Yet, as anticipated in Sec. 2 this correlation becomes evident when
evaluating whether the agents are actually following the test instruc-
tions. Table 2 shows the results in a particular set that we call binary
choice maps (BCMs). Here maps have only two objects (except in
“disjunction 2 choices", with four), one granting a positive reward
(i = +1) the other a penalisation (¢ = —1). In “disjunction 2 choices"
two objects penalise, and two provide a reward. Since agents are
always trained with reliable instructions pointing to objects that

reach grey ball ~

Figure 1: Left. Example of a procedurally generated test map (left) in the Minecraft-inspired environment with its corresponding
extended observation (center) when the agent’s task is to get either iron or an axe (top row). Tasks are specified in the top row of the
extended observation in this setting by depicting the object itself. Right. A MiniGrid map where the task is to reach an object different
from the grey ball. Here instructions are given on a separated channel and objects are combinations of shapes and colors.

LSTM 128

visual embedding

1

visual embedding

visual embedding

I
|

Conv. 2x2, ’
stride 2, 32 ch. visual embedding

Residual Block

Conv. 1x1,
FC 128 stride 1, 1 ch.

FC 128 : X3
visual embedding text visual stride 3, 32 ch. stride 2, 32 ch. stride 2, 32 ch.
embedding embedding Max 3x3, stride 2

convolutional g e C o
: onv. 3x3, onv. 2x2, Conv. 8x8
layers Bidirectional convolutional))) Conv. 33, stride 1
Es stride 3, 16 ch. stride 2, 16 ch. stride 4, 16 ch.
LSTM 32 Y T T _____ '
Task
Obs Obs Visual input Visual input Visual input Visual input
Common layers Common layers Env-CNNpinecrait/ ENV-CNNminigria/
. _— RE .
Minecraft Minigrid Env-CNNRfecrait ~ ENV-CNNifinigria Atari-CNN ResNet

Figure 2: The neural network architectures evaluated in Sec. 4. All the variants follow the structures depicted in the left for the
corresponding settings. 7(a;) and V; refer to the actor and critic layers respectively [36]. The different number of channels in the last
layer of the Env-CNN architectures is done to provide evidence that such feature does not affect how the agent generalises.

grant a positive reward, an agent that is correctly generalising to
zero-shot instructions should collect significantly higher rewards
with reliable instructions than with deceptive ones (i.e., the later
instructions are pointing to objects that grant a negative reward).
Roughly, agents should accumulate with reliable instructions two
times greater rewards than when given deceptive instructions to show
similar generalisation to the experiments in previous studies about
negation with 100 training instructions [21].

The first strong pattern that we extract from Table 2 is that only ar-
chitectures with some form of alignment (WA and SA) give evidence
of systematic learning when no more than six training instructions

are available. NA architectures show minimal to none generalisa-
tion (e.g. better performance with deceptive instructions than with
reliable) in all the small settings. With 20 objects, NA architectures
also fail when instructions are visual (Minecraft) while struggling
with the disjunction operator when instructions come in a dedicated
channel (Minigrid). In the latter setting, architectures with some
alignment (WA) show good generalisation performance. Yet, when
instructions are visual they only learn to generalise positive and
negative instructions, and exclusively in the larges setting. Notably,
architectures that are strongly aligned (SA) show good generalisation

Table 1: Mean and standard deviation from the average rewards obtained from five independent runs in a set of 500 maps with atomic
tasks. A value of 1.0 is the performance of a random walker. The highest value over all networks is bolded.

Minecraft Atari-CNN (NA) ResNet (WA) Env-CNNpinecraft (SA) Env-CNNRE ait (SA)
| X1] Train Test Train Test Train Test Train Test
6 3.04(0.12) 2.87(0.21) 3.24(0.49) 2.72 (0.22) 4.46(0.75) 1.8(0.25) 2.90(0.81) 2.58(0.76)
20 3.11(0.14) 3.06(0.08) 4.52(0.44) 2.14(0.50) 4.45(0.30) 3.81(0.72) 3.28(0.98) 3.10(0.88)
Minigrid Atari-CNN (WA) ResNet (NA) Env-CNNpinigria (SA) ~ Env-CNNRE .14 (SA)
| Xq | Train Test Train Test Train Test Train Test
6 4.02(1.09) 3.96(0.85) 3.98(0.93) 3.55(0.69) 2.75(1.03) 2.29(1.03) 3.31(0.84) 3.39(0.31)
20 6.19(0.75) 3.33(1.06) 5.61(0.78) 5.60(0.99) 7.31(0.50) 4.09(0.92) 4.74(0.15) 2.55(3.39)

Table 2: Results from 500 binary choice maps with zero-shot instructions. In *Reliable’ higher is better while in Deceptive’ lower is
better. Agents show a stronger systematic generalisation the bigger the difference between respective reliable and deceptive instructions.
Positive and negative labels refer to atomic positive or negative instruction respectively pointing to one of the two objects present. In
disjunction 2™ choice the instructions refers to two objects, but only the second is present in the map. Disjunction 2 choices points to
two objects in a map with 4 items. Results are bolded where performance with reliable instructions is greater or equal than two times

the respective performance with deceptive instructions.

Minecraft | X;| Atari-CNN (NA) ResNet (WA) Env-CNNpinecrafi (SA) Env-CNNRE ot (SA)
Instruction Reliable Deceptive Reliable Deceptive Reliable Deceptive Reliable Deceptive
Positive 6 3.89(0.12) 3.92(0.09) 3.72(0.49) 3.42(0.81) 3.25(1.89) 0.26(1.88) 3.95(1.8) 0.74(0.65)
20 4.14(0.07) 4.16(0.09) 3.30(1.83) 1.10(1.38) 5.43(0.24) 0.11(0.03) 3.95(1.76) 1.10(1.18)
Negative 6 3.82(0.18) 3.81(0.10) 3.52(0.52) 3.49(0.68) 2.20(1.30) 0.44(0.38) 2.23(1.89) 1.04(0.82)
20 3.94(0.13) 3.97(0.09) 3.09(1.73) 1.26(0.93) 4.40(0.66) 0.14(0.05) 2.25(1.80) 0.94(1.15)
Disjunction 6 2.56 (0.23) 2.59(0.57) 2.29(0.12) 2.51(0.69) 2.23(4.79) 0.57(0.29) 2.54(0.67) 1.37(0.06)
2 choices 20 2.63 (0.23) 2.68(0.57) 2.16(0.12) 2.23(0.69) 3.53(4.79) 0.44(0.29) 2.82(0.67) 1.07(0.90)
Minigrid | X1] Atari-CNN (WA) ResNet (NA) Env-CNNinigria (SA) Env-CNNRFieria (SA)
Instruction Reliable Deceptive Reliable Deceptive Reliable Deceptive Reliable Deceptive
Negative 6 2.83(0.96) 0.44(0.25) 3.02(1.37) 297(1.39) 2.01(1.27) 0.41(0.25) 1.61(0.21) 0.75(0.16)
20 2.77(0.79) 0.34(0.10) 5.05(1.27) 0.20(0.10) 5.03(1.65) 0.16(0.05) 2.16(0.23) 0.98(0.22)
Disjunction 6 4.21(0.46) 0.84 (0.50) 4.02(0.39) 3.68(0.59) 2.67 (1.49) 0.79(0.54) 4.06(0.74) 0.63(0.44)
2 choices 20 3.42(0.97) 1.14(0.48) 5.03(0.59) 1.75(0.77) 3.13(0.47) 0.37(0.09) 2.72(0.97) 1.58(0.38)
Disjunction 6 2.83(0.93) 0.90(0.41) 3.52(0.79) 3.86(1.30) 1.68(1.25) 0.75(0.27) 2.81(0.79) 0.88(0.55)
2" choice 20 2.11(1.42) 1.06(0.32) 2.60(0.74) 2.37(1.03) 1.81(0.52) 0.50(0.08) 1.91(0.76) 1.28(0.4)

even when the weights of the c.1. are not trained (Env-CNNRF), fur-
ther evidencing the high influence of the architecture configuration
in how the agent generalises. Remarkably, the Env-CNN (the fully
trained SA architecture) is the only configuration that systematically
achieves a performance greater than 1 (the performance of a random
agent) with reliable instructions while getting less than 1 with decep-
tive instructions across all the settings. That is, SA architectures are
the only configurations that have systematically learnt to generalise
from the training instructions to guess not only the desired object/s,
but also which undesired items should be avoided according to the
test instruction.

Last, we highlight that in preliminary studies we also explored
additional overfitting-prevention methods, including dropout and

autoencoders, to help NA networks. However, the results do not vary
from the ones obtained by the train-validation-test set division that
we carry here and that evidence the benefits of using architectures
that are aligned with its environment. We only include the disjunc-
tion test where agents struggled the most, due to space constrains,
additional results are included in Appendix C.

Generalisation with TTL formulae. We last evaluate the perfor-
mance of the same agents trained with atomic tasks T when exe-
cuting complex (multi-task) instructions given as TTL formulae ¢
that refer to zero-shot atomic tasks. Table 4 contains the five com-
plex instructions that we use to test our agent. The first two are

Table 3: Results from a set of 200 maps with zero-shot complex instructions, i.e, longer than training instructions composed by various
zero-shot tasks. Steps refers to the number of actions per instruction needed by the agents (a random walker requires 110 steps in

average). The highest value over all networks is bolded.

Atari-CNN (NA) ResNet (WA) Env-CNNppinecraft (SA) Env-CNNRE & (SA)
| X1] Reward Steps Reward Steps Reward Steps Reward Steps
6 245(0.25) 26.28(4.96) 2.68(0.65) 49.26(28.89) 3.08(1.49) 49.1(25.79) 2.74(1.78) 56.51(22.87)
20 2.99(0.21) 20.96(1.50) 3.49(0.68) 27.36(5.20) 7.45(3.36) 32.84(6.79) 5.49(1.21) 38.18(9.66)

Table 4: Complex instructions used in Table 3 in the main text. The 6 objects included in these instructions belong to the test set (X3) in

the Minecraft-inspired environment.

TTL

Intuitive meaning

((iron; workbench) N
wood); toolshed; axe

Get iron and then use workbench, also get wood. Then use the toolshed.

Later use the axe.

(wood N iron); workbench

Get wood and iron. Then use the workbench

(grass ~);grass; (workbenchUtoolshed)

Get an object different from grass. Then get grass. Later use either the

workbench or the toolshed.

((workbench ~
) N (toolshed ~)); toolshed

Use an object different from the workbench and use another object
different from the toolshed. Then use the toolshed

((wood; grass) U
(iron;axe)); workbench; (toolshed ~)

Get either wood and then grass or iron and an axe. Then use the
workbench. Later use something different from the toolshed.

the hardest specifications from [2, 43]. The three additional instruc-
tions were defined by aiming for combinations of negated tasks
and inclusive/exclusive non-deterministic choices with non-atomic
components together with sequential instances. We recall that op-
erator N can be defined in terms of sequential composition ; and
non-deterministic choice U. Table 3 shows the average reward and
number of actions needed in 200 maps with the complex instruc-
tions. In line with the results with TTL tasks from Table 1, we see
that a stronger alignment yields better the final performance (i.e.,
SA>WA>NA accumulated reward).

5 RELATED WORK

This work bridges the fields of systematic generalisation with formal
methods in RL. Here we include the most relevant literature from
each field to this research:

Systematic Generalisation. Generalisation beyond training in-
structions has been widely studied in the RL literature. For instance,
Oh et al. [38] presents a framework that relies on hierarchical RL
and task decomposition of instructions in English to enhance gen-
eralisation in DRL. Later work from Mao et al. [34] introduces a
neuro-symbolic concept learner that jointly learns visual concepts,
words, and semantic parsing of sentences from natural supervision.
Yu et al. [45] present a model that reports strong generalisation in a
2D environment that is aimed at language understanding for positive
instructions. Closer to our line of work, there is growing literature
(see e.g., Bahdanau et al. [4], Lake [29], Smolensky [40]) focused
on finding the right drivers enabling systematic learning from natural
language instructions, e.g., fixed perspectives and varied training

data. Recent work [21] suggests that systematic generalisation is
not a binary question, but an emergent property of agents interact-
ing with a situated environment [35] and explores the drivers that
enable agents generalise an abstract operator such as negation. We
expand the state of this line of works by first, providing evidence
that systematic learning can emerge with logic operators from as
few examples as with positive instructions, second, giving evidence
that the CNN architecture is a key driver —that previous research was
oblivious about— towards generalisation.

Reinforcement Learning and Temporal Logic. Training autonomous
agents to solve multi-task goals expressed in temporal logic is draw-
ing growing attention from the research community. Examples in-
clude following instructions expressed as TL formulae by using logic
progression and RL [2, 32], tackling continuous-action environments
[46], multi-agent systems [31] and studies on the applicability of
different TL languages [7]. Complex goals expressed as temporal
formulae can also be easily decomposed by using other techniques,
including finite state automata [11, 23] and progression [43]. More
recent work has further exploited automata techniques, combining
hierarchical approaches and reward machines — a particular form of
automata— [16] or high-level planning with low-level RL solutions
[26]. These works focus on solving non-Markovian models by ex-
tending the state space in a minimal form (to minimally impact the
state space) so that the RL agent learns from an equivalent Markov-
ian model, where an optimal behavior is also optimal in the original
system [3]. A drawback of the mentioned literature is their exclusive
focus on learning to solve compositions of training tasks. For this

reason Kuo et al. [27] targets generalisation of temporal logic in-
structions with DRL at the expense of requiring an additional neural
network for each new symbol or object encountered. Our work ad-
vances the state of the art by presenting a framework that can execute
zero-shot TL formulae while relying on a single neural network.

6 DISCUSSION AND CONCLUSIONS

We presented a framework that can execute unseen formal instruc-
tions while learning from a limited number of atomic tasks. With
respect to generalisation, an obvious limitation of our work is the
use of regular gridworlds in our experiments. However, this does not
lessen our contributions since previous closely-related work have
struggled to provide evidence of generalisation with abstract oper-
ators in similar settings. Our experiments evidence that systematic
generalisation can emerge with these operators as early as with
positive instructions, and that convolutional layers play a key role
in this emergence. Moreover, the good generalisation results with
the untrained convolutional layers in the two settings suggests that
finding the right architecture may be more beneficial than training
a generic convolutional configuration when aiming at generalisation.
Consequently, when working in real-world environments — where the
prior-knowledge about object resolution cannot be directly applied —
our research suggests that methods for automatic generation of deep
learning architectures are a potential way forward. Another limita-
tion is that — in line with related work on generalisation [4, 21, 28]
— we do not give nomological explanations for the generalisation
ability (or lack thereof) that we evidence. Yet, this out of our scope,
that is proving the emergence of generalisation and the key elements
lacked in previous works in similar settings. Our findings suggest
that from as few as six different examples agents with aligned ar-
chitectures learn not only how to follow training commands, but
also abstract information about how symbols and operators in the
given language compose and how the combination of those sym-
bols influences what the agent should do. This contrasts with Hill
et al. [21] — the only previous study evidencing some generalisa-
tion with unseen negated instructions — which suggests that ~100
instructions are required with negated instructions. Using the same
form of negation, we find that the CNN architecture plays a key
role when learning from limited examples. Still, we observe that
the ResNet used in Hill et al. [21] shows evidence of generalising
negation with 20 instructions in our experiments. This also contrasts
with Hill et al. [21], where the ResNet performed barely better than
random when trained with 40 negated instructions. We find that this
difference comes from our use of a validation set, not common in
RL literature and consequently not present in previous research. We
provide empirical evidence of this point in Appendix D.

With respect to formal methods and RL (FM-RL) literature, we
use a language that is less expressive than the latest contributions
in the field. This constraint was needed to carry a careful experi-
mental evaluation of the systematic learning with the different types
of operators. Given the positive results, more expressive languages
can be used in future iterations. Nevertheless, we presented the first
framework that, leveraging on a learning-oriented syntax and the
compositional structure of logical formulae, is capable of executing
zero-shot complex formulae in temporal logic while relying on a

single network. As anticipated in Sec. 5, this contrasts with dom-
inant methods in the FM-RL literature that rely on a new policy
network per task (e.g., De Giacomo et al. [11], Furelos-Blanco et al.
[16], Icarte et al. [24], Jothimurugan et al. [26]) or a new network
per word and symbol [27].

Concluding remarks. We presented a foundational study that acts
as a bridge between the areas of DRL, FM and systematic generalisa-
tion. Our framework demonstrates the possibility of generalising to
unseen multi-task TL formulae, where future works may apply more
sophisticated symbolic modules such as reward machines. We have
empirically demonstrated that systematic learning can emerge with
abstract operators such as negation from as few as six instructions.
Hence, we plan exploring more expressive language without requir-
ing large numbers of training instructions for new symbols. In the
context of generalisation, we also gave evidence of the important role
that convolutional layers play in how agents generalise. In our case,
exploiting prior-knowledge of the environment — the tile resolution
of the gridworld — was key to achieve better agents. Our findings
highlight that choosing the right convolutional layers can play a
more important role than training such layers. This suggests that
future work may explore meta-learning and evolutionary techniques
[13, 41], which provide methods to automatically search well-suited
architectures, as a potential solution when targeting generalisation
in visually complex environments.

7 APPENDIX

We refer readers to https://drive.google.com/file/d/1pU1n7b4n4FC
I9HTmoUyywniZZZGKIEwt/view ?usp=sharing for the appendix.

REFERENCES

[1] Mohammed Alshiekh, Roderick Bloem, Riidiger Ehlers, Bettina Konighofer, Scott
Niekum, and Ufuk Topcu. 2018. Safe reinforcement learning via shielding. In
Thirty-Second AAAI Conference on Artificial Intelligence.

Jacob Andreas, Dan Klein, and Sergey Levine. 2017. Modular multitask rein-

forcement learning with policy sketches. In Proceedings of the 34th International

Conference on Machine Learning-Volume 70. JIMLR. org, 166-175.

Fahiem Bacchus, Craig Boutilier, and Adam Grove. 1996. Rewarding behaviors.

In Proceedings of the National Conference on Artificial Intelligence. 1160-1167.

[4] Dzmitry Bahdanau, Shikhar Murty, Michael Noukhovitch, Thien Huu Nguyen,

Harm de Vries, and Aaron C. Courville. 2019. Systematic Generalization: What

Is Required and Can It Be Learned?. In 7th International Conference on Learning

Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019. OpenRe-

view.net.

Christel Baier and Joost-Pieter Katoen. 2008. Principles of model checking. MIT

press.

[6] Ronen IBrafman, Giuseppe De Giacomo, and Fabio Patrizi. 2018. LTLf/LDLf non-

markovian rewards. In Thirty-Second AAAI Conference on Artificial Intelligence.

Alberto Camacho, R Toro Icarte, Toryn Q Klassen, Richard Valenzano, and

Sheila A Mcllraith. 2019. LTL and beyond: Formal languages for reward function

specification in reinforcement learning. In Proceedings of the 28th International

Joint Conference on Artificial Intelligence (IJCAI). 6065-6073.

[8] Maxime Chevalier-Boisvert, Lucas Willems, and Suman Pal. 2018. Minimalistic
Gridworld Environment for OpenAl Gym. https://github.com/maximecb/gym-
minigrid.

[9] Noam Chomsky and David W Lightfoot. 2002. Syntactic structures. Walter de
Gruyter.

[10] John D Co-Reyes, Abhishek Gupta, Suvansh Sanjeev, Nick Altieri, John DeNero,
Pieter Abbeel, and Sergey Levine. 2019. Meta-learning language-guided policy
learning. In International Conference on Learning Representations, Vol. 3.

[11] Giuseppe De Giacomo, Luca Iocchi, Marco Favorito, and Fabio Patrizi. 2019.
Foundations for restraining bolts: Reinforcement learning with LTLf/LDLf re-
straining specifications. In Proceedings of the International Conference on Auto-
mated Planning and Scheduling, Vol. 29. 128-136.

[12] Giuseppe De Giacomo and Moshe Y Vardi. 2013. Linear temporal logic and linear
dynamic logic on finite traces. In Twenty-Third International Joint Conference on
Artificial Intelligence.

[2

3

[5

[7

https://drive.google.com/file/d/1pU1n7b4n4FCI9HTmoUyywniZZZGKIEwt/view?usp=sharing
https://drive.google.com/file/d/1pU1n7b4n4FCI9HTmoUyywniZZZGKIEwt/view?usp=sharing
https://github.com/maximecb/gym-minigrid
https://github.com/maximecb/gym-minigrid

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

[31

[32]

[33]

[34]

Thomas Elsken, Jan Hendrik Metzen, Frank Hutter, et al. 2019. Neural architecture
search: A survey. J. Mach. Learn. Res. 20, 55 (2019), 1-21.

Lasse Espeholt, Hubert Soyer, Rémi Munos, Karen Simonyan, Volodymyr Mnih,
Tom Ward, Yotam Doron, Vlad Firoiu, Tim Harley, lain Dunning, Shane Legg,
and Koray Kavukcuoglu. 2018. IMPALA: Scalable Distributed Deep-RL with
Importance Weighted Actor-Learner Architectures. 80 (2018), 1406-1415.

Jerry A Fodor and Zenon W Pylyshyn. 1988. Connectionism and cognitive
architecture: A critical analysis. Cognition 28, 1-2 (1988), 3-71.

Daniel Furelos-Blanco, Mark Law, Anders Jonsson, Krysia Broda, and Alessandra
Russo. 2021. Induction and exploitation of subgoal automata for reinforcement
learning. Journal of Artificial Intelligence Research 70 (2021), 1031-1116.
Felix A Gers, Jiirgen Schmidhuber, and Fred Cummins. 2000. Learning to forget:
Continual prediction with LSTM. Neural computation 12, 10 (2000), 2451-2471.
Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua Bengio. 2016.
Deep learning. Vol. 1. MIT press Cambridge.

Lewis Hammond, Alessandro Abate, Julian Gutierrez, and Michael Wooldridge.
2021. Multi-Agent Reinforcement Learning with Temporal Logic Specifications.
In Proceedings of the 20th International Conference on Autonomous Agents and
MultiAgent Systems. 583-592.

Mohammadhosein Hasanbeig, Natasha Yogananda Jeppu, Alessandro Abate, Tom
Melham, and Daniel Kroening. 2021. DeepSynth: Automata Synthesis for Auto-
matic Task Segmentation in Deep Reinforcement Learning. In The Thirty-Fifth
{AAAI} Conference on Artificial Intelligence, {AAAI}, Vol. 2. 36.

Felix Hill, Andrew Lampinen, Rosalia Schneider, Stephen Clark, Matthew
Botvinick, James L McClelland, and Adam Santoro. 2020. Environmental drivers
of systematicity and generalization in a situated agent. In International Conference
on Learning Representations.

Felix Hill, Olivier Tieleman, Tamara von Glehn, Nathaniel Wong, Hamza Merzic,
and Stephen Clark. 2021. Grounded Language Learning Fast and Slow. In Inter-
national Conference on Learning Representations.

Rodrigo Toro Icarte, Toryn Klassen, Richard Valenzano, and Sheila Mcllraith.
2018. Using reward machines for high-level task specification and decomposition
in reinforcement learning. In International Conference on Machine Learning.
2112-2121.

Rodrigo Toro Icarte, Ethan Waldie, Toryn Klassen, Rick Valenzano, Margarita
Castro, and Sheila Mcllraith. 2019. Learning Reward Machines for Partially Ob-
servable Reinforcement Learning. In Advances in Neural Information Processing
Systems. 15497-15508.

Kishor Jothimurugan, Rajeev Alur, and Osbert Bastani. 2019. A Composable
Specification Language for Reinforcement Learning Tasks. In Advances in Neu-
ral Information Processing Systems 32: Annual Conference on Neural Informa-
tion Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver,
BC, Canada, Hanna M. Wallach, Hugo Larochelle, Alina Beygelzimer, Florence
d’Alché-Buc, Emily B. Fox, and Roman Garnett (Eds.). 13021-13030.

Kishor Jothimurugan, Suguman Bansal, Osbert Bastani, and Rajeev Alur. 2021.
Compositional reinforcement learning from logical specifications. Advances in
Neural Information Processing Systems 34 (2021).

Yen-Ling Kuo, Boris Katz, and Andrei Barbu. 2020. Encoding formulas as
deep networks: Reinforcement learning for zero-shot execution of LTL formulas.
In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). IEEE, 5604-5610.

Brenden Lake and Marco Baroni. 2018. Generalization without Systematicity:
On the Compositional Skills of Sequence-to-Sequence Recurrent Networks. In
International Conference on Machine Learning. 2873-2882.

Brenden M Lake. 2019. Compositional generalization through meta sequence-
to-sequence learning. In Advances in Neural Information Processing Systems.
9788-9798.

Yann LeCun, Yoshua Bengio, and Geoftrey Hinton. 2015. Deep learning. nature
521, 7553 (2015), 436.

Borja G. Le6n and Francesco Belardinelli. 2020. Extended Markov Games
to Learn Multiple Tasks in Multi-Agent Reinforcement Learning. In ECAI
2020 - 24th European Conference on Artificial Intelligence (Frontiers in Ar-
tificial Intelligence and Applications, Vol. 325). 10S Press, 139-146. https:
//doi.org/10.3233/FATA200086

Michael L Littman, Ufuk Topcu, Jie Fu, Charles Isbell, Min Wen, and James
MacGlashan. 2017. Environment-independent task specifications via gltl. arXiv
preprint arXiv:1704.04341 (2017).

Jelena Luketina, Nantas Nardelli, Gregory Farquhar, Jakob N. Foerster, Jacob
Andreas, Edward Grefenstette, Shimon Whiteson, and Tim Rocktédschel. 2019. A
Survey of Reinforcement Learning Informed by Natural Language. In Proceedings
of the Twenty-Eighth International Joint Conference on Artificial Intelligence,
IJCAI 2019, Macao, China, August 10-16, 2019, Sarit Kraus (Ed.). ijcai.org,
6309-6317. https://doi.org/10.24963/ijcai.2019/880

Jiayuan Mao, Chuang Gan, Pushmeet Kohli, Joshua B. Tenenbaum, and Jiajun
Wu. 2019. The Neuro-Symbolic Concept Learner: Interpreting Scenes, Words,
and Sentences From Natural Supervision. In 7th International Conference on
Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019.
OpenReview.net.

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

James L McClelland, Matthew M Botvinick, David C Noelle, David C Plaut,
Timothy T Rogers, Mark S Seidenberg, and Linda B Smith. 2010. Letting structure
emerge: connectionist and dynamical systems approaches to cognition. Trends in
cognitive sciences 14, 8 (2010), 348-356.

Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Tim-
othy Lillicrap, Tim Harley, David Silver, and Koray Kavukcuoglu. 2016. Asyn-
chronous methods for deep reinforcement learning. In International conference
on machine learning. 1928—1937.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness,
Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg
Ostrovski, et al. 2015. Human-level control through deep reinforcement learning.
Nature 518, 7540 (2015), 529.

Junhyuk Oh, Satinder Singh, Honglak Lee, and Pushmeet Kohli. 2017. Zero-shot
task generalization with multi-task deep reinforcement learning. In Proceedings of
the 34th International Conference on Machine Learning-Volume 70. JMLR. org,
2661-2670.

Thiago D Simaio, Nils Jansen, and Matthijs TJ Spaan. 2021. AlwaysSafe: Rein-
forcement learning without safety constraint violations during training. In Proceed-
ings of the 20th International Conference on Autonomous Agents and MultiAgent
Systems. 1226-1235.

Paul Smolensky. 1988. On the proper treatment of connectionism. Behavioral
and brain sciences 11, 1 (1988), 1-23.

Xingyou Song, Yuxiang Yang, Krzysztof Choromanski, Ken Caluwaerts, Wenbo
Gao, Chelsea Finn, and Jie Tan. 2020. Rapidly Adaptable Legged Robots via
Evolutionary Meta-Learning. In IEEE/RSJ International Conference on Intelligent
Robots and Systems, IROS 2020, Las Vegas, NV, USA, October 24, 2020 - January
24, 2021. IEEE, 3769-3776. https://doi.org/10.1109/IROS45743.2020.9341571
Richard S Sutton and Andrew G Barto. 2018. Reinforcement learning: An intro-
duction. MIT press.

Rodrigo Toro Icarte, Toryn Q Klassen, Richard Valenzano, and Sheila A Mcllraith.
2018. Teaching multiple tasks to an RL agent using LTL. In Proceedings of the
17th International Conference on Autonomous Agents and MultiAgent Systems.
International Foundation for Autonomous Agents and Multiagent Systems, 452—
461.

Yichen Yang, Jeevana Priya Inala, Osbert Bastani, Yewen Pu, Armando Solar-
Lezama, and Martin Rinard. 2021. Program Synthesis Guided Reinforcement
Learning. In Advances in neural information processing systems.

Haonan Yu, Haichao Zhang, and Wei Xu. 2018. Interactive Grounded Language
Acquisition and Generalization in a 2D World. In 6h International Conference on
Learning Representations, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3,
2018, Conference Track Proceedings. OpenReview.net.

Lim Zun Yuan, Mohammadhosein Hasanbeig, Alessandro Abate, and Daniel
Kroening. 2019. Modular Deep Reinforcement Learning with Temporal Logic
Specifications. arXiv preprint arXiv:1909.11591 (2019).

https://doi.org/10.3233/FAIA200086
https://doi.org/10.3233/FAIA200086
https://doi.org/10.24963/ijcai.2019/880
https://doi.org/10.1109/IROS45743.2020.9341571

	Abstract
	1 Introduction
	2 Systematic generalisation of formal tasks
	3 Solving zero-shot instructions in TTL
	3.1 Task temporal logic
	3.2 The Symbolic module
	3.3 The Neural module

	4 Experiments
	4.1 Empirical Results

	5 Related work
	6 Discussion and conclusions
	7 Appendix
	References
	A Experiment details
	A.1 Environment
	A.2 Training hyperparameters and plots
	A.3 Hardware

	B Symbolic Module
	C Disjunction results
	D The struggle with negated instructions
	E Requirements for Logical Operators
	E.1 Negation
	E.2 Non-deterministic Choice

	F Translating TTL into LTLf

